
REPORTS
IN

INFORMATICS

ISSN 0333-3590

The Price of Connectedness in Expansions

Fedor V. Fomin, Pierre Fraigniaud, and
Dimitrios M. Thilikos

REPORT NO 273 May 2004

Department of Informatics

UNIVERSITY OF BERGEN

Bergen, Norway

This report has URL http://www.ii.uib.no/publikasjoner/texrap/ps/2004-273.ps

Reports in Informatics from Department of Informatics, University of Bergen, Norway, is
available at http://www.ii.uib.no/publikasjoner/texrap/.

Requests for paper copies of this report can be sent to:

Department of Informatics, University of Bergen, Høyteknologisenteret,
P.O. Box 7800, N-5020 Bergen, Norway

The Price of Connectedness in Expansions

Fedor V. Fomin

Dep. of Informatics

University of Bergen

fomin@ii.uib.no

Pierre Fraigniaud

CNRS

University of Paris Sud

pierre@lri.fr

Dimitrios M. Thilikos

Lenguatges i Sistemes Informàtics

UPC Barcelona

sedthilk@lsi.upc.es

6th May 2004

Abstract

Expansion is the way of generalizing different graph layout and search-
ing problems. We initiate the study of connected expansion which naturally
arises in a number of applications. Our main tool for this investigation is the
branchwidth of a graph. In particular, we prove that any 2-edge-connected
graph of branchwidth k has a connected branch decomposition of width k, i.e.,
a branch decomposition in which any cut separates two edge-sets that induce
two connected subgraphs. Our proof is constructive, and is inspired from the
existential proof of Seymour and Thomas (1994) for carvings. We also prove
that the connected search number (i.e., connected pathwidth) of any n-node
graph of branchwidth k is at most O(k log n) and this bound is the best pos-
sible for parameters k and n. A first consequence of these results is that,
for any graph, the connected search number is at most O(log n) times larger
than the (standard) search number. The only bound known so far held for
trees only. Another consequence is that the connected search number can be
approximated in polynomial time up to a factor O(log n · log OPT). That is,
for any connected graph G, one can compute in polynomial time a connected
search strategy for G that uses at most O(log n · log OPT) times the optimal
number OPT of searchers. The ratio O(log n·log OPT) is the same as the best
known approximation ratio for (standard) pathwidth, and any improvement
for the approximation of connected search (i.e., connected pathwidth) would
indeed produce an improvement for the approximation of pathwidth.

Keywords: Branchwidth, Graph Searching, Pathwidth, Expansion.

1 Introduction

Assume a set of inter-related functional units in a distributed system. The objective
is to check the correctness of these units, one by one. In order to avoid checked
units to be subject to the propagation of faults from neighboring unchecked units,
the “checker” uses resources to protect checked units against unchecked neighboring
ones. Once all neighboring units of a checked unit U has been checked, there is no
need to protect U , and only the frontier between checked and unchecked units has
to be guarded. The objective is to minimize the amount of resources required for
the system to be entirely checked.

1

A closely related problem is the one consisting of a financial company C to
acquiring market positions via the control of industrial sectors. Industrial sectors
are inter-dependent. Assume three sectors S, S′, and S′′ owned by C. If sector S
depends (technologically, strategically, or financially) only on sectors S′ and S′′,
then the control of these two latter sectors induces the control of sector S, in
the sense that another company C′ acquiring S would be subject to financial or
technological decisions decided by C. On the other hand, if a controlled sector S
depends on a non-controlled sector S′, then resources (shares, or budget) should
be invested in S to avoid a strong dependence from S′. Perhaps the best would
even be to acquire S′. The objective for the company is to minimize the amount
of resources required to acquire a large fraction of the sectors, or even to acquire
monopoly on all sectors.

Both problems can be modelled by an expansion problem in graphs. Let M be
a set, and let α be a function mapping subsets of M to integers. A k-expansion in
M is a sequence A = (A0, . . . , Ar) of subsets of M where:

• A0 = ∅, and Ar = M ;

• for each i, 0 ≤ i ≤ r − 1, |Ai+1 −Ai| ≤ 1;

• for each i, 0 ≤ i ≤ r − 1, α(Ai) ≤ k.

An expansion is called monotone if, additionally,

• for each i, 0 ≤ i ≤ r − 1, Ai ⊆ Ai+1.

It was proven in [10] that for any k-expansion there exists a monotone k-
expansion if α is a connectivity function, that is α is symmetric (i.e., for any
A ⊆ M,α(A) = α(M − A)) and submodular (i.e., for any A,B ⊆ M, α(A ∩ B) +
α(A ∪B)) ≤ α(A) + α(B)).

Given a graph G = (V,E), a first example of an expansion is defined if for any
A ⊆ V, α(A) is the set of edges with endpoints in both A and M − A. Then α is a
connectivity function, and a graph G has a k-expansion if and only if its cutwidth
is at most k. (Cutwidth is a standard parameter arising in VLSI, we refer to [14]
for more information on this parameter.)

