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Linear-time certifying algorithms for recognizing

trivially perfect graphs

Pinar Heggernes∗ Dieter Kratsch†

Abstract

We give the first linear-time certifying algorithms to recognize trivially perfect
graphs, with sublinear certificates for negative output. In case of membership in the
class of trivially perfect graphs, our algorithms provide as certificate a structure for the
input graph that characterizes the class, and in case of non-membership they provide
as certificate a forbidden induced subgraph of the class. The certificates of membership
can be authenticated in time O(n + m) and the certificates of non-membership can be
authenticated in time O(n).

Keywords: Algorithms and data structures, certifying graph algorithms, recognition of
graph classes.

1 Introduction

The study of certifying algorithms is motivated by software engineering, software reliability
and the insight that software is often not bug-free. Although an algorithm has been proven
correct, its implementation may contain bugs. Thus it is desirable to have tools for knowing
whether the output of an implementation of an algorithm is correct or returned due to a bug.
The fundamental idea of certifying algorithms is that with its output the algorithm supplies
a certificate. Then the output and the certificate are authenticated by a separate algorithm.
This authentication algorithm takes the input, the output, and the certificate returned by
the original algorithm, and verifies (independently of the original algorithm) whether the
output is correct. Bug-free implementation of the authentication algorithm is crucial, and
thus authentication should be simple. Certifying algorithms are highly desirable in practice
to reduce the risk of erroneous answers caused by bugs in the implementation [14, 15]. For
general discussions on result checking see also [18] and [15, section 2.14].

A certifying algorithm for a decision problem is an algorithm that provides a certificate
with each answer. A certificate is an evidence that can be used to authenticate the correct-
ness of the answer. An authentication algorithm is an algorithm that checks the validity of
the certificate. A certificate is sublinear if its authentication algorithm has a tighter running
time than a linear one; and a certificate is weak if it takes the same time to authenticate as
it does to solve the original problem without the certificate [14].

A familiar example is a linear-time certifying algorithm to recognize bipartite graphs,
computing a 2-coloring for bipartite input graphs and an odd cycle for non-bipartite input
graphs. The authentication algorithm for the membership certificate checks in time O(n+m)
the validity of the 2-coloring by cycling through all edges, and thus the certificate is weak.
The authentication algorithm for the non-membership certificate checks in time O(n) that
it is a cycle, it has odd length, and that the claimed edges occur in the input graph, and
thus the certificate is sublinear.
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For certifying graph recognition algorithms, certificates of non-membership that are for-
bidden subgraphs of the recognized class are especially desirable. For example, parameter-
ized algorithms for completing an arbitrary graph into a chordal graph [2] or an interval
graph [10] by adding the minimum number of edges need to identify forbidden subgraphs
and get rid of these recursively as long as the graph at hand is not in the class. For the
recognition of probe split graphs [3] a forbidden subgraph is needed when the graph at hand
is chordal and non-split.

A linear-time planarity test is part of the LEDA system [15, section 8.7]. It computes a
planar embedding for planar input graphs and a subdivision of K5 or K3,3 for non-planar
input graphs. Other graph classes having linear-time certifying recognition algorithms are
chordal graphs [17], cographs [5], interval and permutation graphs [14], proper interval
graphs [11, 16], proper interval bigraphs [11], proper circular-arc graphs, and unit circular-
arc graphs [13].

Previously, we gave linear-time certifying algorithms for split, threshold, bipartite chain,
and cobipartite chain graphs [9]. Here, we present two linear-time certifying algorithms
to recognize trivially perfect graphs, one that provides a cotree and one that provides a
so-called universal-in-a-component ordering as certificate of membership, and both of them
provide as a certificate of non-membership a vertex subset inducing a P4 or C4 in the input
graph. Thus, for both algorithms, the certificate of membership can be authenticated in
time O(n + m), and the certificate of non-membership can be authenticated in time O(n).

