REPORTS
IN
INFORMATICS

ISSN 0333-3590

Computing Minimal Triangulations in
O(n*logn) Time

Pinar Heggernes Jan Arne Telle
Yngve Villanger

REPORT NO 279 July 2004

Department of Informatics

UNIVERSITY OF BERGEN
Bergen, Norway

This report has URL http://www.ii.uib.no/publikasjoner/texrap/ps/2004-279.ps

Reports in Informatics from Department of Informatics, University of Bergen, Norway, is
available at http://www.ii.uib.no/publikasjoner/texrap/.
Requests for paper copies of this report can be sent to:

Department of Informatics, University of Bergen, Hoyteknologisenteret,
P.O. Box 7800, N-5020 Bergen, Norway

Computing Minimal Triangulations in O(n®logn)
Time

Pinar Heggernes Jan Arne Telle Yngve Villanger
pinar@ii.uib.no telle@ii.uib.no yngvev@ii.uib.no

Department of Informatics, University of Bergen, N-5020 Bergen, Norway

Abstract

The problem of computing minimal triangulations, or minimal fill, of
graphs was introduced and solved in 1976 by Rose, Tarjan, and Lueker in
time O(nm), thus O(n?) for dense graphs. Although the topic has received
increasing attention since then, and several new results on characterizing and
computing minimal triangulations have been presented, this first time bound
has remained unbeaten. In this paper we introduce an O(n® logn) time algo-
rithm for computing minimal triangulations, where O(n®) is the time required
to multiply two n x n matrices. The current best known « is 2.376, and thus
our result breaks the long standing asymptotic time complexity bound for this
problem. To achieve this result, we introduce and combine several techniques
that are new to minimal triangulation algorithms, like working on the comple-
ment of the input graph, graph search for a vertex set A that bounds the size
of the connected components when A is removed, and matrix multiplication.

1 Introduction and motivation

Any graph can be embedded in a chordal graph by adding a set of edges called
fill, and the resulting graph is called a triangulation of the input graph. When the
added set of fill edges is inclusion minimal, the resulting triangulation is called a
minimal triangulation. The first algorithms for computing minimal triangulations
were given in independent works of Rose, Tarjan, and Lueker [17], and Ohtsuki,
Cheung, and Fujisawa [13, 14] already in 1976. Among these, the algorithms of
[13] and [17] have a time bound of O(nm), where n is the number of vertices and
m is the number of edges of the input graph. These first algorithms were moti-
vated by the need to find good pivotal orderings for Gaussian elimination, and the
mentioned papers gave characterizations of minimal triangulations through minimal
elimination orderings. Since then, the problem has received increasing attention,
and several new characterizations of minimal triangulations connected to minimal
separators of the input graph have been given [5, 10, 15], totally independent of
the connection to Gaussian elimination. The connection to minimal separators has
increased the importance of minimal triangulations from a graph theoretical point
of view, and minimal triangulations have proven useful in reconstructing evolution-
ary history through phylogenetic trees [9]. As a result, algorithms based on the
new characterizations have been given [3, 8], while at the same time new algorithms
based on elimination orderings also appeared [4, 7, 16]. However, the best time
bound remained unchanged, and trying to break the asymptotic O(n?) bound of
computing minimal triangulations, in particular for dense graphs, became a major
theoretical challenge concerning this topic.

In this paper, we introduce an O(n®logn) time algorithm to compute minimal
triangulations of arbitrary graphs, where O(n®) is the time bound of multiplying

two n x n matrices, and currently the record is & = 2.376 [6]. Hence the current
time bound for our algorithm is O(n2-37¢ logn). In order to achieve this time bound,
we use several different techniques, one of which is matrix multiplication to make
parts of the input graph into cliques. Our algorithm runs for O(logn) iterations,
and at each iteration the total work is bounded by the time needed for matrix
multiplication. In order to achieve O(logn) iterations, we show how to recursively
divide the problem into independent subproblems of a constant factor smaller size
using a specialized search technique. In order to bound the amount of work at
each iteration by O(n®), we store and work on the complement graphs for each
subproblem, in which case the subproblems do not overlap in any (non)edges. In
addition, we use both the minimal separators and the potential maximal cliques of
the input graph, combining the results of [5], [10], and [15].

Independent of our work, a very recent and thus yet unpublished result of
Kratsch and Spinrad [12] uses matrix multiplication to give a new implementa-
tion of the minimal triangulation algorithm Lex M from 1976 [17]. Based on the
matrix multiplication algorithm of [6] their presented time complexity is O(n*%88).
Other than the use of matrix multiplication, their approach is totally different from
ours. Kratsch and Spinrad used matrix multiplication for similar problems in their
SODA 2003 paper [11].

After the next section which contains some basic definitions, we give the main
structure of our algorithm in Section 3, followed by the important subroutine for
partitioning into balanced subproblems in Section 4, before tying these parts to-
gether in the last section.

2 Background and notation

We consider simple undirected and connected graphs G = (V, E) with n = |V| and
m = |E|. When G is given, we will use V(G) and E(G) to denote the vertices
and edges of G respectively. For a set A C V, G(A) denotes the subgraph of G
induced by the vertices in A. A is called a clique if G(A) is complete. The process
of adding edges to G between the vertices of A C V so that A becomes a clique in
the resulting graph is called saturating A. The neighborhood of a vertex v in G is
Ng(v) = {u | wv € E}, and the closed neighborhood of v is Ng[v] = Ng(v) U {v}.
Similarly, for a set A C V, Ng(A4) = UyeaNg(v) \ 4, and Ng[A] = Ng(A) U A.
NG (v)] is the degree of v. When graph G is clear from the context, we will omit
subscript G.