Another example of an expansion is defined if, for any A ⊆ E, α(A) is the
number of vertices incident both to an edge in A and to an edge in E − A. Then
α is again a connectivity function, and a graph G has a k-expansion if and only if
its linear-width is at most k. (Linear-width [19] is a parameter closely related to
pathwidth and search number – see also [18]).

Yet another natural example of expansion is the conquest game [10], where we
have a set of countries subject to join some organization. At every moment of
time we can either add a country to the union or expel an arbitrary number of
countries. Adding countries and keeping them in the union needs some resources,
say for guarding its border from the countries outside the union.

In all these examples it is a natural (and some times necessary) to demand to
have connected expansions. For example, in conquest game the connectivity means
that we can add a country to the union only if it is has a common border with
some other country from the union. In search game it means that the cleared set
should be connected which is necessary condition for agents to communicate to each
other. Moreover, the same condition should be imposed in cases where the searchers
cannot “jump” from one node to an non-adjacent one (e.g., cannot pass through
the “walls” that determine the structure of the graph where the search takes place).
The main question we are interested in this paper is:

2

Question: What additional price should we pay for the connected expansion?

In other words, what is the smallest l such that the existence of k-expansion
yields the existence of a connected l-expansion? The proofs given in this extended
abstract are stated in terms of the connectivity function α corresponding to linear-
width. We stress that our results can also be stated in terms of general expansions.
However instead of working with arbitrary finite sets M and functions α we decided
to restrict ourselves to the special case when M is the edge set of a graph G and
the function α is the number of separating vertices. One reason for such a decision
is that this case is related to other important applications like graph searching and
branchwidth. Another reason is that the proofs in this case become much more
visible.

1.1 Expansion and Graph Searching

Let G = (V, E) be a graph (with possible multiple edges and loops), and let n = |V |,
and m = |E|. For subsets A,B ⊆ E, A ∩B = ∅, we define δ(A,B) to be the set of
vertices adjacent to at least one edge in A and to at least one edge in B. We also
use δ(A) to denote δ(A,E − A). A k-expansion in G is a sequence X0, X1, . . . , Xr

where Xi ⊆ E for every i = 0, . . . , r, X0 = ∅, Xr = E, and satisfying the following:

• |Xi+1 −Xi| ≤ 1 for every i = 0, . . . , r − 1;

• |δ(Xi)| ≤ k for every i = 0, . . . , r.

Using the terminology of [5], a k-expansion is hence a crusade of frontier at
most k. The expansion number x(G) of G is the minimum k for which there is
a k-expansion in G. A graph with expansion number k can thus be obtained by
adding one edge after the other, whilst preserving that no more than k nodes are
on the boundary between the current set of edges and the remaining edges. The
expansion is monotone if

• Xi ⊆ Xi+1 for every i = 0, . . . , r − 1.

It is know [5] that, if G has a k-expansion, then it also has a monotone k-
expansion. Moreover, according to [18], x(G) is equal to the linear-width of G,
a parameter defined in [19]. The notion of expansion is strongly related to graph
searching. A search strategy using k searchers in a graph G is a sequence of search
steps consisting of one of the three following operations: (1) placing a searcher on a
node; (2) moving a searcher along an edge; or (3) removing a searcher from a node.
Operation 2 “clears” the edge traversed by the searcher. Originally, all edges are
“contaminated”, and the goal is to clear them all using the smallest number s(G)
of searchers. A clear edge e is recontaminated if there exists a path between e and
a contaminated edge, with no searcher on any node of the path. It is known [13]
that recontamination does not help, in the sense that for any graph G there is a
monotone search strategy using s(G) searchers, i.e., a search strategy using s(G)
searchers and for which recontamination never occurs. Finding a search strategy
in a graph using as few searchers as possible naturally arises when, e.g., the graph
models a network penetrated by possibly harmful intruders, and the system sends
agents to locate and block these intruders. Determining the search number of a
graph is NP-hard [15], and the completeness follows from Lapaugh’s theorem [13].
See also [11] for some different versions of graph searching.

The relation between expansion and search was noticed by [5, 18]. It follows
that, for any graph G,

x(G) ≤ s(G) ≤ x(G) + 1. (1)

3

For instance x(Pn) = s(Pn) and x(Cn) = s(Cn) where Pn and Cn are repectively
the path and the cycle of n ≥ 3 nodes. For the (n + 1)-node star K1,n, we have
x(K1,n) = 1, but s(K1,n) = 2 for n ≥ 3. This relation between expansion and
search has been used in [5] for the development of powerful techniques for proving
the monotonicity of several variants of graph searching.