2 Preliminaries

All graphs in this paper are simple and undirected. For a graph G = (V, E), we let n = |V |
and m = |E|. An edge between vertices u and v is denoted by uv. If u and v are not
adjacent we call uv a non-edge. The set of neighbors of a vertex v ∈ V is the set of all
vertices adjacent to v, denoted by N(v). The degree of a vertex v is d(v) = |N(v)|. A clique
is a set of vertices that are all pairwise adjacent, and an independent set is a set of vertices
that are all pairwise non-adjacent. A vertex v is called simplicial if N(v) is a clique. A
vertex v satisfying N(v) ∪ {v} = V is called universal, and a vertex with no neighbors is
called isolated. The subgraph of G induced by a vertex set A ⊆ V is denoted by G[A]. All
subgraphs in this text are induced subgraphs. The complement G of G is a graph that has
the vertices of G as its vertex set and the non-edges of G as its edge set.

Let α be an ordering (v1, v2, ..., vn) of V . If α is such that d(v1) ≥ d(v2) ≥ ... ≥ (vn),
it is called a non-increasing degree ordering. If α has the property that vi is universal in
a connected component of G[{vi, vi+1, ..., vn}], for 1 ≤ i ≤ n, it is called a universal-in-a-
component ordering (uco).

A cycle on k vertices is denoted by Ck, and a path on k vertices is denoted by Pk.
A graph recognition algorithm is called certifying if it can produce a certificate such

that the membership or the non-membership of the graph in the class can be checked using
this certificate. The following observation is used to establish authentication algorithms for
certificates of non-membership.

Observation 2.1 Let a vertex subset A ⊂ V of constant size be a certificate of non-
membership of a certifying recognition algorithm for graph class G on input graph G = (V, E),
where additionally for each vertex of A a pointer to a vertex of a graph H (indicating an iso-
morphism from G[A] to H) is part of the certificate. Then there is an O(n) time algorithm
to authenticate whether G[A] is isomorphic to the graph H.

Proof. The set A can be provided by the certifying algorithm in a characteristic vector of
size n or as a list of size |A| containing pointers to the vertex list of G. Every vertex in A
has at most n−1 neighbors and non-neighbors, so G[A] can be computed in time O(|A| ·n),
which is O(n) since |A| is not dependent on the size of G. The pointers can be used to
authenticate in time O(|A|2) that G[A] is isomorphic to H .
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A graph G is a trivially perfect graph if for each induced subgraph H of G, the number
of maximal cliques of H is equal to the maximum size of an independent set of H [6]. The
following is a characterization of trivially perfect graphs through their forbidden subgraphs.

Theorem 2.2 [6] A graph is trivially perfect if and only if it contains no vertex subset that
induces P4 or C4.

The class of chordal graphs is the class of graphs containing no induced cycle of length
longer than 3. A cograph is a graph without a vertex subset that induces a P4. Hence
trivially perfect graphs form a subclass of cographs. In fact, it follows immediately that
trivially perfect graphs exactly chordal cographs [1]. Since both chordal graphs and cographs
have linear time certifying algorithms [17, 5, 8], obtaining a forbidden induced subgraph as
a certificate of non-membership can be done by using the previous algorithms. However,
the challenge is to give a certificate of membership that can be checked in O(n + m) time.
We will here give two linear-time certifying algorithms for trivially perfect graphs that both
output as certificates of non-membership a vertex subset that induces a P4 or a C4. The
first algorithm outputs as certificate of membership a universal-in-a-component ordering,
and the second outputs a restricted cotree (a model for cographs).

3 Vertex orderings as certificates of membership

Each connected trivially perfect graph G has a universal vertex [19, 20], and consequently
each connected induced subgraph of a trivially perfect graph has a universal vertex [7]. Hence
for a trivially perfect graph G, we can find an ordering of its vertices α = (v1, v2, ..., vn) such
that vi is universal in the connected component of G[{vi, vi+1, ..., vn}] that vi belongs to,
for 1 ≤ i ≤ n. Thus trivially perfect graphs have universal-in-a-component orderings (uco).
We first prove that such orderings characterize trivially perfect graphs.

Theorem 3.1 A graph is trivially perfect if and only if it has a uco.

