
VISI3  C.Carlson 

1 of 28 

 

  

 

 

 VISI3  

 Context Aware Image Retrieval 

 

 

Christoph Carlson 

Sept. 2009 

 

 

 

 

 

 

CAIM-UiB 

TR-8 

 



VISI3  C.Carlson 

2 of 28 

 Table of Contents 

 

Abstract ...................................................................................................................................... 3 
1. Project goals ........................................................................................................................... 3 

1.1 Translate from Coldfusion to Java ................................................................................... 3 
1.2 Full-text search from Verity to Oracle .............................................................................. 3 
1.3 CBIR/TBIR to use CAIRANK algorithm ........................................................................ 4 
1.4 Precision testing ............................................................................................................... 4 

2. Prototype documentation ........................................................................................................ 4 

2.1 Technologies used ............................................................................................................ 4 
2.1.1 Servlets ...................................................................................................................... 4 

2.1.2 JavaServerPages ........................................................................................................ 6 
2.1.3 JSP Standard Tag Libraries/Custom tag libraries ...................................................... 6 

2.2 Design ............................................................................................................................... 7 
2.2.1 Data model ................................................................................................................ 7 
2.2.2 Business logic ............................................................................................................ 8 

2.2.3 Front-end ................................................................................................................... 8 

2.3 Search functionality .......................................................................................................... 8 
2.3.1 Content-Based Image Retrieval search ..................................................................... 8 
2.3.2 Text-Based Image Retrieval Search ........................................................................ 10 

2.3.3 CBIR/TBIR Search ................................................................................................. 10 
2.3.4 GPS Search .............................................................................................................. 13 

2.3.5 CBIR & GPS Search ............................................................................................... 13 
2.4 New functionality ........................................................................................................... 13 

2.4.1 Thumbnails .............................................................................................................. 13 
2.4.2 Tile generator ........................................................................................................... 15 
2.4.3 Extended information about an image .................................................................... 16 

2.4.4 Random seed image ................................................................................................ 17 
3. Testing .................................................................................................................................. 17 

3.1 Precision score ................................................................................................................ 17 
3.2 Weight testing ................................................................................................................. 18 
3.3 CBIR Precision ............................................................................................................... 18 

3.3.1 The algorithm for automation.................................................................................. 18 

3.3.2 Results ..................................................................................................................... 19 
3.4 CBIR/GPS Precision ...................................................................................................... 19 

3.4.1 The algorithm for automation.................................................................................. 19 

3.4.2 Results ..................................................................................................................... 19 
4. Tools used ............................................................................................................................. 20 
5. Future development .............................................................................................................. 20 
6. User manual .......................................................................................................................... 21 

Admin panel ......................................................................................................................... 26 
7. References ............................................................................................................................ 28 
 



VISI3  C.Carlson 

3 of 28 

 Abstract 

The project's main objective this summer was to translate the entire web application VISI2 

(Vortex Image Search Interface 2) from ColdFusion, a proprietary tag-based language 

developed by Adobe, into Java, using JSPs and Servlets. The back-end of the application 

contains an Oracle 10g database. In VISI2, TBIR (Text-Based Image Retrieval) makes use of 

a full-text search engine called Verity used by ColdFusion. Replacing ColdFusion code with 

Java code led to another sub-goal, which was to replace Verity with Oracle's internal full-text 

search. Another goal of the project was to improve the CBIR/TBIR (Content-Based Image 

Retrieval / Text-Based Image Retrieval) search by using the CAIRANK algorithm (Hartvedt, 

2007). Testing was also a major part of this summer's project. Automated precision tests for 

CBIR and CBIR/GPS searches were developed that tested all the images in the database and 

wrote the results to csv-files. This also helped in the process of finding the weights (shape, 

color, texture, spatial structure) which gave the best results for our domain. 

In addition to the primary project goals, some new functionality was developed; a thumbnail 

generator, tile generator, more information about the image and a random start-up seed image. 