1.2 Branchwidth

Beside their practical applications, both expansions and search numbers found their
main interest in their relation with the Graph Minor theory and the several related
notions of width (e.g., pathwidth, treewidth, branchwidth, etc.). In particular, a
branch decomposition [17] of a graph G is a tree T whose all internal nodes have
degree 3, with a one-to-one correspondence between the leaves of T and the edges
of G. Given an edge e of T , removing e from T results in two trees T

(e)
1 and T

(e)
2 ,

and an e-cut is defined as the pair {E(e)
1 , E

(e)
2 }, where E

(e)
i ⊂ E is the set of leaves

of T
(e)
i for i = 1, 2. (Note that E

(e)
1 ∩E

(e)
2 = ∅ and E

(e)
1 ∪E

(e)
2 = E.) The width of

T is defined as ω(T) = maxe |δ(E(e)
1)| where the maximum is taken over all e-cuts

in T . The branchwidth bw(G) of G is then minT ω(T) where the minimum is taken
over all branch decompositions T of G. Note that for 2-edge connected graphs x(G)
can be alternatively defined as minT ω(T) where minimum is taken over all branch
decompositions T of G with T being a caterpillar. It follows easily that for any
graph G,

bw(G) ≤ max{x(G), 2}.
branchwidth was introduced by Robertson and Seymour in their Graph Minors se-
ries papers several years after treewidth. These parameters are rather close but
many theorems in Graph Minors are easier to prove by using branchwidth instead
of treewidth. Another powerful property of branchwidth is that it can be naturally
generalized for hypergraphs and matroids. A good example of a generalization of
Robertson and Seymour theory for matroids by using branchwidth is the recent
paper by Geelen et al. [12]. A dual version of branchwidth, called carving, finds ap-
plications in the call routing problem in telephone networks [17]. As far as practical
issues are concerned, branchwidth is related to the ability of recursively splitting
the graph into several components separated by few nodes. In particular, there is an
edge of the optimal branch decomposition of a graph G whose removal corresponds
to splitting G into components of size at most 2m/3 edges, and with at most bw(G)
nodes in common.

For any graph G, we have:

bw(G)− 1 ≤ s(G) = O(bw(G) · log n). (2)

This is because

• pw(G) ≤ s(G) ≤ pw(G) + 1 where pw(G) is the pathwidth of G [4];

• bw(G)− 1 ≤ tw(G) ≤ 3 bw(G)/2 where tw(G) is the treewidth of G [16];

• pw(G) = O(tw(G) · log n) (cf., e.g., [6]).

By (1) and (2), we have that s(G) and x(G) can be both approximated in
polynomial time up to a factor O(log n · log OPT). Indeed, the branchwidth can
be polynomially approximated up to a factor log OPT for any graph (cf. [1, 7]).
Whether this O(log n · log OPT) factor can be improved has been an open problem
for more than a decade, and it still holds despite several efforts for solving it.

4

1.3 Introducing Connectivity Constraints

This paper is concerned with connectivity issues that naturally arise when one
asks the k-expansion to form a sequence of connected edge-induced subgraphs at
every step, or the set of clear edges in a search strategy to be connected at every
step. Similarly, splitting a graph into a small number of connected components
of small size (say at most 2m/3 edges) and connected through a small number of
nodes leads to the notion of connected branchwidth in which the two sets of edges
resulting from an e-cut are both connected (see [8] where the problem of balanced
connected partition of graphs is analyzed).

More formally, a k-expansion X0, X1, . . . , Xr of a graph G is connected if, for any
i = 1, . . . , r, the subgraph induced by Xi is connected. The connected expansion
number cx(G) of G is the minimum k for which there is a connected k-expansion
in G. Similarly, a search strategy is connected if the set of clear edges induces a
connected subgraph at every step of the search. The connected search number cs(G)
of a graph G is the minimum k for which there is a connected search strategy in
G using at most k searchers. Finally, a branch decomposition T of a graph G is
connected if, for every e-cut in T , each of the resulting two sets of edges induces a
connected subgraph of G.

1.4 Our Results

We present a polynomial-time algorithm that, given a branch decomposition T of a
2-edge-connected graph G of width k, returns a connected branch decomposition of
G of width ≤ k. Therefore, surprisingly, the connected branchwidth of any 2-edge-
connected graph is equal to its branchwidth. In other words, there is no additional
price for imposing the connectedness in branch decompositions. As a consequence,
it is possible to partition any 2-edge-connected graph of branchwidth k into at
most three connected subgraphs of size ≤ m/2 edges, sharing at most k nodes.
Our algorithm is partially inspired from the non-constructive proof of Seymour
and Thomas [17] which shows that if there exists a carving of width < k in a 2-
connected graph G, then there exists a bond (i.e., connected) carving of width < k
in G. Our algorithm applies to branchwidth, and constructs the connected branch
decomposition explicitly.

We show that the connected expansion cannot be too large in comparison with
the expansion, and that the same holds for graph searching. More specifically, we
first prove that

cx(G) ≤ bw(G) · (1 + log2 m) (3)

for any connected graph G. Using the facts that bw(G) ≤ max{x(G), 2}, x(G) ≤
s(G) and cs(G) ≤ cx(G) + 1 we obtain as a consequence that

cx(G)/x(G) ≤ 1 + log2 m and cs(G)/s(G) ≤ 2 + log2 m

for any connected graph G. That is, the connected expansion is no more than
an O(log n) factor away from the non-connected one, and the same holds for the
search number. The bound in (3) is asymptotically optimal in the sense that there
are trees T for which cx(T) = Θ(log n) (cf. [3]), and the branchwidth of any tree is
at most 2.