A vertex set S C V is a separator if G(V'\ S) is disconnected. Given two vertices
u and v, S is a u,v-separator if u and v belong to different connected components
of G(V '\ S), and S is then said to separate u and v. Two separators S and T
are said to be crossing if S is a w,v-separator for a pair of vertices u,v € T, in
which case T' is an z,y-separator for a pair of vertices z,y € S [10, 15]. A u,v-
separator S is minimal if no proper subset of S separates u and v. In general, S
is a minimal separator of G if there exist two vertices u and v in G such that S is
a minimal u,v-separator. It can be easily verified that S is a minimal separator if
and only if G(V '\ S) has two distinct connected components Cy and C5 such that
Ng(Cy) = Ng(C2) = S. In this case, C; and Cy are called full components, and S
is a minimal u, v-separator for every pair of vertices u € Cy and v € Cs.

A chord of a cycle is an edge connecting two non-consecutive vertices of the
cycle. A graph is chordal, or equivalently triangulated, if it contains no induced
chordless cycle of length > 4. A graph G' = (V,EU F) is called a triangulation of
G = (V,E) if G’ is chordal. The edges in F' are called fill edges. G' is a minimal
triangulation if (V, E U F") is non-chordal for every proper subset F' of F. It was
shown in [17] that a triangulation G’ is minimal if and only if every fill edge is the

unique chord of a 4-cycle in G'. Another characterization of minimal triangulations
which is central to our results is that G’ is a minimal triangulation of G if and
only if G' is the result of saturating a maximal set of pairwise non-crossing minimal
separators of G [15].

By the results of Kloks, Kratsch, and Spinrad [10], and Parra and Scheffler [15],
it can be shown that the following procedure creates a minimal triangulation of G:
Take any connected vertex subset K and let A = N[K], compute the connected
components C1,...,C of G(V \ A), saturate each set N(C;) for 1 < i < k and
call the resulting graph G', then compute a minimal triangulation of each subgraph
G'(N[Ci]),1 <i <k, and of G'(A) independently. The key to understand this is to
note that the saturated sets N (C;) are non-crossing minimal separators of G and G'.
Thus the problem decomposes into independent subproblems overlapping only at the
saturated minimal separators, and we can continue recursively on each subproblem
that is not complete. This procedure basically defines the main structure of our
algorithm, and we will prove its correctness formally in the next section.

An extension of these results, which we also use in our algorithm, was presented
by Bouhitté and Todinca in [5]. There, a potential mazimal cliqgue (pmc) of G
is defined to be a maximal clique in some minimal triangulation of G. If A is a
pmc, then it is shown in [5] that whole A will automatically be saturated in the
above mentioned procedure instead of appearing as a subproblem, and that this
modified procedure indeed characterizes minimal triangulations. In this case A is
not necessarily N[K] for a connected set K.

3 The new algorithm and the data structures

Observe that the total work for saturating all sets N(C;),1 < i < k, in the above
described process requires O(n?) time if it is done straightforwardly, as these sets
might overlap heavily and contain O(n) vertices each. With help of matrix multipli-
cation, this total time can be reduced to O(n®). We construct the following matrix
M = Mg a: for each vertex v there is a row in M, for each connected component C
of G(V'\ A) there is a column in M, and entry M (v,C) =1 if v € N(C). All other
entries are zero. Now we perform the multiplication M M7, and in the resulting
symmetric matrix, entry (u,v) = (v, u) is nonzero if and only if v and v both belong
to a common set N (C) for some C. Thus M M7 is the adjacency matrix of a graph
in which each N(C) is a clique. The use of matrix multiplication for this purpose
was first mentioned in [11].

Once M M7 is computed, the edges indicated by its nonzero entries can be added
to G, resulting in the partially filled graph G’, and the subproblems G’ (N[C};]),1 <
i < k, and G'(A) can be extracted. Now for each subproblem this process can
be repeated recursively. However, it is important that we do not perform a matrix
multiplication for each subproblem in the further process, but create only one matrix
and perform a single matrix multiplication for all subproblems of each level in the
recursion tree. Thus in the resulting multiplied matrix, (u,v) is nonzero if and only
if there is a connected component C of one of the subproblems of this level such
that u,v € Ng/(C). For this reason, we cannot actually use recursion, and we have
to keep track of all subproblems belonging to the same level. We do this by two
queues ()1 and ()2 which will hold all subproblems for the current and next level
respectively. Only those new subproblems that are not cliques in the partially filled
graph should survive to the next iteration. For a new subproblem on vertex set
N|[C;] appearing from a connected component C; after removing A we check this
before the saturation, as we already know that the saturation will make N(C;) into
a clique and not add any other edges to the graph induced by N[C;]. However, for
the subproblem on vertex set A itself we must wait until after the saturation before

Algorithm FMT - Fast Minimal Triangulation
Input: An arbitrary non-complete graph G = (V, E).
Output: A minimal triangulation G’ of G.