  

 1. Project goals 

 1.1 Translate from Coldfusion to Java 

VISI (Næss, 2007) and VISI2 (Rørvik, 2008) were written in the proprietary scripting 

language ColdFusion. The primary reasons for this code translation was that ColdFusion is a 

proprietary language and that the mobile application MMIR2 (Hellevang, 2008) is already 

written in Java. Another reason was that it will hopefully be easier to continue development 

since most future project assistants are expected to be familiar with Java.. 

 1.2 Full-text search from Verity to Oracle 

Replacement of the ColdFusion code with Java code meant that the Verity Search for TBIR 

needed to be replaced. Since Oracle has built-in text search technology in all Oracle Database 

editions, it was decided to use this instead of Verity. Oracle Text has support for the Boolean 

operators AND, OR, NOT, NEAR etc. It also contains support for advanced features like 



VISI3  C.Carlson 

4 of 28 

fuzzy search.  

 

 

 

Each object in the database has a description field stored as a CLOB (Character Long Object). 

Since this column contains the most information about the object, it was chosen for the text 

index for the object. Implementation details follow in a later chapter. 

 1.3 CBIR/TBIR to use CAIRANK algorithm 

The CBIR/TBIR search in VISI2 returned result-sets consisting of the results from the TBIR 

search followed by the results from the CBIR Search. This led to a request for use of a better 

CBIR/TBIR algorithm, known as the CAIRANK algorithm, developed by Christian Hartvedt. 

(Hartvedt, 2007) 

 1.4 Precision testing 

A major part of this summer's task was to develop precision tests to see how accurate the 

system was. Results and details follow in chapter 3. 

 

 2. Prototype documentation 

 2.1 Technologies used 

 2.1.1 Servlets 

A servlet is an instance of a Java class that implements the Servlet interface from the 

javax.servlet package. It receives a request and dynamically generates a response.  

An example is shown in Screenshot 1 and Figure 1 below for the SetWeightsServlet which is 

called from search.jsp when the Set weights-button is selected. 



VISI3  C.Carlson 

5 of 28 

 

 

public void doPost(HttpServletRequest request, HttpServletResponse 

response) { 

 // Set weights 

 request.getSession().setAttribute("shape", 

  request.getParameter("shapeSliderDiv_value")); 

 request.getSession().setAttribute("spatial", 

  request.getParameter("spatialStructureSliderDiv_value")); 

 request.getSession().setAttribute("texture",  

  request.getParameter("textureSliderDiv_value")); 

 request.getSession().setAttribute("color", 

  request.getParameter("colorSliderDiv_value")); 

 request.getSession().setAttribute("threshold", 

  request.getParameter("thresholdSliderDiv_value")); 

 // Redirects user back to search.jsp 

 response.sendRedirect("../jsp/search.jsp?a=visible"); 

Figure 1 - The set weights servlet 

 

 

Screenshot 1 - Set weights interface 



VISI3  C.Carlson 

6 of 28 

 Servlet mapping is taken care of by web.xml in the WebContent folder: 

<servlet-mapping> 

 <servlet-name>SetWeightsServlet</servlet-name> 

 <url-pattern>/handlers/SetWeightsServlet</url-pattern> 

</servlet-mapping> 

 

 2.1.2 JavaServerPages 

JSP is a server side technology based on Java, which allows software developers to create 

dynamic web pages. JSPs can be seen of as a high-level abstraction of a servlet, and are 

compiled into servlets by a JSP compiler. JSPs are probably the simplest way of presenting 

dynamic content mixed with HTML and better to use for presenting content than e.g. a 

servlet.  Pure java code can be embedded in JSP by putting it between <% and %> 

Example of setting the request's character encoding to UTF-8: 

<% request.setCharacterEncoding("UTF-8"); %> 

<html> 

 <head> 

  <title>VISI3 - The VORTEX Image Search Interface</title> 

 </head> 

 

You can also use expressions ${} , e.g. to print a parameter or a variable: 

<p>Your name is ${param.name}</p> 

 

 2.1.3 JSP Standard Tag Libraries/Custom tag libraries 

 In a JSP, other tags than HTML can be included by combining the JSP Standard Tag Libraries 

and custom-made tag libraries. The JSP Standard Tag Libraries (JSTL) contain a tag 

collection which offers some commonly used functionality like xml-parsing, loops and 

conditions.  