Proof. If a graph is trivially perfect, it has a uco by the results mentioned above. For
the opposite direction, let G be a graph that has a uco α and assume for a contradiction
that G is not trivially perfect. Thus G has a set of vertices {w, x, y, z} that induces a C4
or a P4. Let x be the vertex among these four that has the earliest occurrence in α. Thus
{w, x, y, z} is a connected subgraph in the remaining graph when all vertices of α prior to
x are removed from G. Then x should be universal in a connected induced subgraph of G
that contains {w, x, y, z}, but this is not possible since there is no vertex in a C4 or a P4
that is adjacent to all three other vertices. Thus α is not a uco.

Lemma 3.2 A graph is trivially perfect if and only if every non-increasing degree ordering
is a universal-in-a-connected-component ordering.

Proof. Let G = (V, E) be a graph, and let α = (v1, v2, ..., vn) be a non-increasing degree
ordering of G, such that d(v1) ≥ d(v2) ≥ ... ≥ (.vn). If α is a uco, then by Theorem 3.1 G is
trivially perfect. In the other direction, assume that G is trivially perfect, and assume for a
contradiction that vi is not universal in the connected component of G[{vi, vi+1, ...vn}] that
it belongs to, for some i. Thus there is a vertex vj with j > i such that vivj /∈ E, and there
is a path from vi to vj containing only vertices from {vi, vi+1, ...vn}. Observe that there
must be a vertex vk on this path that is adjacent to both vi and vj because otherwise we
have a P4 with endpoints vi and vj . Since vk is adjacent to vj , and vi is not adjacent to
vj , and the degree of vi is at least the degree of vk, vi must have a neighbor x in G that is
not adjacent to vk (x might belong to {vi+1, ...vn} or not). But, if x is adjacent to vj , then
{x, vi, vk, vj} induces a C4, and if x is not adjacent to vj , this set induces a P4, contradicting
that G is trivially perfect.
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Before we can conclude with a linear-time certifying recognition algorithm for trivially
perfect graphs, we also have to show the following.

Lemma 3.3 Given a graph G and an ordering α of the vertices of G, it can be checked in
O(n + m) time whether α is a uco of G.

Proof. We process the vertices of G one by one in the order given by α. At the beginning
all vertices are labeled with 0. At each step i, we check whether vi and all its neighbors
have the same label. If so, we change the labels of all neighbors of vi to i, and delete vi from
the graph. If, at some step, there are several labels among the neighbors of vi or if their
labels are different than the label of vi, then let k be the largest such label. This means
that vertex vk was not a universal vertex in the connected subgraph that it belonged to in
the subgraph G[{vk, vk+1, ..., vn}], and thus α is not a uco. We claim that if we manage to
iterate through all vertices without discovering such an anomaly, then α is a uco. To see
this, observe that if α is not a uco then a vertex vi must exist so that vi does not label
all vertices in the connected component that it belongs to in G[{vi, ..., vn}] by i. Thus in
this subgraph there is a vertex that is labeled by i that has a neighbor that is labeled with
something smaller than i. Either the labels of these vertices remain different until the turn
comes to one of them and then we detect the anomaly, or some other vertex changes both
their labels to become the same. But since that other vertex cannot have the same label as
both of them, again the anomaly will be detected. The running time is clearly O(n + m)
since we only check the neighborhood of each vertex once.

Now we are ready to give the main result on trivially perfect graphs.

Theorem 3.4 There is a linear-time certifying algorithm for recognizing trivially perfect
graphs that outputs certificates which can be authenticated in O(n+m) time for membership
and in O(n) time for non-membership.

Proof. Given the input graph G = (V, E), we start by computing a non-increasing degree
order in O(n+m) time. Then we check as described in the proof of Lemma 3.3 whether this
order is a uco. If it is, we output yes and this ordering as a certificate of membership. If it is
not, then whenever we detect an anomaly, the largest label k among the labels of neighbors
of vi and the label of vi itself, gives a vertex vk that was not universal in the connected
component of G[{vk, vk+1, ..., vn}]. Thus we can find one vertex in this component that is
not adjacent to vk, and this will give us the desired vertex set that induces a P4 or a C4 as
described in the proof of Lemma 3.2, in O(n+m) time. Then we output no and this vertex
set as a certificate of non-membership. The certificate of membership can be authenticated
in O(n + m) time by Lemma 3.3. The certificate for non-membership can be authenticated
in O(n) time by Observation 2.1.