Let Q1,Q2 and Q3 be empty queues; Insert G into Q1; G' = G}
repeat
Construct a zero matrix M with a row for each vertex in V' (columns are added later);
while ; is nonempty do
Pop a graph H = (U, D) from Qq;
Call Algorithm Partition(H) which returns a vertex subset A C U;
Push vertex set A onto Q3;
for each connected component C of H(U \ A) do
Add a column in M such that M(v,C) =1 for all vertices v € Ng(C);
if 3 non-edge wv in H(Ng[C]) with v € C or v € C then Push H(Ny[C]) onto Qq;
end-for
end-while
Compute MMT:
Add to G’ the edges indicated by the nonzero elements of MM ;
while @3 is nonempty do
Pop a vertex set A from Q3;
if G'(A) is not complete then Push G'(A) onto Q»;
end-while
Swap names of (1 and Q2;
until Q; is empty

Figure 1: Algorithm FMT : Fast Minimal Triangulation.

checking whether A now induces a clique, and for that reason we store the vertex
sets A temporarily in a third queue Q3.

Our algorithm, which we call FMT - Fast Minimal Triangulation - is given in
Figure 1. The process of computing a good vertex set A is the most complicated
part of this algorithm, and this part will be explained in the next section when
we give the details of Algorithm Partition that returns such a set A. For the time
being, and for the correctness of Algorithm FMT it is important and sufficient to
note that Algorithm Partition returns a set A, where either A = N[K] for some
connected vertex set K, or A is a pmc.

Lemma 3.1 Algorithm FMT computes a minimal triangulation of the input graph,
as long as the Partition(H) subroutine returns a set A C V(H) where either A =
N[K] for some connected vertex set K or A is a pmec.

Proof. Let G = (V, E) be the input graph and let K be a set of vertices such
that G(K) is connected. It is shown in [1] that the set of minimal separators of G
that are subsets of N(K) is exactly the set {N(C) | C is a connected component
of G(V \ N[K])}. In [5] it is shown that if P is a pmc then the set of minimal
separators that are contained in P is exactly the set {N(C) | C is a connected
component of G(V '\ P)}.

Since A is always chosen so that either A = N[K] for a connected set K, or
A is a pmc (this will be proved in Section 4), then it follows that all sets that
are saturated at the first iteration of Algorithm FMT are minimal separators of G.
We will now argue that these minimal separators are non-crossing. Assume on the
contrary that two crossing separators S = N(Cy) and T = N(C;) are saturated
at the first iteration, where C; and C> are two distinct connected components of
G(V \ A). Thus there are two vertices u,v € T with u,v ¢ S such that S is a
minimal u,v-separator in G. Since u,v € T' = N(C>), and S does not contain any

vertex of Cs, the removal of S cannot separate u and v as there is a path between
u and v through vertices of C;. This contradicts the assumption that S is a u, v-
separator, and thus we can conclude that the minimal separators saturated at the
first step are all pairwise non-crossing. It is important to observe that once these
separators are saturated, all minimal separators of G that cross any of these will
disappear, as the saturated sets do not contain pairs of vertices that are separable.
At each iteration, any minimal separator of G’ is a minimal separator of G [15].
Thus the minimal separators that we discover at each iteration will not cross the
minimal separators discovered and saturated at previous iterations.

At each new iteration, the above argument can be applied to each subgraph H,
and thus we compute a set of non-crossing minimal separators of each subgraph H at
each iteration. We have already argued that these cannot cross any of the saturated
minimal separators of previous iterations. We must also argue that no minimal
separator of a subgraph of an iteration crosses a minimal separator of another
subgraph of the same iteration. But this is straightforward as these subgraphs only
intersect at cliques, and thus their sets of minimal separators are disjoint.

So, our algorithm computes and saturates a set of non-crossing minimal separa-
tors at each iteration. Since we continue this process until all minimal separators of
G’ are saturated, by the results of [10] and [15], we create a minimal triangulation.
[]

If we consider merely correctness, any set A that fulfills the requirements can be
chosen arbitrarily; for example A = NJu] for a single vertex u, as in [2]. In order to
achieve the desired time complexity, we will devote the next section to describing
how to carefully choose a vertex subset A in each subproblem so that the number
of iterations of the repeat-loop becomes O(logn).

In this section, we will argue that each iteration of the algorithm can be carried
out in O(n%) time. We start with the following lemma, which will give us the
desired bound for the matrix multiplication step.

Lemma 3.2 At each iteration of Algorithm FMT, the number of columns in matriz
M is less than n.

Proof. The sequence of iterations of the algorithm give rise to an iterative re-
finement of a tree-decomposition of the graph G', a property first shown for the
LB-treedec algorithm discussed in [8]. Simplifying the standard notation, we say
that a tree-decomposition T; of a graph G is a collection of bags, subsets of the vertex
set of G, arranged as nodes of a tree such that the bags containing any given vertex
induce a connected subtree, and such that every pair of adjacent vertices of G is
contained in some bag (see e.g. page 549 of [19] for the standard definition.) At the
first iteration we have the trivial tree-decomposition T7 with all vertices of G’ in
a single bag, until the last iteration p where the tree-decomposition 7}, is in fact a
clique tree of the now chordal graph G’, with each bag inducing a unique maximal
clique. We prove this by showing the following:

Loop invariant: At the start of iteration s we have a tree-decomposition T of the
current partially filled graph G’ whose bags consist of some vertex subsets inducing
cliques, which are the vertices of subproblems inducing cliques as discovered so far
by our algorithm, and where remaining bags are the vertex sets of subproblems in
1. The intersection of two neighboring bags in T is a saturated minimal separator
of G’ and thus induces a clique. T is non-redundant, meaning that if A, B are bags
of T then we do not have A C B.