First, a reference to the taglib must be given: 

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%> 

 

 Then a tag, for example a conditional test, can be used: 

<c:if test="${fn:length(error) > 0}"> 

 <c:redirect url="../error.jsp?type=${error}"/> 



VISI3  C.Carlson 

7 of 28 

</c:if> 

 

 

This code checks if the length of the variable error is larger than 0. If it is, the user is 

redirected to the error page. 

If the standard taglibs do not have the required functionality a supplementary tag library can 

be created. The way it has been done in VISI3, is to make classes that extend 

SimpleTagSupport, and the doTag() method is called every time the new tag is used. When a 

tag has been made, one needs to make a .tld-file with a reference to the tag. 

<%@ taglib prefix="caimdb" uri="/WEB-INF/tld/caimdb.tld" %> 

 

 2.2 Design 

The code for VISI3 has been separated into three main parts: front-end (view), business logic 

(controller) and data model (model). 

 2.2.1 Data model 

The data model consists of data access objects or wrapper objects. In VISI3, the data access 

objects are used to provide an abstract interface to the Image table, Object table and the Tile 

table in the database. These can later be used to extract information and present it in the front-

end layer, so that the client does not have to have specific knowledge about the database.  

An example of the usage of ImageMetadataDAO from image.jsp: 

<caimdb:getImageMetadata var="metadata" imageID="${param.imageID}"/> 

<table> 

 <tr><td 

class="key">Caption</td><td>${metadata.caption}</td></tr> 

</table> 

 

getImageMetadata from the caimdb taglib will fetch the ImageMetadataDAO with the 

imageID specified in the attribute and set it to the variable name specified. Then calling 

${metadata.caption} will call the getCaption() method in ImageMetadataDAO 



VISI3  C.Carlson 

8 of 28 

 2.2.2 Business logic 

The business logic layer consists of customized tags, servlets and other java classes. The 

source code is found under the VISI3\WebContent\WEB-INF\src folder
1
.  

One example of a business logic class is the DBHandler class in the VISI3’s handlers.db 

package. Creating an object of this class, enables the user to connect to the database. This is 

also where you have to specify the username, password and host (These can be obtained from 

the CAIM administrator). It would have been better to do this in a config file, but because of 

time constraints and since this is a prototype this was not done. 

public Connection createConnection() throws InstantiationException, 

IllegalAccessException, ClassNotFoundException, SQLException { 

 Class.forName("oracle.jdbc.driver.OracleDriver").newInstance(); 

 Connection conn = 

 DriverManager.getConnection("jdbc:oracle:thin:@"+hostname, 

 username, password); 

 return conn; 

 

 2.2.3 Front-end 

The front-end layer consists of HTML, JSP, CSS and JavaScript code. This part of the code 

will be found under the WebContent folder. This is what the user will see in his/her web 

browser. 

 2.3 Search functionality 

Each of the different searches (CBIR, TBIR etc) has it's own java class, which contains the 

method performSearch. This method returns the set of imageIDs, represented as a java array. 

The tag performSearch in caimdb.tld separates between the different searches, depending on 

the attribute value «searchtype».  

 2.3.1 Content-Based Image Retrieval search 

The CBIR search uses a seed image, compares the image signature to the images in the 

database and returns a list of the images that are most alike based on their signature. The 

parameters it should prioritize can be altered by adjusting the weights texture, color, shape 

and spatial structure. The threshold will determine how many images are returned in the 

result-set. If a threshold of 25 has been chosen, every image with a better score than 25 will 

be be returned. The CBIR search used to have its own Oracle PL/SQL procedure. This seemed 

to be a problem, since it gave different results than the mobile application MMIR3. VISI3 

                                                 
1
 Access to the VISI3 source code is through the CAIM/UiB administrator,  Joan Nordbotten 

mailto:joan.nordbotten@infomedia.uib.no?subject=access%20to%20VISI3%20software


VISI3  C.Carlson 

9 of 28 

now uses the same procedure as MMIR3 (Hellevang, 2009). The main difference is that the 

gps parameter is set to -1 , when called from VISI3. This is because the mobile application 

needs to rescale images, and this time-consuming process is not necessary from VISI3. 