Combining our polynomial-time algorithm for connected branchwidth with the
established relation between expansion (resp., search) and connected expansion
(resp., connected search) allows us to derive a polynomial-time O(log n · log OPT)-
approximation algorithm for connected expansion and connected search in arbitrary
graphs. In the case of planar graphs, the approximation ratio can be reduced to
O(log n) by using the fact that the branchwidth of a planar graph is computable

5

in polynomial time [17]. Reducing the approximation ratio O(log n · log OPT) for
arbitrary graphs leads to the same type of difficulties as reducing the best known
approximation ratio O(log n log OPT) for standard search, i.e., pathwidth.

2 Branchwidth and Connected Branchwidth

In this section, we describe an algorithm called Make-it-Connected, satisfying the
following:

Theorem 1 In time O(m3), given a branch decomposition T of a 2-edge-connec-
ted graph G of width k, Algorithm Make-it-Connected returns a connected branch
decomposition T ′ of G with width ≤ k.

Notation. Given a sub-tree A obtained from an e-cut of a branch decomposition
S, we denote by δ(A) the set of nodes in G that belongs to δ(L) where L is the set of
edges of G corresponding to the leaves of A. We also denote by |A| the cardinality
of L. For two disjoint sub-trees A and B of S, δ(A,B) is the set of nodes of G that
have at least one incident edge that is a leaf of A, and at least one incident edge
that is a leaf of B. Given a branch decomposition S, a quartet is an ordered set
(A1, A2, B1, B2) of four mutually disjoint subtrees of S satisfying the following:

1. there is an edge e = {x, y} of S such that the roots a1 and a2 of A1 and A2

are both adjacent to x in S, and the roots b1 and b2 of B1 and B2 are both
adjacent to y in S; (cf. Figure 2.)

2. δ(A1, B1) 6= ∅ and δ(A2, B2) 6= ∅;
3. δ(A1, A2) = ∅;
Notice that, by the above definition, the leaves corresponding to the subtrees

A1, A2, B1, B2 form a 4-partition of E. Algorithm Make-it-Connected is described in
Figure 1. It proceeds as follows. Given a quartet (A1, A2, B1, B2) in S, the algorithm
replaces this quartet by (A1, B1, A2, B2), resulting in a tree S′ obtained by connect-
ing a1 and b1 to x, and a2 and b2 to y (See Fig. 2). Actually, if (A1, A2, B1, B2)
and (A1, A2, B2, B1) are both quartets in S, then the algorithm considers the two
possible replacements, and chooses the one that has smaller width. Clearly S′ is
also a branch decomposition of G. Note however that neither (A1, B1, A2, B2) nor
(A2, B2, A1, B1) is a quartet in S′ since δ(Ai, Bi) 6= ∅ for i = 1, 2, by definition of
the quartet (A1, A2, B1, B2) in S. Algorithm Make-it-Connected proceeds by suc-
cessive replacements of quartets in the branch-decomposition. The algorithm stops
when there is no quartet in the current branch-decomposition (we will later prove
that such a situation eventually occurs). The proof of Theorem 1 proceeds through
a sequence of lemmas.

Lemma 1 The replacement of a quartet as specified in Algorithm Make-it-Connected
does not increase the width of the branch-decomposition.

Proof. The only possible change in the width can occur because of the cut sep-
arating A1 ∪ A2 from B1 ∪ B2. We consider two cases depending whether or not
(A1, A2, B2, B1) is a quartet. If (A1, A2, B2, B1) is also a quartet (i.e., δ(A1, B2) 6= ∅
and δ(A2, B1) 6= ∅), then

|δ(A1 ∪B1, A2 ∪B2)|+ |δ(A1 ∪B2, A2 ∪B1)| ≤ |δ(B1)|+ |δ(B2)|. (4)

Indeed, if u ∈ δ(A1 ∪ B1, A2 ∪ B2) − δ(B1) then u ∈ δ(B2) because δ(A1, A2) = ∅.
Similarly, if u ∈ δ(A1 ∪ B2, A2 ∪ B1)− δ(B2) then u ∈ δ(B1). Therefore, any node

6

counted on the left hand side of Equation 4 appears as many time on the right
hand side. Thus Equation 4 holds. Hence |δ(A1 ∪B1, A2 ∪B2)|+ |δ(A1 ∪B2, A2 ∪
B1)| ≤ 2k, and thus the smallest of the two boundaries in certainly of size ≤ k. If
(A1, A2, B2, B1) is not a quartet, then assume, w.l.o.g., that δ(A1, B2) = ∅. We get
|δ(A1 ∪B1, A2 ∪B2)| ≤ |δ(B1)| ≤ k.

Lemma 2 The branch decomposition T ′ returned by Algorithm Make-it-Connected
is connected.