The invariant is clearly true for the trivial tree-decomposition 77 with a sin-
gle bag. Let vertex set U be a bag of Ty appearing as subproblem H = (U, D)

in ;. The algorithm proceeds to find A C U and produces new vertex sub-
sets A, N[C4], N[C3], ..., N[Ck] where each C; is a component of G'(U \ A). The
node of bag U in T is in T5y4 split into a k-star with center-bag A and leaf-bags
N[C1],N[Cs], ..., N[Ck]. Since A is a pmc or A = N[K], it follows that this star is
a tree-decomposition of G'(U) which is non-redundant. The node of a neighboring
bag X of U in the tree of T will also be split into a star, unless X induces a clique
in which case it remains a single node, i.e. a trivial star. These two stars appearing
from adjacent nodes in T will be joined in Ts11 by an edge between two bags U’
and X' that each contain U N X. Such a bag must exist in each star since U N X
already induced a clique.

The tree-decomposition T4 is constructed by applying the construction above
to each bag, and to adjacent pairs of bags, of Ts. After newly found minimal
separators in G' have been saturated then Tyy; will be a tree-decomposition of
G', as is easily checked. It remains to show that Ts,; is non-redundant. We do
this by showing that none of the new vertex subsets A, N[C1], N[C5], ..., N[C}] are
contained in U N X. The crucial fact is that each vertex in U N X has a neighbor in
U\ X, since U\ X was a component of the minimal separator UNX. If A was chosen
as A = N[K] then even if K C U N X we would therefore not have A C U N X.
Likewise, we could have some component C; of G'(U) \ A with C; CUN X, but we
would never have N[C;] CUNX. If A instead was chosen as a pmc then we cannot
have A CUNX, as UNX was a minimal separator and a maximal clique cannot be
part of a minimal separator. Thus, Ts;; is non-redundant. Since any bag of T511
that does not induce a clique is put back onto () before the next iteration we have
established the loop invariant.

Note that each column added to matrix M in the algorithm gives rise to a unique
bag of Ts41. Since the number of bags in the final tree-decomposition T}, is at most
n, one for each maximal clique in a chordal graph, and the number of bags in trees
Ty, ..., Tp is strictly increasing, we have proven the lemma. =

Consequently, the matrix multiplication step requires O(n®). In order to be
able to bound the time for the rest of the operations of each iteration by O(n®),
we will store and work on the non-edges, i.e., the edges of the complement graph
for each subproblem. Note that subproblems can overlap both in vertices and in
edges, which makes it difficult to bound the sum of their sizes for the desired time
analysis. A non-edge uv is discarded when it becomes saturated or when vertices u
and v are separated, and if it is not discarded it only appears in a single subproblem
in the next iteration. Hence subproblems overlap only in cliques, so if we work on
the complement of these subgraphs, then they actually do not overlap in any edges
at all!

For each subgraph H = (U,D) in Q1, let E(H) = (§) \ D be the set of non-
edges of H. Our data structure for each subproblem H is the adjacency list of
H = (U,E(H)), where we also store the degree of each vertex in H. It is an easy
exercise to show that all linear time operations that we need to do for H, like
computing the connected components and neighborhoods, can be done using only
H in time O(|E(H)| + |V (H)|).

An interesting point is also that, when complement graphs are used, matrix
multiplication is not necessary to saturate Ng(C') of each subproblem Ng[C], how-
ever it is still necessary in order to saturate the subsets of A that become cliques.
In the implementation of our algorithm, for each subproblem H(Ng[C]), we push
the complement graph consisting of all non-edges of H(Ng[C]) with at least one
endpoint in C' onto)2. We do this only if such a non-edge of H exists. Since
these complement graphs consist of non-edges of H(C) and non-edges of H(Ng[C])
between C' and Ng(C), all such subproblems can be computed in a total time of
O(|E(H)|+|V(H)|) for H. Since we omit all non-edges between vertices belonging

to Ng(C), this actually corresponds to saturating Ny (C') automatically.

After the matrix multiplication step, we look up in M M7 every edge of the
complement of G’ to check whether or not this non-edge should survive or should
be deleted because it has now become a fill edge of G’. Since subproblems do not
overlap in any non-edges checking whether or not G'(A) is now complete can be
done in a total of O(n?) time for all vertex subsets 4 in Q3.

Thus, for the implementation of our algorithm, we compute G at the beginning,
and use the complement graphs throughout the algorithm. This way, all operations
described within an iteration can be completed within O(n®) time. For clearness,
we will give the algorithms on the actual graphs and not on complement graphs,
expecting the reader to think in terms of complement graphs while considering time
complexity issues. We will use edges of H and non-edges of H interchangeably.

With the given data structures and explanations, it should be clear that all
operations during one iteration, outside of Algorithm Partition, can be performed
in O(n®) time. In order to get our algorithm to terminate within O(log n) iterations,
we will split each graph that we pop from (); into small enough subproblems.

Let g be a sufficiently large constant. In the next section, while proving the total
time complexity, we will show that ¢ = 5 suffices. For each subproblem H, if we
manage to compute a vertex subset A so that the subproblems that are children of
H do not contain more than q%ql|E(H)| non-edges, then our algorithm will clearly

stop within log%1 n? = O(logn) steps. In the next section, through Algorithm

Partition, we show how to compute such vertex subsets for all subproblems in a
total of O(n?) time for each iteration. We present the algorithm parameterized
by ¢ rather than fixing ¢ to 5, to ease the task of an implementation that can
experimentally find the best value ¢ > 5.