 

An example of a CBIR search could be: 

<caimdb:performSearch searchtype="cbir" filename="holberg.jpeg" 

var="imageIDs" captiontable="captions" color="0.4" texture="0.3" 

shape="0.2" spatial="0.1" threshold="25" /> 

 

This tag is used in the results_images.jspf and sets the images to the variable imageIDs.  A 

loop through the imageIDs variable (which is a String[]) will print out the imageIDs. 

In JSTL this can be done like this: 

<c:forEach var="imageID" items="${imageIDs}" varStatus="status"> 

 <p>${imageID}</p> 

</c:forEach> 

 

Below is a data flow chart which shows how the data flows when a search is performed. 

Figure 2 - CBIR data flow 



VISI3  C.Carlson 

10 of 28 

 2.3.2 Text-Based Image Retrieval Search 

The TBIR search uses pure text as search parameter, and searches through the indexes for the 

large text documents (each object has one) for words that are equal. At the moment, there is 

no support for fuzzy, but this should be possible with Oracle full-text search and might be a 

task for future development. First, it was needed to index the column we were supposed to 

search in. This was done like this: 

CREATE INDEX text_index ON text(TEXT)  

INDEXTYPE IS ctxsys.context  

PARAMETERS (' 

DATASTORE CTXSYS.DEFAULT_DATASTORE 

STOPLIST ctxsys.default_stoplist 

filter ctxsys.inso_filter 

'); 

This index should be updated every time the text table is updated. This is done using: 

EXECUTE ctx_ddl.sync_index('text_index', '2M'); 

 

 Searching in the indexed table is done by the CONTAINS operator.  An example: 

SELECT id from text WHERE contains(TEXT, 'church AND stave', 1) > 0; 

 

The returned results are the text ids, which are linked to an object, which again are linked to 

one or more images. The query to find which images are relevant to each text id looks like 

this: 

SELECT DISTINCT DEREF(c.image).id as imageid 

FROM object x, table(x.texts) y, contains c 

WHERE x.id = DEREF(c.object).id 

AND DEREF(y.text).id=? 

 

This query might be run several times when more than one text id is returned. Therefore, the 

imageIDs are added to a temporary HashSet. If the imageID already contains in the HashSet, 

it's not added to the result-set. 

 

 2.3.3 CBIR/TBIR Search 

The CBIR/TBIR function consists of two separate searches, a CBIR search and a TBIR 

search. It then iterates through the result-sets to find the images that are in both result-sets. 

These images get a merged score (100 – CBIR Score) + TBIR Score. The reason for 



VISI3  C.Carlson 

11 of 28 

subtraction of the CBIR Score from 100 is that the CBIR Score goes from 100 to 0, where 0 is 

the best score. The TBIR score ranges from 0-100 where 100 is the best score. In order to 

merge the CBIR score with the TBIR score, the CBIR score needs to be normalized. When all 

the images from both result-sets are given a new score and sorted, they will be placed in the 

first list. Then the results from TBIR (which are not in the intersection of CBIR & TBIR) are 

listed, sorted by the TBIR score. These are listed before the CBIR results, because text search 

usually has a higher precision than image search. Finally, the results from CBIR that are not in 

the intersection of CBIR & TBIR are listed. 

In other words, the results are listed like this: 

1. CBIR ∩   TBIR 

2. TBIR ∩  !(CBIR ∩  TBIR) 

3. CBIR ∩   !(CBIR ∩  TBIR) 

 

Figure 3 - CBIR+TBIR result calculation 



VISI3  C.Carlson 

12 of 28 

 

 2.3.3.1 Comparison of CBIR/TBIR from VISI2 and VISI3 

 There seems to be a noticeable difference in the results from CBIR/TBIR in VISI3 and 

VISI2. When the classic holberg.jpeg is used as the seed image, supplemented with the text 

«holberg», the different versions of VISI returned: 

 

 

 

This is of course not enough data to conclude anything, but it seems like VISI3 returns images 

that look more like the seed image. 

