
 THE VISI PROTOTYPE - TECHNICAL REPORT

THE VISI PROTOTYPE

For image retrieval

Bjørge Næss

September 2007

Technical report

CAIM-TR-1

 THE VISI PROTOTYPE - TECHNICAL REPORT

TABLE OF CONTENTS

1. Introduction .. 1

2. End-user functionality .. 2

2.1. Getting started .. 2

2.1.1. Query Specification – left-hand panel.. 3

2.1.2. Using an existing image – Query by Example... 3

2.1.3. Drawing a seed image – Query by Sketch ... 4

2.1.4. Setting weights – the center panel.. 5

2.2. Querying the database .. 5

3. System Implementation.. 7

3.1. Technology... 7

3.2. The web application ... 7

3.2.1. Overall architecture .. 7

3.2.2. How-to extend the application ... 10

3.3. The database backend requirements... 11

3.4. Requirements.. 12

3.5. How-to.. 13

3.5.1. Extend functionality ... 13

3.5.2. Use VISI with other DBMSs.. 13

3.5.3. Add a new DB to an existing set of databases ... 13

3.6. Known compatibility issues ... 13

4. References .. 14

5. Appendix .. 15

5.1. Error messages and what to do... 15

5.1.1. Upload error ... 15

5.1.2. Error while performing search ... 15

5.1.3. Error when trying to fetch imageinfo... 15

5.1.4. Unhandled error.. 15

 THE VISI PROTOTYPE - TECHNICAL REPORT

Bjørge Næss 1

1. INTRODUCTION

The VISI (Vortex Image Search Interface)1 search engine is a prototype of a web-based
Content Based Image Retrieval system, available at http://bulmeurt.uib.no:8500/caim/VISI/. It
was developed as a basic test bed for evaluation and exploration of various aspects of visual
image retrieval. Our main motivation for building VISI was to create an image retrieval
system with basic CBIR functionality without the need for expert knowledge of CBIR
functionality. This would allow researchers to explore and evaluate different aspects of visual
image retrieval systems, such as usability, user interaction, user behaviour and new
approaches to interfaces without an expert knowledge of CBIR fundamentals.

Based on this, we decided to create a system based on the following requirements:

• Support for both Query-By-Example and Query-By-Sketch.

• Visual queries based on colour, shape, texture and spatial distribution.

• Provide easy query refinement for non-expert CBIR users.

The system was developed using a ColdFusion 2 front-end interface to Oracle 9i (O9i)
InterMedia CBIR software. Visual Query Specification is provided through a sketch interface,
illustrated in Figure 3. This tool is based on a Java Applet, J-Painter3, and provides a set of
basic drawing tools: Freehand drawing; basic geometric shapes such lines, rectangles, circles;
colour selection and a limited palette of pens. We believe the sketch tool is representative of
state-of-the art visual query specification interfaces. The system is currently operating on top
of Oracle 10g, but other CBIR-enabled databases can be easily added.

1 The original version of VISI was developed by Øyvind Osdal in 2005 within the Virtual
Exhibits on Demand, VED project, funded by the Norwegian Research Council (NFR).
2 http://www.adobe.com/products/coldfusion/
3 http://www.izhuk.com/painter/

 THE VISI PROTOTYPE - TECHNICAL REPORT

Bjørge Næss 2

2. END-USER FUNCTIONALITY

2.1. Getting started

The opening screen, shown in Figure 1 provides some general information about the VISI
prototype. After pressing the Start button the user will see the main screen, shown in Figure 2.

Figure 1: The VISI welcome screen

 THE VISI PROTOTYPE - TECHNICAL REPORT

Bjørge Næss 3

Figure 2: Specification of a visual query

The main VISI interface is divided into three sections, shown in Figure 2.

2.1.1. Query Specification – left-hand panel

There are two alternatives for specification of a search image:

1. Query-By-Example. The user can select an existing image from their hard drive to use
as a query.

2. Query-By-Sketch. The user can create their own query image by a set of basic
drawing tools.

2.1.2. Using an existing image – Query by Example
By default, an example image is presented in the left-hand panel of the query specification
screen, as shown in figure 2. The image to be uploaded can be of any of the formats supported
by Oracle InterMedia (currently: BMPF, CALS, FPIX, GIFF, JFIF, PBMF, PGMF, PPMF,
PNMF, PCXF, PICT, PNGF, RPIX, RASF, TGAF, TIFF and WBMP)4.

4 To view the full list of supported formats in Oracle InterMedia, please refer to
http://download-uk.oracle.com/docs/cd/B19306_01/appdev.102/b14297/ap_imgfmts.htm#g653513

 THE VISI PROTOTYPE - TECHNICAL REPORT

Bjørge Næss 4

To select an image, click the “Browse…” button and locate the image from the hard-drive.
Once the image is selected, click the “Upload image” button. This might take a while
depending on the internet connection speed. When the image is successfully uploaded, it will
show up in this section by replacing the default image.