Proof. If not, then there exists an e-cut that splits T ′ into two subtrees A and
B such that the leaves of A does not induce a connected subgraph in G. Actually,
one can easily show that there exists such an e-cut so that A is the union of two
disjoint subtrees A1 and A2 with δ(A1, A2) = ∅. Among this latter type of e-cuts,
we choose an e-cut such that |A| is maximum for that property. The other subtree
B of this e-cut contains at least two leaves since otherwise removing the single
edge corresponding to the leaf of B would result in disconnecting the graph G, a
contradiction with the fact that G is 2-edge-connected. We thus have B as the
union of two disjoint subtrees B1 and B2 whose roots are adjacent to the root of
B. Since |A| is maximum, we have δ(A, Bi) 6= ∅ for i = 1, 2. Moreover, since G
is connected, and δ(A1, A2) = ∅, we have δ(Ai, B) 6= ∅ for i = 1, 2. Therefore
either δ(A1, B1) 6= ∅ and δ(A2, B2) 6= ∅, or δ(A1, B2) 6= ∅ and δ(A2, B1) 6= ∅, or
both. Hence, there is a quartet in T ′, a contradiction since, by construction, the
tree returned by Algorithm Make-it-Connected has no quartet.

Lemma 3 Algorithm Make-it-Connected terminates.

Proof. We use a potential argument, based on a measure defined in [17] for
carvings. Any internal node x of the branch-decomposition S is of degree 3, and
thus it defines three subtrees S1, S2, S3 whose roots are connected to x. Then let

φ(S1, S2, S3) =
{

0 if δ(Si, Sj) 6= ∅ for any i 6= j;
|S`| − 1 if δ(Si, Sj) = ∅ for some i 6= j, where ` /∈ {i, j}.

This function is well defined because, since G is connected, if δ(Si, Sj) = ∅ for some
i 6= j, then δ(Si, S`) 6= ∅ and δ(Sj , S`) 6= ∅ for ` ∈ {1, 2, 3} − {i, j}. Now, we
define a potential function φ defined on any branch-decomposition S with set of
internal node I(S) by φ(S) =

∑
I(S) φ(S1, S2, S3). We show that, after any step of

Algorithm Make-it-Connected, the potential φ strictly decreases. For that purpose,
it is enough to prove that

φ(A1 ∪B1, A2, B2) + φ(A1, B1, A2 ∪B2) < φ(A1, A2, B1 ∪B2) + φ(A1 ∪A2, B1, B2)

for any quartet (A1, A2, B1, B2). First note that, since, by definition of a quartet,
δ(A1, A2) = ∅, we get that φ(A1, A2, B1 ∪B2) = |B1|+ |B2| − 1. Hence, for

L = φ(A1∪B1, A2, B2)+φ(A1, B1, A2∪B2) and R = φ(A1∪A2, B1, B2)+|B1|+|B2|−1,

it is enough to prove that L < R for any quartet (A1, A2, B1, B2). Since R > 0, the
lemma is satisfied if L = 0. Thus we restrict our analysis to the case L > 0 which
means that either φ(A1∪B1, A2, B2) > 0 or φ(A1, B1, A2∪B2) > 0. W.l.o.g. we will
examine the case where φ(A1, B1, A2∪B2) > 0 which excludes that δ(A1, A2∪B2) 6=
∅ and δ(B1, A2 ∪B2) 6= ∅ simultaneously hold. Hence we consider two cases:

Case 1: δ(A1, A2 ∪ B2) = ∅. If δ(A1 ∪ B1, A2) 6= ∅ and δ(A1 ∪ B1, B2) 6= ∅ then
L = |B1| − 1 < |B1|+ |B2| − 1 ≤ R. Therefore, we consider two sub-cases:

• If δ(A1 ∪B1, A2) = ∅, then L = |B1|+ |B2| − 2 < |B1|+ |B2| − 1 ≤ R.

7

• If δ(A1 ∪ B1, B2) = ∅, then δ(B1, B2) = ∅, and thus R = |A1| + |A2| +
|B1|+ |B2|−2. It follows that L < R because, by definition of a quartet,
δ(Ai, Bi) 6= ∅ for any i = 1, 2.

Case 2: δ(B1, A2 ∪ B2) = ∅. Then δ(B1, B2) = ∅, and thus R = |A1| + |A2| +
|B1|+ |B2| − 2. Hence, L < R because δ(Ai, Bi) 6= ∅ for any i = 1, 2.

In all cases, the inequality L < R holds, which completes the proof.

Proof of Theorem 1. From Lemmas 1 and 2, if Algorithm Make-it-Connected
terminates, then it returns a connected branch decomposition of width ≤ k. From
Lemma 3, the algorithm does terminates. To compute the execution time of the
algorithm, let us consider the potential function φ defined in the proof of Lemma 3.
Since φ(S1, S2, S3) ≤ m− 1, we get that the potential cannot exceed O(m2). Thus
there are O(m2) updates of the branch-decomposition. Each update is local to the
subtree of six nodes interconnecting the roots a1, a2, b1, b2 of A1, A2, B1, B2. For
each of the edges {x, a1}, {x, b1}, {y, a2}, {y, b2}, deciding whether the edge defines a
quartet takes O(m) times. Thus Algorithm Make-it-Connected completes in O(m3)
times.