4 Cotrees as certificates of membership

We now give an alternative certifying algorithm for recognizing trivially perfect graphs that
exploits structural and algorithmic properties of cographs. If G is a cograph then either
G is disconnected, or its complement G is disconnected, or G consists of a single vertex.
Using the corresponding decomposition rules, one obtains the modular decomposition tree
of a cograph which is called a cotree. A cotree T of a cograph G is a rooted tree with two
types of interior nodes: 0-nodes and 1-nodes. The vertices of G are assigned to the leaves of
T in a one-to-one manner. Finally two vertices u and v are adjacent in G if and only if the
lowest common ancestor of the leaves u and v in T is a 1-node [4]. The cotree of a cograph
is uniquely determined. Note that due to the above mentioned decomposition rules, we may
assume that each interior node of a cotree has at least two children, that no 0-node is a child
of a 0-node, and that no 1-node is a child of a 1-node.

Combining Theorem 2.2 with the definition of cotrees, one establishes the following result.
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Lemma 4.1 A cograph G is a trivially perfect graph if and only if, in the cotree T of G,
every 1-node has at most one child that is a 0-node.

Proof. Let a be a 1-node of T with two 0-node children, say b and c. Then each of the
subtrees rooted at b and rooted at c contains at least two leaves. These four leaves induce
a C4 in G. Thus G is not trivially perfect.

Assume that a cograph G is not trivially perfect. Since it is a cograph it does not contain
P4 as induced subgraph. By Theorem 2.2 there is a vertex subset {w, x, y, z} that induces
a C4 in G. Let a be the root of the smallest possible rooted subtree of T containing the
leaves assigned to w, x, y, z. Since G[{w, x, y, z}] is connected a is a 1-node. If a has two
0-nodes among its children the proof is complete. Thus we may assume that a has precisely
one 0-node as a child, say b. By the definition of cotrees, all other children of a are leaves
of T . No vertex of {w, x, y, z} could be assigned to a child of a, since each of these vertices
is non-adjacent to one vertex of {w, x, y, z}. Thus all four leaves of T corresponding to
these vertices are contained in the subtree rooted at b. This contradicts the choice of a.
Consequently, a has at least two 0-node children.

Thus a certifying algorithm for recognizing trivially perfect graphs can output such a
cotree as a certificate of membership. However, then we have to argue that there is an
O(n + m) time authentication algorithm for checking this certificate, which also involves
checking that the cotree output as certificate is indeed the cotree of G. Typically, certifying
cograph recognition algorithms output a cotree if the input is a cograph, and a vertex subset
that induces a P4 if the input is not a cograph [5]. Despite the many cograph recognition
algorithms we could not find an O(n+m) time algorithm for checking whether a given cotree
is the cotree of a given graph. Therefore we present here a cotree authentication algorithm,
which is also the main motivation for giving an additional certifying algorithm for trivially
perfect graphs.

Lemma 4.2 Given a graph G = (V, E) and a tree T , it can be checked in O(n + m) time
whether T is the cotree of G.

Proof. It is easy to check that T is indeed a cotree, i.e. has 0-nodes, 1-nodes and leaves to
which the vertices of G are assigned. To check whether T is indeed the cotree of G we verify
the following property which is an immediate consequence of the definition of a cotree in a
bottom-up fashion.

• If u and v are leaves and have the same 1-node of the cotree T as their parent then
N [u] = N [v], and thus {u, v} ∈ E.

• If u and v are leaves and have the same 0-node of the cotree T as their parent then
N(u) = N(v), and thus {u, v} /∈ E.

Now let us provide the authentication algorithm.

1. For each vertex v, add v to the adjacency lists it belongs to. Then sort all adjacency
lists of G such that vertices appear in the same order as that of the leaves in the cotree
T .