 

Screenshot 2 - The 3 first results from CBIR/TBIR using VISI2 

 

 

Screenshot 3 - The 3 first results from CBIR/TBIR at VISI3 

 



VISI3  C.Carlson 

13 of 28 

 

 2.3.4 GPS Search 

The GPS Search uses the same Oracle procedure as VISI2. The source code is located under 

the handlers.search.GPSSearch class. 

 2.3.5 CBIR & GPS Search 

The CBIR & GPS Search uses the exact same procedure as MMIR3 and MMIR2, and most of 

the code is the same. See MMIR2 report (Rørvik, 2008) for more information. 

 

 2.4 New functionality 

 2.4.1 Thumbnails 

VISI2's searches are very slow. One of the reasons is that it loads all the images in their full 

size and resizes them with CSS. VISI3 uses a thumbnail generator that creates a resized 

version of the original image. Images with a larger width than height set the width to 150 and 

the height proportional to the width. If the image has a larger height than width, the height is 

set to 150 and the width proportional. This made the searches much faster in VISI3 as shown 

in Table 1 below. 

 

ImageID VISI2 VISI3 

66 42,1s 2,5s 

39 34,0s 2,8s 

29 34,6s 2,1s 

Average 36,9s 2,5s 

Table 1 - Comparison of VISI2 and VISI3 

 

 

 

As you can see, VISI2 uses about 1500% more time to load a result page after a search than 

VISI3. 

Notice! The catch is that the thumbnail generator must be run every time new images are 

added to the database, since the images are inserted via manual inserts and not through a 

Content Management System. This is done through an administration panel:  



VISI3  C.Carlson 

14 of 28 

 http://bulmeurt.uib.no:8080/VISI3/jsp/thumbbuilder/ 

http://bulmeurt.uib.no:8080/VISI3/jsp/thumbbuilder/


VISI3  C.Carlson 

15 of 28 

 

 2.4.2 Tile generator 

An image tile generator was created to test its effect on retrieval of images of details of a 

building and to support the object selector function developed for MMIR3 (Hellevang, 2009). 

The idea was to fragment a picture into a grid of, for example 9 tiles. These tiles were to be 

added into the database and searched on them with the full images. The aim was to increase 

precision of the search results.  

 

 

An example: If the image in Screenshot 4, which is a close-up of Musikkpaviljongen, is used 

as a seed image to search against all the tiles in the database, hopefully a match will be made 

against the tile marked in red in Screenshot 5. 

Screenshot 4 - Close-up image 

Screenshot 5 - The 3x3 grid with Musikkpaviljongen 

marked in red 



VISI3  C.Carlson 

16 of 28 

 

The VISI3 tile generator, developed in java, can be used through the admin panel at 

http://bulmeurt.uib.no:8080/VISI3/jsp/thumbbuilder/. It is possible to choose the number of 

columns and rows the images are to be split into. This program will create tiles of all the 

images in the Image table and put them in bulmeurt.uib.no:8080/tempimages/. These tiles will 

also be inserted automatically into the database with a reference to the original image. For 

database details, see BergenByDB technical report (Møller, 2009). 

  

 2.4.3 Extended information about an image 

Presumably, when a user selects an image from a result set, s/he wants to know more about 

the objects in the image. VISI2 returns structural information about the image, such as date 

taken, size, format, gps. VISI3 has been extended to include information about the objects in 

the image. If the image contains several objects, a list of them is returned to the right of the 

image with the name and a little description, as shown in Screenshot 6. 

 

 

Screenshot 6 - Object listing 

 

Selecting an object description will return an extended description as well as a list of all the 

other images in the database that contain this object. 

http://bulmeurt.uib.no:8080/VISI3/jsp/thumbbuilder/


VISI3  C.Carlson 

17 of 28 

 

Screenshot 7 - Other images 

 

This is made in JavaScript, so that the entire page is not reloaded on selection of the «Neste» 

and «Forrige» buttons. 