2.1.3. Drawing a seed image – Query by Sketch
In addition to being able to select a user-defined search image and retrieve images similar to it,
the user can also sketch or draw an illustration of what she wants to return. This can be done
by clicking the “draw an image now” link in the descriptive text in the section for uploading
images in the left panel. A new screen appears, and an image editor is started. By default, this
shows an example illustration of a whale. To clear and start a new drawing, click the icon at
the end of the introductory sentence.

Figure 3: VISI Query-by-example sketch tool with example query

Basic sketches can be drawn by using the various tools in the toolbar surrounding the drawing
pad. When complete, the drawing/sketch can be used as a query, indicating the visual
characteristics that should be returned in the query result set.

The drawing interface (Figure 3) provides a set of basic drawing tools: Freehand drawing;
basic geometric shapes such lines, rectangles, circles; colour selection and a limited palette of
pens. In addition, there are supporting tools such as an eraser, a colour filler, copy-and-paste,
and undo/redo. The different tools can be used alone or in combination to create a visual
query.

Once a seed image is selected or drawn and uploaded, it will remain throughout the user-
session, or until it is replaced by another one.

 THE VISI PROTOTYPE - TECHNICAL REPORT

Bjørge Næss 5

2.1.4. Setting weights – the center panel
After the seed image has been selected/drawn and uploaded, it’s time to specify a weighting
scheme for the characteristics of the query using the center panel of the query specification
interface, re. Figure 2. In most cases, the default values work well. However, if a search
returns no results, it might be worthwhile adjusting the weights. The sum of “Shape”, “Color”
and “Texture” values cannot exceed 1, while “Spatial Structure” and “Threshold” are
independent weights.

The threshold-parameter denotes the maximum similarity-distance between the seed image
and images that should be included in the result set. The scale goes from 0 – 100 where 0
meaning no distance in similarity (i.e. the images must be identical to the search image in
order to be returned), and 100 meaning no similarity at all (will most likely return all images
in the collection).

Note that after a weight is changed, the “Set weights” button must be clicked to apply the
changes. For more information about weights, please refer to the “more info about weights”
link or the Oracle InterMedia documentation5.

2.2. Querying the database

When the seed image is uploaded and weights are set, it is time to perform the actual search.
This is done simply by hitting the “Start Search” button in the right-hand panel.

The query will then be processed against the database, and similar images will be returned
and presented to the user as thumbnails in a (3 * n) grid. A summary of the current search
parameters is also presented for convenience. Clicking on a thumbnail presents structural
information about the particular image (width, height, file format, etc.), along with a selection
of metadata-attributes extracted from the image (at the time writing, these attributes are
caption, date and time taken, camera vendor, camera model, software, whether the flash was
fired, when the photo was taken, and GPS information), as shown in Figure 4. The
information shown depends on what kind of metadata that is stored with the image.

A menu with different options, among others, the possibility to use this image as a seed image
is also provided. Choosing this option causes any previously uploaded images to be discarded
and replaced by this image, and a new query with this as seed image is ready to take place.

5 http://download-uk.oracle.com/docs/cd/B19306_01/appdev.102/b14297/ch_imgref.htm#sthref962

 THE VISI PROTOTYPE - TECHNICAL REPORT

Bjørge Næss 6

Figure 4: Viewing image details

The user might be interested in viewing image details. A possibility to magnify a subsection
of the present image is provided by clicking on the image and dragging the magnifier-window
to the area of interest.

 THE VISI PROTOTYPE - TECHNICAL REPORT

Bjørge Næss 7

3. SYSTEM IMPLEMENTATION

3.1. Technology

The test environment currently uses the following technologies: Oracle 10g6 w/intermedia,
ColdFusion (currently version MX7), HTML, CSS, JavaScript Java Applet (the JPainter
application).

3.2. The web application

The web application runs on a ColdFusion MX7-enabled server. The future developer should
be familiar with ColdFusion (or any other server-side scripting-language), JavaScript, basic
HTML and concepts like session variables and handling file uploads through the HTTP
protocol.

3.2.1. Overall architecture
All files and scripts are subsequently referred to by using their relative path starting on the
application root (i.e. where Application.cfm is located), as illustrated in Figure 5, below.

6 VISI with oracle 10g is compatible with earlier versions that used Oracle 9i

 THE VISI PROTOTYPE - TECHNICAL REPORT

Bjørge Næss 8

Figure 5: Overall VISI structure

The Application.cfm script

Here, the application-level settings are defined. This script is included implicitly by the
ColdFusion server before any user-requests are processed (for more information, see the
ColdFusion documentation). Among other configuration parameters, it defines a global
default error-handler (errors/error_dispatcher.cfm).