4 Efficient Partition into balanced subproblems

In this section we will show how to compute vertex subsets A for each subproblem
in order to achieve an even partitioning into subproblems. The algorithm that we
present for doing this will have running time O(|E(H)| + |V (H)|) on each input
subgraph H.

The computation of vertex subset A for each subgraph H = (U,D) is done
by Algorithm Partition which is given in Figure 2. The main idea behind this
algorithm is to examine every vertex of H, and place these vertices into connected
components that result from removing some set P of vertices from H as long as
these connected components do not become too large with respect to the number
of non-edges. The vertices that cannot be placed into any small enough connected
component constitute exactly the set P whose removal from H results in small
connected components. This way, we compute a vertex set P such that all connected
components C' of H(U \ P) have the nice property that H(Ng[C]) contains less than
a constant factor of the non-edges of H. However, after P is computed, we cannot
bound the number of non-edges that will belong to G'(P) after the saturation, we
do not know whether P = Ng[K] for a connected vertex set K as required, or
whether P is a potential maximal clique. Thus we cannot simply use P as our
desired set A. The set A is instead obtained using information gained through the
computation of P, and we prove in Theorem 4.4 that it fulfills the requirements
that were used to prove the correctness of Algorithm FMT, and that the resulting
subproblems all have at most =X|E(H)| non-edges.

During Algorithm Partition, the vertices that we are able to place into small
enough connected components are marked as c-vertices. The remaining vertices
(which constitute P) are of two types: p-vertices have neighbors in a connected
component of H(U \ P), whereas s-vertices do not. For each connected component

Algorithm Partition

Input: A graph H = (U, D) (a subproblem popped from Q1).

Output: A subset A C U such that either A = N[K] for some connected H(K)
or Ais a pmc of H (and G').

Unmark all vertices of H; k = 1;
while 3 unmarked vertex u do
if £7(U \ Nrlu]) < 2|E(H)| then
Mark u as an s-vertex (stop vertex);
else
Cr = {u};
Mark u as a c-vertex (component vertex);
while 3 v € Ny (C)) which is unmarked or marked as an s-vertex do
if £5(U\ Nu[Cr U {v}]) > %|E(H)| then

Cr = Cr U {v};
Mark v as a c-vertex (component vertex);
else

Mark v as a p-vertex (pmc vertex);
Associate v with Cg;
end-if
end-while
k=k+1;
end-if
end-while
P = the set of all p-vertices and s-vertices;

if H(U \ P) has a full component C' then
A = Nu[C];
else if there exist two non-adjacent vertices u, v such that u is an s-vertex
and v is an s-vertex or a p-vertex then
A = Np[ul;
else if there exist two non-adjacent p-vertices v and v, where u is associated with C;
and v is associated with C; and v ¢ Ny (C;) and v € Ng(C;) then
A= Ny[C, U {u}]
else
A=P;
end-if

Figure 2: Algorithm Partition.

C of H(U\P) we want to ensure that the number |E(H (Ng[C]))|, i.e. the number of
non-edges with both endpoints in Ny [C], is less than some fraction of |E(H)|. The
obstacle is that we cannot compute this number straightforwardly for all connected
components of H(U \ P) in the given time, since the non-edges between vertices in
P N Ng[C] could be contained in too many such computations. However, we are
able to give upper and lower bounds on |E(H (Ng[C]))| by summing the degrees in
H of vertices in each Ny[C], which we compute in the following roundabout manner
in order to stay within the time limits. Define £5(S) to be the sum of degrees in
H of vertices in S C U = V(H). Since sum of degrees is equal to twice the number
of edges, we have £5(S) = 2|E(H)| — (U \ S). The quantity £ (U \ Ng[C]) we
indeed do have the time to compute, as we will explain in the proof of Lemma 4.1.

Eg(U\Nu[C) = Y |Ng(v)]

veU\NJ[C]

When checking whether £ (U\Ng[CrU{v}]) > 2|E(H)| in Algorithm Partition

we are indirectly checking whether |E(N#[Cy U {v}])| < 42| E(H)|, which is what
we indeed want to know. The discussion in the proof of Lemma 4.2 explains this
connection. The value £ (U \ Ng[C) U {v}]) can be computed in O(|Ng(v)|) time
for each vertex v in U, as we show in the proof of the following lemma.

Lemma 4.1 Running Algorithm Partition on all subgraphs H of a single iteration
of Algorithm FMT requires a total of O(n?) time.

Proof. First we prove that the running time of Algorithm Partition on input
subgraph H is O(|E(H)| + |V(H)|), and then we will argue for the overall time
bound at the end. Note that, as explained in the previous section, also for Algorithm
Partition we will work on the complement graph H for an efficient implementation.
Observe that between a connected component C and U\ Ng[C], we have a complete
bipartite graph in H. These non-edges will be used as an argument to obtain the
desired time bound.

The pseudocode of Algorithm Partition is presented in two bulks. Let us call
the first bulk “defining P”, and the second bulk “defining A”.

The first operation in the “defining P” part is to unmark every vertex in H. The
value €5 (U \ Npu]) for a single vertex u is computed straightforwardly by summing
the degrees in the complement graph of all vertices in U \ Ng[u] = Ng(u), which
is an O(|Ngz(u)|) operation.