 2.4.4 Random seed image 

VISI2 used a fixed, default seed image of the statue of Ludvig Holberg. In VISI3, the initial 

seed image will be a random image from the database. Pushing the «Use random»-button on 

the main page will change the image to another random image. 

  

 3. Testing 

 3.1 Precision score 

Precision scores are widely used in information retrieval and define the exactness of a 

document search. Precision is measured using the following formula: 

Precision =  # of relevant documents retrieved / # documents retreived 

A perfect precision score of 100% means that all of the returned images were relevant. 

Automatic precision testing was done using each image in the BergenBy DB as a seed image. 

Since object identifiers were contained in each DB image, relevance in the result sets was 

defined as an image containing at least one of the objects in the seed image. Precision scores 

were calculated for the 4 first, 8 first, 12 first, 16 first images and then for the total result-set. 

The reason for choosing every 4
th

 image is that the mobile application MMIR3 receives image 

sets of 4, and MMIR3 is the main focus in the CAIM project. It was also assumed that a 

mobile phone user was very unlikely to request more than 4 result screens. 



VISI3  C.Carlson 

18 of 28 

 

 3.2 Weight testing 

The default weights used in VISI2 were Texture: 0,3 – Color: 0,4 – Shape: 0,2 – Spatial 

structure: 0,1. These were used as a starting point to identify an improved set of search 

weights for the current content of the BergenBy DB. About 50 tests were run with small 

adjustments to the weighting for each test. Each test consisted of a CBIR search using each of 

the images in the database, and automatically calculating the average precision score for all 

500+ searches.  

Table 2 shows the 3 different weight combinations that seemed to provide the best precision 

scores: 

 

Weights Precision scores 

Texture Color Shape Spatial Precision4 Precision8 Precision16 PrecisionTotal 

0,2 0,55 0,15 0,1 0,37 0,23 0,15 0,1 

0,11 0,57 0,24 0,08 0,36 0,23 0,14 0,1 

0,1 0,56 0,24 0,1 0,36 0,23 0,14 0,1 

Table 2 - Precision scores using different search criteria weights 

 

Notice! The reason why these precision scores are much higher than the ones later on is that 

the seed image was included in the result-sets here. 

 

 3.3 CBIR Precision 

 3.3.1 The algorithm for automation 

The precision algorithm for the CBIR search test iterates through all images in the database 

that contain objects. For each image, it does a CBIR search with this image as seed image. 

The CBIR search returns a list of images ordered by their score. It iterates through the list of 

returned images and compares the object identifiers in the seed image to the object identifiers 

in the returned image. If one of the objects is in both images, the returned image is noted as 

relevant. After all the returned images are gone through, each seed image will be given a 

precision score at the 4
th

, 8
th

, 12
th

, 16
th

 and all images in the result-set. The exception is when 



VISI3  C.Carlson 

19 of 28 

a seed image search only returns 7 images. These will not be given a precision score for the 

8
th

, 12
th

 and 16
th

 image. After all the images in the database have been tested, the program will 

calculate an average precision score for the 4
th

, 8
th

 etc image. Seed images with less than 12 

images will be excluded from the average calculation of Precision12 and Precision16. 

 3.3.2 Results 

Table 3 gives the average scores for the 500 image queries in the CBIR precision test. The 

“Relevant hits” column shows the average number of relevant images in the result-sets. As 

expected, precision is higher at the 4
th

 image than at the 8
th

 image.  Note that the average of 

the total precision score includes relevant images that have occurred after the fixed markers, 

i.e. when 7 images were returned with relevant images in slots 5, 6, and/or 7 or when 11 

images were returned with relevant images in slots 9, 10 and/or 11. 

 

Precision4 Precision8 Precision12 Precision16 PrecisionTotal Relevant hits 

13,49% 11,00% 9,54% 8,67% 8,98% 2,09 

Table 3 - Precision score for CBIR Search 

 

 3.4 CBIR/GPS Precision 

 3.4.1 The algorithm for automation 

The algorithm is similar to the pure CBIR tests. The difference is that it extracts the GPS 

location from the image (not the object) and also uses this as a search parameter. The test 

includes search using three distances; 100m, 300m and 500m. 