2. In a bottom-up fashion check the interior nodes of T thereby updating the graph
and the cotree. The current cotree is denoted by T ′, the current graph is denoted
by G′ = G[V ′], where V ′ is the set of vertices not yet processed. Consequently,
N ′[v] = NG′ [v] = N [v] ∩ V ′ and N ′(v) = NG′(v) = N(v) ∩ V ′. Clearly T can only
be accepted after a successful check of its root. We start with G′ := G, V ′ := V and
T ′ := T . Interior nodes have to be checked as follows.

(R0) Let a be a 0-node of T ′ all of whose children are leaves, and the corresponding ver-
tices of G′ are u1, u2, . . . , ut. Now compare the adjacency lists N ′[u1], N

′[u2], . . . , N
′[ut].
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Conclude that T is not the cotree of G and terminate, if any list contains more
than one vertex of {u1, u2, . . . , ut}, or if the lists N ′(u1), N

′(u2), . . . , N
′(ut) are

not all equal. The comparison can be done in a standard fashion by passing
simultaneously through all lists in time proportional to the total length of the
inspected lists. If the algorithm has not terminated, conclude that T is the cotree
of G if a is the root of T . Otherwise, remove the vertices u2, . . . , ut from G′, the
corresponding leaves from T ′, and all adjacency lists of G′. Remove the 0-node
a from T ′ and put the leaf u1 at its place.

(R1) Let b be a 1-node whose children are all leaves in T ′, and the corresponding ver-
tices of G′ are v1, v2, . . . , vs. Now compare the adjacency lists N ′[v1], N

′[v2], . . . , N
′[vs].

in a standard fashion by passing simultaneously through all lists. If the lists are
not all equal, conclude that T is not the cotree of G and terminate. Otherwise,
if b is the root of T then conclude that T is the cotree of G and stop. If b is not
the root of T , remove all vertices v2, . . . , vs from the graph G′, all adjacency lists
of G′, and the corresponding leaves from the cotree T ′, remove the 1-node b from
T ′ and put the leaf v1 at its place.

Correctness follows immediately from the above mentioned properties.
To establish running time of O(n + m), the deletion of vertices need to be supported.

One approach would be to add pointers between the two occurrences of an edge, i.e. from
xi in N [xj ] to xj in N [xi] when sorting the lists. Then an easy way to see that the running
time is indeed linear is by assigning the cost for passing N ′[u1] respectively N ′[v1] to one
of the deleted vertices, say u2 respectively v2. Consequently each adjacency list is passed
(amortized) at most three times: comparison, deletion and possibly the cost of some non
deleted vertex.

Our second certifying algorithm for recognizing trivially perfect graphs is heavily based
on cograph recognition.

Theorem 4.3 There is a linear-time certifying algorithm for recognizing trivially perfect
graphs that outputs certificates which can be authenticated in O(n+m) time for membership
and in O(n) time for non-membership.

Proof. First we present the algorithm.

1. Run a linear time recognition algorithm for cographs that outputs a cotree in case of
membership and that outputs a P4 in case of non membership.

2. If the cograph recognition algorithm rejects G and outputs a set of vertices inducing
a P4, then conclude that G is not trivially perfect; output no and the set of vertices
inducing a P4.

3. Otherwise check that in the cotree T each 1-node at most one 0-node child. If this is
the case, then conclude that G is trivially perfect; output yes and T .

4. If none of the above, then T has a 1-node with two 0-node children, say a and b.
Each of them has at least two children. Let u and v be vertices assigned to leaves of
subtrees rooted at different children of b, let w and x be vertices assigned to leaves of
the subtrees rooted at different children of b. Then output no, and the vertex subset
{u, v, w, x} which induces a C4.

An authentication algorithm can check in O(n+m) time that T is the cotree of G by Lemma
4.2. To verify that each 1-node of T has at most one child that is a 0-node can easily be
done within the same time limit The certificate for non-membership can be authenticated
in O(n) time by Observation 2.1.

6



References
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