When a component C}, is created from a first vertex u we label every vertex
w € Ng(u) with the value nk + |Cy| = nk + 1. By labeling the vertices in this way,
we assign a unique value to every vertex set that constitutes a component during the
algorithm and ensure that only vertices in U \ Ng[C}] can have the label nk + |Cy|.
The value £ (U \ Ng[Cr,U{v}]) can now be computed in O(|Ng(v)|) time, since the
set of vertices in N (v) which are labeled nk+|C}| is exactly the set U\ N[CU{v}].
If v is going to be added to C} then this increases the size of C} by one and may
affect the set N[Cj]. We update the labels of the vertices in U \ N[C}, U {v}], by
adding 1 to the label of every vertex in Ny (v) labeled with nk+ |C}|, and then add
v to C. This requires O(|Ng (v)]) time for each vertex and O(|E(H)| +|V (H)|) in
total for the “defining P” part, since every vertex is considered once and marked
as a p, c or s-vertex. The s-vertices may be reconsidered once, and changed to
p-vertices, but this not affect the time complexity.

The “defining A” part consists of an if-else statement with 4 cases. In the first
case we can do the required test by simply finding the largest neighborhood of a
component and checking if its size is |P|. Without increasing the time complexity
of the “defining P” part we can store the values |C| and |U \ Ng[C]| for each
component C of H(U \ P). Thus |[Ng(C)| = |U| - (|C] + |U \ Ng[C])).

In the second case, we check every non-edge in H (P), which is also an O(|E(H)|+
|V (H)|) operation.

In the third case we will mark non-edges and components, as follows. For each
p-vertex u, and then for each component C' of H(U \ P) where C C Ng(u), we
mark C' with the label u. Then for every p-vertex v € Ng(u), where v is associated
to a component labeled u, we add u to the label of non-edge uv. We go through
vertices in Ng(u), check which components they belong to, add up these numbers
for each component, and check if it matches the total size of the component. This
takes O(|Ng(u)|) time for each p-vertex. The third case will now exist if and only
if there is a non-edge uv marked by both u and v. Thus the total time for this case
is O(|E(H)| + |V (H)]|) for each subgraph H.

The fourth case requires constant time, and thus the total running time of
Algorithm Partition on input subgraph H is O(|E(H)| + |V (H)|).

The operations that require O(|E(H)|+ |V (H)|) on each subgraph H add up to
O(n?) for all subgraphs of the same iteration of FMT, since they do not overlap in

non-edges, and there are at most O(n) such graphs by Lemma 3.2. Thus the total
time complexity for all subgraphs H at the same iteration is O(n?). =

We now give upper and lower bounds on the number of non-edges in the various
subgraphs of H.

Lemma 4.2 Let P be as computed by Algorithm Partition(H), and let ¢ > 3 be a
constant. Then each of the following is true:

(i) |E_(H(NH[C’]))| < q%ql|E_(H)| for each connected component C of H(U \ P).

(1) |E(H(Ng[v]))| > ‘1;—2|E(H)| for each s-vertex v.

(iii) |E(H(Ng[C U {v}]))] > %|E(H)| for each p-vertex v associated to C,
where C' is a connected component of H(U \ P).

Proof. (i) From Algorithm Partition we know that £5(U \ Ng[C]) > %|E(H)| for
each connected component C' of H(U \ P). Each non-edge uv outside of H(Ng[C])
contributes to the degree-sum E5 (U \ Ng[C]) by 1 if one of u or v is outside Ny [C],
and by 2 if both are outside. Thus there are at least %|E(H)| non-edges out-
side H(Ng[C]) and consequently at most %|E(H)| non-edges inside H(Ng[C]).
Hence, |[E(H(Ny[C)))| < ‘1;—1|E(H)| for each connected component C of H(U \ P),
which completes the proof of (i).

(ii) - (iii) From Algorithm Partition we know that €5 (U \ Ng[v]) < %|E(H)| for
each s-vertex v, and E5 (U \ Ng[C U{u}]) < %|E(H)| for each p-vertex u associated
to C. Tt follows by the same argument as case (i) that |E(H (Ng[v]))| > %|E(H)|
and |E(H(Ng[C U {u}]))| > q%qz|E(H)| This completes the proof of (i) and (iii).

The main result of this section, namely that Partition results in subproblems of
size bounded by a constant factor of the number of non-edges, is given in Theorem
4.4. For the proof of this theorem, we use the following result by Bouchitté and
Todinca.

Theorem 4.3 (Bouchitté and Todinca [5]) Given H = (U, D), let P C U be any
set of vertices, and let Cy1,Cs,...,Cy be the connected components of H(U \ P). P
is a pmc of H if and only if

1. H(U \ P) has no full component, and

2. P is a clique when every N(C;) is saturated for 1 < i < k.

We are now ready to prove the main theorem of this section.

Theorem 4.4 Let A be the vertex set returned by Algorithm Partition on input
H = (U, D). Then both of the following are true, where G' is as defined in Algorithm
FMT:

(i) A is a proper subset of U such that either A = Ng[K| where K C U and
H(K) is connected, or A is a pmc of H.

(ii) Both the number of non-edges in G'(A) and the number of non-edges in
G'(Ng[C)) for each connected component C of H(U \ A) are at most q%ql|E(H)|,
for any constant g > 5.

Proof. We will examine each of the 4 cases of the if-else statement in the ”defining
A” part of Algorithm Partition. We omit the subscript H in Ng(C) and Ng[C] to
increase readability. The reader should keep in mind that throughout this proof we
regard neighborhoods in H (and not in H).