 3.4.2 Results 

Table 4 shows the average precision scores for the CBIR/GPS search. 

 

Distance Precision4 Precision8 Precision12 Precision16 Precision 

Total 

Relevant 

hits 

100 77,31% 70,73% 75,60% 75,00% 54,78% 0,55 

300 45,63% 38,30% 39,31% 38,13% 46,39% 2,16 

500 32,83% 28,70% 24,76% 23,28% 39,72% 1,85 

Table 4 - Precision score for CBIR&GPS search 

 

As can be expected, precision decreases as the distance increases. However, the total of 

relevant images returned increase from 0,55 per search to 2,16 per search while increasing 

distance from 100 to 300. This is because a lot of the images are taken from a distance larger 

than 100 meters. Surprisingly, the amount of relevant images returns decreases when the 

distance is increased to 500. This might be due to a bug in the Oracle procedure, but it was 



VISI3  C.Carlson 

20 of 28 

discovered too late to look more into.  

  

 4. Tools used 

 Acer Aspire 5530 w/ Windows Vista 

 Eclipse IDE Ganymede v 3.4.1 with Tomcat plugin installed 

 Oracle SQL Developer 

 

Acer Aspire 5530 was the computer that I used this summer, and Windows Vista was the 

operating system that I ran. 

I used Eclipse for J2EE programming and the Tomcat plugin was necessary so that I didn't 

have to deploy the project manually for every change I did. 

Oracle SQL developer was used for getting information about the database, testing queries, 

changing procedures etc. 

 

 5. Future development 

For future development, I think it would be interesting to test the tile search properly, where 

one searches in both the tiles and the regular image table. If this gives a positive result, this 

can be implemented in the regular CBIR search. 

Another thing which could be done to improve the TBIR search is to extend the index from 

only the text column to include the name column. Now a search for «Mariakirken», will not 

return relevant images because the church is called «St. Mary's Church» in the text. 

Additionally, one could add support for user-generated tagging on the pictures, like the 

functionality in Facebook. The tagging would be of objects, and not of people, though. 

The bug that was found during CBIR & GPS precision testing should also be looked into. It's 

not logical to get more relevant images with a distance of 300, than with a distance of 500, 

since the expected result would include the images that at 300 plus the images with 300+ 

distance. 

Last, but not least, I think the code base needs some refactoring. It could be useful to use a 

framework like Spring. Since this was my first time developing an entire web project in Java, 

the architecture probably isn't optimal. 



VISI3  C.Carlson 

21 of 28 

 

6. User manual 

The start screen for first time entry into VISI3 at http://bulmeurt.uib.no:8080/VISI3/ is shown 

below. The Start-button provides entry to the search page. 

  

 

Screenshot 8 - The front page 

 

http://bulmeurt.uib.no:8080/VISI3/


VISI3  C.Carlson 

22 of 28 

The search page has 3 panels for specification of an image query, shown in screenshots 9, 10 

and 11 below.  

 

 

This is the left part of the search page. This part of the site contains all information about the 

seed image. The user can choose to upload from his/her own computer by pushing «Bla 

gjennom ...», find the image and push «Upload image». Or he/she can push «draw an image 

now» (in the introductory text) and draw his own image with the Java Applet available. Or 

else he/she can push «Use random image» and another random image from the database will 

appear. 

Screenshot 9: The left box on search page 



VISI3  C.Carlson 

23 of 28 

Weights are specified using the following panel: 

 

This is the advanced settings. To see this, push the link «Show advanced settings» in the top 

right corner of the search page. Here the weights for the search can be changed. To find out 

more about the specific weights, push the links «Shape», «Color» etc.  The «Go to admin 

panel» is a password-protected admin-panel, which will be gone through later. 