3 Connected Expansion and Connected Search

We first show the following bound on the connected expansion. A direct consequence
of this bound is that, for any connected graph G, cx(G) ≤ bw(G) · (1 + log2 m).

Theorem 2 Given a branch decomposition T of width k for a connected graph
G, one can compute in O(m3)-time a connected k(1 + log2 m)-expansion X0, X1,
. . . , Xm in G. This result holds even if the first edge X1 of the expansion is fixed.

To prove Theorem 2, we use the following lemma which assume given a connected
branch decomposition.

Lemma 4 Given a connected branch decomposition T of width k for a graph G,
and given any edge e of G, one can compute in O(m3)-time a connected (k log2 m)-
expansion X0, X1, . . . , Xm in G with X1 = {e}.
Proof. The proof is by induction on the number m of edges in G. For any
m ≥ 1, let Pm be the following property: for any k ≥ 0, given a connected branch
decomposition T of width k for a graph G with m edges, and given any edge e of G,
one can compute in O(m3)-time a connected (k log2 m)-expansion X0, X1, . . . , Xm

in G with X1 = {e}.
If m = 1, then there is a connected 0-expansion in G, and thus P1 holds. If

m = 2, then G is either a path of three nodes, or two nodes linked by an edge and a
loop around one of the two nodes, or two loops around a node, or two nodes joined
by a double edge. In the first three cases, bw(G) = 1. In the latter case bw(G) = 2.
In all cases though, one can construct a connected bw(G)-expansion X0, X1, X2 in
G starting from any edge. Thus P2 holds.

Let m > 2. Assume that Pq holds for every 2 ≤ q ≤ m − 1, and consider Pm.
There exists a node x of T whose removal results in three disjoint subtrees T1, T2,
and T3, with |Ti| ≤ bm/2c for any i ∈ {1, 2, 3} (recall that |Ti| denotes the number
of leaves of Ti). Since T is a connected branch decomposition, the leaves of each
of these subtrees induces three connected subgraphs G1, G2, G3 of G, and, for any
i ∈ {1, 2, 3}, Ti is a connected branch decomposition of Gi. Given a set of edges X
in Gi = (Vi, Ei), we denote by δGi(X) the set of nodes of Gi that has at least one
incident edge in X, and at least one incident edge in Ei −X.

8

Since m > 2, bm/2c < m − 1, and thus each Gi (with mi ≤ bm/2c edges)
satisfies the induction hypothesis. So let e be an edge of G. This edge is an edge of
some Gi. Assume, w.l.o.g., that e is an edge of G1. By induction, let us consider
the (k log2 m1)-expansion X0, X1, . . . , Xm1 in G1 with X1 = {e}. Removing the
edge connecting x to the root of T3 in T results in a connected subgraph G1 ∪G2.
Thus, there is a node u in G that has at least one incident edge in G1, and at
least one incident edge f in G2. By induction, let us consider the (k log2 m2)-
expansion Y0, Y1, . . . , Ym2 in G2 with Y1 = {f}. Finally, since G is connected, and
G = G1 ∪ G2 ∪ G3, there is a node v in G that has at least one incident edge in
G1 ∪ G2, and at least one incident edge g in G3. By induction, let us consider
the (k log2 m3)-expansion Z0, Z1, . . . , Zm3 in G3 with Z1 = {g}. We obtain the
expansion

X0, X1, . . . , Xm1 , Xm1 ∪ Y1, . . . , Xm1 ∪ Ym2 , Xm1 ∪ Ym2 ∪ Z1, . . . , Xm1 ∪ Ym2 ∪ Zm3

in G. It remains to bound the frontier of this expansion. We have

δ(Xi) ≤ δG1(Xi)+k ≤ k log2 m1 +k ≤ k log2bm/2c+k ≤ k log2 m/2+k ≤ k log2 m.

We also have

δ(Xm1 ∪ Yi) ≤ δG2(Yi) + δ(Xm1 ∪ Yi, G3) ≤ k log2bm/2c+ k ≤ k log2 m.

Finally, we have

δ(Xm1 ∪ Ym2 ∪ Zi) ≤ δG3(Zi) + δ(Zi, G1 ∪G2) ≤ k log2bm/2c+ k ≤ k log2 m.

Hence Pm is satisfied.
To complete the proof of the lemma, we observe that the time τ(m) needed to

construct the expansion in an m-edge graph satisfies τ(m) ≤ 3τ(m/2), and thus the
complexity of the construction is 3log2 m = O(m3).

Proof of Theorem 2. If G is 2-edge-connected, then, by application of Theo-
rem 1, one can compute in O(m3) time a connected branch decomposition T ′ of G
of width ≤ k. The requested expansion is then obtained by application of Lemma 4.