Application.cfm also defines which data source (Oracle database link) to use (described in
section 3.2.2) and defines the default values for weights (shape, color, texture and spatial
structure) and the default threshold value to be used when issuing queries to Oracle. The
remaining configuration parameters defined in this script are described in code-comments and
should be fairly easy to grasp.

 THE VISI PROTOTYPE - TECHNICAL REPORT

Bjørge Næss 9

Other script files

The page layout as seen by the user can be divided into five sections, as shown in Figure 6.

Figure 6: The different parts of a page

This structure corresponds to different parts of code in respective script files. The top-section
is global and is included in each page by a cfinclude-statement:

<cfinclude template="content/section_top.cfm">

The Box1 section is what is contained in a <div> tag with the CSS-class ‘Box1’, i.e.:
<div id="box1">
 <!--- The content in the left section goes here --->
</div>

Similarly, the content of a box2-class <div> tag goes in the center-section and box3 represents
the right section.

The bottom-section works the same way as the top, by including a global file by a cfinclude
statement:

<cfinclude template="content/section_bottom.cfm">

 THE VISI PROTOTYPE - TECHNICAL REPORT

Bjørge Næss 10

3.2.2. How-to extend the application

To create an Oracle database link (ODBC connection) for ColdFusion

Figure 7: Adding a data source in ColdFusion Administrator

A data source must be created by the ColdFusion administrator giving access to an Oracle
database. To do this, the Java-based JDBC driver for Oracle7 has to be downloaded and
copied to the ColdFusion ‘Class Path’. It is important that the data source is named ‘visi-db-
odbc’. The creation of the data source is done by selecting “Data sources” under the “Data &
Services” menu item in the ColdFusion administrator panel (see figure 7 above) and then
filling in information on the following format (values in brackets <> must be replaced by
actual values), as shown in the following table.

7 See http://www.oracle.com/technology/software/tech/java/sqlj_jdbc

 THE VISI PROTOTYPE - TECHNICAL REPORT

Bjørge Næss 11

CF Data Source Name: visi-db-odbc

JDBC URL: dbc:oracle:thin:@<server-name>:<port>:<SID>

Driver Class: oracle.jdbc.driver.OracleDriver

Driver Name: OracleDriver

User Name:

Password:

Description:

<username>

<password>

<any>

Table 1: Creation of the ColdFusion � Oracle link.

When done, choose “Show advanced parameters” and increase the BLOB buffer-size value
(we used 64,000,000 bytes) in order to be able to fetch high-resolution images from the
database.

To add a new script

Adding a new script to VISI should be fairly easy. It is done by creating the new script file,
including the cfinclude-statements for the top and bottom sections and creating the box1-3
class-div tags as described in section 3.2.1. The file ‘template.cfm’ provides an empty
framework for creating new pages and should be used as a guideline.

3.3. The database backend requirements

VISI is dependent on some available features and structure in the underlying database system.
It is important that the future developer has knowledge about the name of the image-table
defined in the database. The database backend should also have a function or stored procedure
that enables searching for an image using the URL of a seed image and specifying values for
the different weights as parameters (the call to the search procedure is done in
‘handlers/performsearch.cfm’). Further, the stored procedure must return the matching results
in the form of a comma-separated list of image-IDs. In Oracle the signature of this stored
procedure is as follows:

PROCEDURE SEARCH (
 p_Url IN VARCHAR2,
 p_Filename IN VARCHAR2,
 p_Shape IN VARCHAR2,
 p_Color IN VARCHAR2,
 p_Texture IN VARCHAR2,
 p_Spatial IN VARCHAR2,
 p_Threshold IN VARCHAR2,
 p_Results OUT NOCOPY VARCHAR2);

 THE VISI PROTOTYPE - TECHNICAL REPORT

Bjørge Næss 12

The resulting image-IDs (the result set) are passed to the OUT-parameter p_Results and
further processed by VISI. This procedure can be renamed or contained in a package if
desired. If so, the procedure call in ‘handlers/performsearch.cfm’ script must be updated to
match the actual name. It should, however keep the basic functionality stated in the signature
of the procedure above.

3.4. Requirements

The basic requirement is that the database backend has a table containing an
ORDSYS.ORDIMAGE-column and a stored procedure that can receive the URL of an image,
process a CBIR-query to the database system which in turn will return images that are
evaluated to be similar.