Case 1. H(U \ P) has a full component C, i.e., P = N(C).

10

This implies in particular that no vertices could have been marked as s-vertices.
By Lemma 4.2 we know that the number of non-edges in H(N|[C;]) is less than
‘1;—1|E(H)| for each connected component C; of H(U \ P), in particular for C. In
this case, Algorithm Partition gives A = N[C], and thus P C A. C' is a connected
set since it was computed by adding new members from its neighborhood, and so
(i) is satisfied. Observe that the connected components C; of H(U \ A) are exactly
the connected components C; of H(U \ P), except C. It follows that the number
of non-edges in H(A) = H(N[C;]) and in H(N[C}]) for each connected component
C;j of H{U \ A) is less than %U@(H)|, already before the minimal separators are
saturated. After the saturation, this number cannot increase but only decrease. We

need to choose ¢ so that the fractions =X, and 2 as used in the algorithm, are less

than 1, and note that ¢ > 3 suffices for this so (77) is satisfied.

Case 2. There exist two vertices u, v, such that wv ¢ E(H), u is marked as an
s-vertex, and v is marked as an s-vertex or a p-vertex.

We give the proof in two parts: the subcase where both u,v are s-vertices, and
the subcase where u is an s-vertex and v a p-vertex. The arguments for the two
subcases are very similar, and note that they are also very similar to the next Case
3 where both u, v are p-vertices.

Assume both u and v are marked as s-vertices. By Lemma 4.2, |E(H (Nu]))| >
12|E(H)| and |E(H(N[v]))| > “2|E(H)|, and thus for their common part we
have |E(H(N(u) N N(v)))| = |E(H(N[u] N N[v]))| > %|E(H)|, where the first
equality holds since u ¢ N[v]. The algorithm gives A = N[u] in this case, satisfying
(i), which means that v will belong to a component C of H(U \ A) with N(C) C A
thus being a u,v-separator. Since any u,v-separator must contain N (u) N N (v), it

follows that N(C) C A induces at least q;4 |E(H)| non-edges. All these non-edges

will be saturated and disappear from G'. Thus, there are at most %|E(H)| non-
edges left that can appear in subproblems G'(A) or H(N[C;]) for a component C;
of H(U \ A), thereby satisfying also (4i).

Assume v is marked as an s-vertex, v is marked as a p-vertex and let j be the
index such that v is associated to C;. We know that such a C; exists since v is
marked as a p-vertex. An important observation now is that v ¢ N[C; U {v}].
Otherwise u would have been marked as a p-vertex or c-vertex during execution of
the inner while-loop in Algorithm Partition during computation of C;. By Lemma
4.2, |[B(H(N[W)| > =2[E(H)| and |E(H(N[C; U {v}]))| > S2|E(H)], and thus
for their common part we have |E(H (N (u)NN(C; U{v})))| = |E(H(N[u]NN[C; U
{vI)) > %|E(H)|, where the first equality holds since u ¢ N[C; U {v}], as
we established above. The algorithm gives A = N[u| in this case, satisfying (%),
which means that C; U {v} will be contained in a component C' of H(U \ A) with
N(C) C A thus separating u from C; U {v}. Since any such separator must contain
N(u)NN(C;U{v}), it follows that N(C) C A induces at least %|E(H)| non-edges.
All these non-edges will be saturated and disappear from G'. Thus, there are at
most %|E(H)| non-edges left that can appear in subproblems G'(A) or H(N[C}])
for a component C; of H(U \ A), thereby satisfying also (ii).

Case 3. There exist two vertices u, v marked as p-vertices, such that uv ¢ E(H), u
is associated to C;, v is associated to Cj, u ¢ N(C;) and v € N(C;).

The important observation now is that there are no edges between C; U{u} and
C; U {v}. By Lemma 4.2, |[E(H(N[C; U {u}]))| > q%f|E(H)| and |E(H(N[C; U
{v}))| > ©2|E(H)|, and thus for their common part we have |E(H(N(C;U{u})N
N(C; U{v}))| = |E(H(N[C; U {u}]N N[C; U{v}])| > %4|E(H)|, where the first
equality holds since there are no edges between C;U{u} and C;U{v}. The algorithm

11

gives A = N[C; U{u}] in this case, satisfying (i), which means that C; U{v} will be
contained in a component C of H(U \ A) with N(C) C A thus separating C; U {u}
from C; U {v}. Since any such separator must contain N(C; U{u})NN(C;U{v}), it
follows that N(C) C A induces at least %|E(H)| non-edges. All these non-edges
will be saturated and disappear from G'. Thus, there are at most %|E(H)| non-
edges left that can appear in subproblems G'(A) or H(N[C;]) for a component C;
of H(U \ A), thereby satisfying also (4i).

Case 4. None of the above cases apply.