If G is not 2-edge-connected, then we add a double edge to each isthmus (i.e.,
cut-edge) in G so that the resulting graph G′ is 2-edge-connected. We obtain
bw(G′) ≤ max{2,bw(G)}. More precisely, given the branch decomposition T of G,
one can construct a branch decomposition T ′ of G′ such that ω(T ′) ≤ max{2, ω(T)}.
Hence, we treat k ≤ 1 as a special case.

If k = 0, then bw(G) = 0 and thus G consists of a single edge. Therefore
cx(G) = 0, and Theorem 2 holds. If k = 1, then bw(G) ≤ 1 and thus G is a star
K1,n−1. If G has one edge, then Theorem 2 holds from the analysis of the case
k = 0. Finally, if m ≥ 2, then cx(G) = 1 ≤ log2 m and Theorem 2 holds.

Assume now that k ≥ 2. We construct G′ and T ′, and then compute a connected
branch decomposition T ′′ of G′ in time O(m3). We have ω(T ′′) ≤ ω(T ′) ≤ ω(T) =
k. By application of Lemma 4, we obtain a connected k log m′-expansion in G′. By
removing in this expansion the second occurrence of every double edge added to
isthmuses, we obtain a connected k log2 m′-expansion in G. We complete the proof
by noticing that m′ ≤ 2m.

Corollary 1 For any graph G, cx(G)/x(G ≤ 1 + log2 m and cs(G)/s(G) ≤ 2 +
log2 m.

Proof. Theorem 2 implies that cx(G) ≤ bw(G) · (1+ log2 m). Hence the corollary
follows from the simple facts that bw(G) ≤ x(G) ≤ s(G), and cs(G) ≤ cx(G) + 1.

9

4 Approximation Algorithms

Let t(m) be the time-complexity of the fastest algorithm for approximating the
branchwidth of a graph, up to a factor O(log OPT). Combining the results of the
previous sections, we get:

Theorem 3 There exists an O(t(m)+m3)-time O(log n log bw(G))-approximation
algorithm for the connected expansion and for the connected search. More precisely,
given any connected graph G, the algorithm returns an O(cx(G) log n log cx(G))-
expansion in G, as well as a connected search strategy for G using at most O(cs(G) log n log cs(G))
searchers.

Proof. In t(m) time, we compute a branch-decomposition T for the input graph
G such that ω(T) ≤ bw(G) · O(log bw(G)). If G is not 2-edge-connected, then
we add a double edge to every bridge to obtain G′ that is 2-edge-connected, and
we modify the branch decomposition accordingly, resulting in T ′. In O(m3) time,
we use Algorithm Make-it-Connected (cf. Theorem 1), taking as input the branch-
decomposition T ′. It returns a connected branch decomposition T ′′ of width ≤
bw(G) · O(log bw(G)) for G′. Finally, we apply the construction in the proof of
Theorem 2 to get a connected (bw(G) · O(log bw(G)) · O(log m))-expansion in G.
Since x(G) = Ω(bw(G)), the result follows for the expansion. The same holds for
search too since a connected k-expansion in G can be trivially transformed into a
connected search in G using at most k + 1 searchers.

Remark. The branchwidth of planar graphs can be computed exactly, in poly-
nomial time (cf. [17]). Therefore, the approximation ratio for connected search and
connected expansion can be reduced to O(log n) in planar graphs. Finally, according
to the results in [9], the same holds for more general graph classes like the K5-minor
free graphs or the K3,3-minor free graphs.

5 Conclusion

In this paper, we have described an algorithm that transforms a branch decom-
position of a 2-edge-connected graph into a connected one, without increasing the
width of the branch decomposition. On the other hand, we have also described an
algorithm that constructs a connected expansion (and a connected search strategy)
in a graph from any connected branch decomposition of this graph. Combining
these two results we were able to derive bounds on the “price of connectedness”.
In particular, we have shown that cx(G)/x(G) ≤ 1 + log |E(G)| for any connected
graph G. Moreover, our algorithms, combined with previously know algorithms for
approximating the branchwidth of a graph, allow us to derive O(log n log OPT)-
approximation algorithm for the connected expansion and for the connected search.
Our paper rises several important questions.

• A first direction for further researches would consist to generalize Theorem 1.
For instance, is it true that, for any k ≥ 1, there exists a constant f(k)
such that if G is f(k)-edge-connected then there exists a k-connected branch
decomposition of G of width bw(G)?

• We have addressed monotonous connected search strategies, and monotonous
connected expansions. Under the connectivity constraint, it is however not
known whether recontamination helps or not. Solving this question appears
to be a challenging task because the connectivity constraint disables us from
using most existing tools for monotonicity proofs (cf, e.g., [5, 10]). The only

10

class of graphs for which it is known that recontamination does not help for
connected search is the class of trees [2]. More generally, does the existence of
connected k-expansion in a set M always implies the existence of a monotone
connected k-expansion?