In addition to calling the stored procedure described in the above section, VISI scripts also
issues SQL-statements directly to the database. This means that VISI must have “knowledge”
about the database structure. In particular, the table and attribute where the images are stored
must be known to the application developer. The following scripts issue queries to the table
containing the ORDSYS.ORDIMAGE-column:

lookcloser.cfm

content/showimage.cfm

content/downloadimage.cfm

uploads/showimage.cfm

Thus, modifying the database structure also implies reformulating the queries in these files.

To utilize the metadata capabilities supported by many digital cameras today, the database
system should also provide the functionality to fetch this information. In the
ORDSYS.ORDIMAGE-object type, methods support both reading and writing metadata that
conform to different standards8.

8 http://download-uk.oracle.com/docs/cd/B19306_01/appdev.102/b14297/ap_xmlschms.htm

 THE VISI PROTOTYPE - TECHNICAL REPORT

Bjørge Næss 13

3.5. How-to

3.5.1. Extend functionality
Extending the functionality of VISI may involve both extending the database backend
functionality (i.e. stored procedures) and the source code of VISI itself (i.e. support for both
text and image queries by adding a text-field to the search form). The latter, however, may
also lead to changes in the database backend (i.e. adding parameters to the search-procedure).

3.5.2. Use VISI with other DBMSs
Even though it is built on top of Oracle 10g, VISI is not dependent on a specific DBMS
implementation. The only requirement is that the DBMS supports CBIR-queries. Using
another DBMSs would, however, imply some level of customization. Of the most importance
is adapting the list of scripts that communicates with the database to the new DBMS (as
described in section 3.4).

3.5.3. Add a new DB to an existing set of databases
Using VISI with more than one database would require the new database(s) to provide a
backend system that implements the requirements described in section 3.4. There is currently
no functionality for letting the user select which database(s) to issue queries to. Nor is there
functionality for merging result sets from the different databases.

3.6. Known compatibility issues

For best performance and stability, Internet Explorer should be used when accessing the VISI
prototype. At the time writing, there are known compatibility issues with Mozilla-based
browsers:

The weight-slider is fixed. It is possible to change the different weights, but the slider
indicator is fixed at zero and provides no visual feedback as the values change. However, the
actual weight (from 0 – 1) will change instantly as the slider is dragged by the user.

 THE VISI PROTOTYPE - TECHNICAL REPORT

Bjørge Næss 14

4. REFERENCES

Adobe ColdFusion 8, http://www.adobe.com/products/coldfusion
Retrieved 23.06.2007

J-Painter - online image editor, http://www.izhuk.com/painter
Retrieved 22.06.2007

Image File and Compression Formats, in Oracle® interMedia Reference, http://download-
uk.oracle.com/docs/cd/B19306_01/appdev.102/b14297/ap_imgfmts.htm#g653513
Retrieved 31.08.2007

ORDImage and ORDImageSignature in Oracle® interMedia Reference, http://download-
uk.oracle.com/docs/cd/B19306_01/appdev.102/b14297/ch_imgref.htm#sthref962
Retrieved 31.08.2007

JDBC, SQLJ, and Oracle JPublisher, in Oracle Technology Network,
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc
Retrieved 31.08.2007

Metadata Schemas, in Oracle® interMedia Reference,
 http://download-uk.oracle.com/docs/cd/B19306_01/appdev.102/b14297/ap_xmlschms.htm
Retrieved 22.06.2007

 THE VISI PROTOTYPE - TECHNICAL REPORT

Bjørge Næss 15

5. APPENDIX

5.1. Error messages and what to do

5.1.1. Upload error
Upload errors may be caused by invalid write permissions to the upload folder or wrong file-
format on uploaded files.

What to do

First, make sure the file you are uploading is, in fact an image. Also verify that the full path of
the upload folder is written correctly in the Application.cfm file and that the folder is
writeable by the ColdFusion-user (if the server is on Linux, try typing ‘chmod 777 uploads’ in
the application root directory).

5.1.2. Error while performing search
This error is probably caused by an invalid procedure call to the database. Either the issued
procedure call is misspelled, has a wrong number of parameters or the parameter types are
wrong.

What to do

First, make sure the procedure call goes to a procedure that actually exists in the target
database. Second, verify that procedure call has the right number of parameters using the
correct datatype. Further, verify that the parameter that will contain the returned items has the
value ‘out’ set for the parameter ‘cfprocparam’.

5.1.3. Error when trying to fetch imageinfo
This error may be due to a misspelled SQL-query statement.

What to do

Make sure the SQL-statement in the originating file is syntactically correct and not resulting
in an error when issued directly to the database. Also make sure the ‘datasource’ attribute of
the ‘cfquery’ attribute is the same as defined in Application.cfm.

5.1.4. Unhandled error
This error is caused by an unknown situation. Read the error message carefully to identify its
cause.