First we show that P is a pmc of H in this case. Due to Theorem 4.3, all we
have to show is that if none of the Cases 1, 2, and 3 applies, then H(U \ P) has no
full component associated to P, and for every pair of non-adjacent vertices u,v € P
there is a connected component C of H(U \ P) such that u,v € N(C). Since Case
1 does not apply, we know that H(U \ P) has no full components. Since Case 2
does not apply either, then the s-vertices altogether induce a clique and they all
have edges to all p-vertices. So, since P consists only of p and s vertices, the only
non-edges that are possible within P are those non-edges uv where both v and v are
p-vertices. Since Case 3 does not apply either, then for any non-adjacent u,v € P
if they are not associated to the same component then one of them must be in the
neighborhood of the component that the other one is associated to. Thus P is a pmc
of H, and (3) is satisfied since Algorithm Partition gives A = P in this case. In this
case, whole A is saturated in G', and thus G'(A4) has no non-edges. The remaining
subproblems will each have at most %U@(H)| non-edges by Lemma 4.2, since the
connected components of H(U \ A) are the same as the connected components of
H(U \ P). This case depends on Cases 1, 2, and 3, and thus ¢ > 5 is sufficient, and
(i) is satisfied. =

5 The total O(n“logn) time complexity

Theorem 5.1 Algorithm FMT described in Section 8, using Algorithm Partition
described in Section 4, computes a minimal triangulation of the input graph in
O(n?3™ logn) time.

Proof. By Lemma 3.1 and Theorem 4.4(3), Algorithm FMT computes a minimal
triangulation. By Lemma 3.2, the matrix multiplication at each iteration of FMT
requires O(n?37%) time using the algorithm of [6]. By the discussion that follows
Lemma 3.2 in Section 3, all other operations outside of Algorithm Partition can be
performed in O(n?) time at each iteration of FMT. Using Lemma 4.1, we conclude
that the total time required at each iteration of FMT is O(n?37®). By Theorem
4.4(ii), the number of non-edges in each subproblem decreases by a constant factor
for each iteration, and since subproblems in one iteration do not overlap in non-
edges we can at most have logn? = O(logn) iterations of FMT. u

We have thus given the details of a new algorithm to compute minimal trian-
gulations of arbitrary graphs in O(n®logn) time. Using the matrix multiplication
algorithm of [6], the running time of our algorithm is O(n?3"% logn). If we instead
use the matrix multiplication algorithm of Strassen [18] which has a worse asymp-
totic time bound of O(n*®!) but is considered more practical due to large constants
in [6], then our time bound becomes O(n>® logn). Using Strassen’s algorithm,
the time bound claimed by Kratsch and Spinrad mentioned previously becomes
O(n?1) [12]. In fact, our algorithm is asymptotically faster than theirs regardless
of the matrix multiplication algorithm used.

12

References

[1] A. Berry, J-P. Bordat, and P. Heggernes. Recognizing weakly triangulated
graphs by edge separability. Nordic Journal of Computing, 7:164-177, 2000.

[2] A. Berry, J-P. Bordat, P. Heggernes, G. Simonet, and Y. Villanger. A wide-
range algorithm for minimal triangulation from an arbitrary ordering. J. Al-
gorithms. To appear.

[3] A. Berry, P. Heggernes, and Y. Villanger. A vertex incremental approach for
dynamically maintaining chordal graphs. In Algorithms and Computation -
ISAAC 2003, pages 47 — 57. Springer Verlag, 2003. LNCS 2906.

[4] J. R. S. Blair, P. Heggernes, and J. A. Telle. A practical algorithm for making
filled graphs minimal. Theor. Comput. Sci., 250:125-141, 2001.

[5] V. Bouchitté and I. Todinca. Treewidth and minimum fill-in: Grouping the
minimal separators. SIAM J. Comput., 31:212-232, 2001.

[6] D. Coppersmith and S. Winogard. Matrix multiplication via arithmetic pro-
gressions. J. Symb. Comp., 9:1-6, 1990.

[7] E. Dahlhaus. Minimal elimination ordering inside a given chordal graph. In
Graph Theoretical Concepts in Computer Science - WG 97, pages 132-143.
Springer Verlag, 1997. LNCS 1335.

[8] P. Heggernes and Y. Villanger. Efficient implementation of a minimal triangu-
lation algorithm. In Algorithms - ESA 2002, pages 550-561. Springer Verlag,
2002. LNCS 2461.

[9] D. Hudson, S. Nettles, and T. Warnow. Obtaining highly accurate topology
estimates of evolutionary trees from very short sequences. In Proceedings of
RECOMB’99, pages 198-207. 1999.

[10] T. Kloks, D. Kratsch, and J. Spinrad. On treewidth and minimum fill-in of
asteroidal triple-free graphs. Theor. Comput. Sci., 175:309-335, 1997.

[11] D. Kratsch and J. Spinrad. Between O(nm) and O(n®). In Proceedings of the
14" Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2003),
pages 709-716, 2003.

[12] D. Kratsch and J. Spinrad. Minimal fill in o(n?) time. 2004. Submitted.

[13] T. Ohtsuki. A fast algorithm for finding an optimal ordering in the vertex
elimination on a graph. SIAM J. Comput., 5:133-145, 1976.

[14] T. Ohtsuki, L. K. Cheung, and T. Fujisawa. Minimal triangulation of a graph
and optimal pivoting ordering in a sparse matrix. J. Math. Anal. Appl., 54:622—
633, 1976.

[15] A. Parra and P. Scheffler. Characterizations and algorithmic applications of
chordal graph embeddings. Disc. Appl. Math., 79:171-188, 1997.

[16] B. W. Peyton. Minimal orderings revisited. SIAM J. Matriz Anal. Appl.,
23(1):271-294, 2001.

[17] D. Rose, R.E. Tarjan, and G. Lueker. Algorithmic aspects of vertex elimination
on graphs. SIAM J. Comput., 5:146-160, 1976.

13

[18] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
14:354-356, 1969.

[19] J. van Leeuwen. Graph algorithms. In Handbook of Theoretical Computer
Science, A: Algorithms and Complexity Theory. North Holland, 1990.

14