• Finally, we noticed that the bound cx(G) ≤ bw(G) · (1+ log2 m) is asymptot-
ically tight. We are however concerned with the tightness of the bounds cs/s
and cx/x in Corollary 1. It is known that these ratios can be decreased to 2
in the specific case of trees [3]. Does this latter bound hold for any graph?
Does there exist graphs G for which cx(G)/x(G) = Ω(log n)?

Acknowledgments: All authors are thankful to Ioan Todinca for fruitful dis-
cussions and comments. F. Fomin is supported by Norges forskningsr̊ad projects
160233/V30 and 160778/V30. P. Fraigniaud is supported by the project “PairA-
Pair” of the ACI Masses de Données. D. Thilikos is supported by the EU within
the 6th Framework Programme under contract 001907 (DELIS) and by the Spanish
CICYT project TIC-2002-04498-C05-03 (TRACER).

References

[1] E. Amir. Efficient approximation for triangulation of minimum treewidth. In
17th Conference on Uncertainty in Artificial Intelligence (UAI), 2001.

[2] L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. Capture of an in-
truder by mobile agents. In 14th ACM Symp. on Parallel Algorithms and
Architectures (SPAA), pages 200-209, 2002.

[3] L. Barrière, P. Fraigniaud, N. Santoro, and D. Thilikos. Searching is not jump-
ing. In 29th Workshop on Graph Theoretic Concepts in Computer Science
(WG), Springer-Verlag, LNCS 2880, pages 34–45, 2003.

[4] D. Bienstock, Graph searching, path-width, tree-width and related problems
(a survey), DIMACS Ser. in Discrete Mathematics and Theoretical Computer
Science, 5 (1991), pp. 33–49.

[5] D. Bienstock and P. Seymour. Monotonicity in graph searching. Journal of
Algorithms 12:239–245, 1991.

[6] H. L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth.
Theor. Comp. Sc. 209:1–45, 1998.

[7] V. Bouchitté, D. Kratsch, H. Müller, and I. Todinca. On treewidth approxi-
mations. Discrete Applied Mathematics 136:183-196, 2004.

[8] J. Chleb́ıková. Approximating the maximally balanced connected partition
problem in graphs. Information Processing Letters 60, page 225-230, 1996.

[9] E. Demaine, M. Hajiaghayi, and D. Thilikos. 1.5-Approximation for Treewidth
of Graphs Excluding a Graph with One Crossing as a Minor. In 5th Interna-
tional Workshop on Approximation Algorithms for Combinatorial Optimiza-
tion Problems (APPROX 2002), Lecture Notes in Computer Science, volume
2462, Rome, Italy, pages 67-80, 2002.

[10] F. Fomin and D. Thilikos. On the monotonicity of games generated by sym-
metric submodular functions. Discrete Applied Mathematics 131(2):323-335,
2003.

11

[11] M. Franklin, Z. Galil, and M. Yung, Eavesdropping games: A graph-theoretic
approach to privacy in distributed systems, Journal of the ACM, 47:225–243,
2000.

[12] J. F. Geelen, A. M. H. Gerards, and G. Whittle, branchwidth and well-quasi-
ordering in matroids and graphs, J. Combin. Theory Ser. B 84:270–290, 2002.

[13] A. Lapaugh. Recontamination does not help to search a graph. Journal of the
ACM 40(2):224–245, 1993.

[14] F. S. Makedon and I. H. Sudborough, On minimizing width in linear layouts,
Discrete Appl. Math., 23:243–265, 1989.

[15] N. Megiddo, S. Hakimi, M. Garey, D. Johnson and C. Papadimitriou. The
complexity of searching a graph. Journal of the ACM 35(1):18–44, 1988.

[16] N. Robertson and P. D. Seymour, Graph minors. X. Obstructions to tree-
decomposition, J. Combin. Theory Ser. B, 52:153–190, 1991.

[17] P. Seymour and R. Thomas. Call routing and the rat-catcher. Combinatorica
14(2):217–241, 1994.

[18] D. Thilikos. Algorithms and obstructions for linear-width and related search
parameters. Discrete Appl. Math., 105(1-3):239–271, 2000.

[19] R. Thomas, Tree decompositions of graphs. Lecture notes, 1996. Georgia In-
stitut of Technology, Atlanta, Georgia, 30332, USA.

12

input: branch decomposition T of a 2-edge-connected graph of width k ;
output: connected branch decomposition T ′ of width ≤ k;
begin

S := T ;
While there exists a quartet (A1, A2, B1, B2) in S do

replace (A1, A2, B1, B2) in S by (A1, B1, A2, B2) to get S′;
if (A1, A2, B2, B1) is not a quartet in S then S := S′

else
replace (A1, A2, B1, B2) in S by (A1, B2, A2, B1) to get S′′;
if ω(S′) ≤ ω(S′′) then S := S′ else S := S′′;

endif
endwhile
T ′ := S;

end

Figure 1: Algorithm Make-it-Connected

a2

x

b1

y

b2

a1

A1

B1
b1

x

a2

y

b2

a1

A1 B1

B2A2

A2

B2

Figure 2: Replacing quartets in Make-it-Connected

13