Screenshot 10: The right box on search page 



VISI3  C.Carlson 

24 of 28 

The various search options are shown below and in the central panel of the VISI3 search page. 

 

 

 

Image search uses the seed image specified to the left, and does a normal CBIR search. 

GPS Search uses the specified GPS positions for the search and does not use the seed image. 

A distance measure can also be given in the 3
rd

 text-box. The distance is measured in meters 

that the object can be away from the image (photographer) gps location and still be included 

in the result-set. The default is 100 meters. 

CBIR&GPS Search does a combined CBIR and GPS search and uses both the seed image 

Screenshot 11: The center box on search page 



VISI3  C.Carlson 

25 of 28 

and the GPS specified coordinates.  

TBIR Search does a pure text search with the parameters specified in the text box. Boolean 

operators NOT, AND, LIKE and NEAR can be included. 

TBIR&CBIR Search combines the parameters from the text box and the seed image and 

does a TBIR&CBIR search as described above.  

A typical result page is shown below in Screenshot 13. It is possible to select any image 

which will return more information about that image and the objects in the image. 

 

Screenshot 12 - Search results 

 

This is the layout of the page you'll see when you have performed a search. You can click 

each of these images to look at a larger version and find out more about the objects that are 

visible in the image. 



VISI3  C.Carlson 

26 of 28 

 

 

 

 

 

At the left, there is some image-specific information, like width, height, gps location of the 

picture etc. There is also a magnifier function. The square box on the image can be dragged 

around and it will magnify the content under it. To the right, there is information about the 

object in the image. Below the picture is a list of other images that contain this object. If the 

image contains more than one object, there will be a list of the objects in the image, as you see 

in screenshot 1 on page 13. 

 Admin panel 

Screenshot 13: Image-specific page 



VISI3  C.Carlson 

27 of 28 

 

First, you need to login with the username and password. To get the username and password, 

contact the CAIM administrator. 

 

 

The left panel allows generation of test images for the precision testing. These will be placed 

in the http://bulmeurt.uib.no:8080/tempimages with names like testimage_imageID.jpg 

In the center box, is used to update the thumbnails. This must be done every time images are 

added to the database. The thumbnails will be placed in 

http://bulmeurt.uib.no:8080/tempimages with filenames like thumb_imageID.jpg. 

The right panel is to be used to generate tiles from all the images in the database. Remember 

to delete the tile sequence in the oracle database before doing this, unless this is the first time 

creating tiles. The tiles will be placed in http://bulmeurt.uib.no:8080/tempimages with 

filenames like tile_imageID_fragmentNumber.jpg. The fragmentNumber is a number from 1-

9 if a 3*3 grid is defined and 3 rows, where 1 is the tile in the top left corner, and 2 is the tile 

in the top center, etc. 

Screenshot 14: Login box 

Screenshot 15: Admin panel 

http://bulmeurt.uib.no:8080/tempimages
http://bulmeurt.uib.no:8080/tempimages
http://bulmeurt.uib.no:8080/tempimages


VISI3  C.Carlson 

28 of 28 

 

 7. References 

Hartvedt, C. (March 2007) Utilizing context in ranking results from distributed image 

retrieval – the CAIRANK Prototyp, Dept. of Information and Media Sciences, Univ. 

of Bergen.  

Hellevang, M. (Sept. 2008)  MMIR2 - Mobile Multimedia Image Retrieval (ver.2).  CAIM-

TR-4, Dept. of Information and Media Sciences, Univ. of Bergen.  

Hellevang, M. (Sept. 2009). MMIR3 – Mobile Multimedia Information Retrieval. CAIM-TR-

7, Dept. of Information and Media Sciences, Univ. of Bergen. 

Møller, T. (Sept. 2009). Bergen By – a Multi-Modal Image Database. CAIM-TR-9, Dept. of 

Information and Media Sciences, Univ. of Bergen. 

Næss, B. (Sept. 2007).  The VISI Prototype for Image Retrieval. CAIM-TR-1, Dept. of 

Information and Media Sciences, Univ. of Bergen. 

Rørvik, A. (Sept. 2008)  VISI2 - Combining CBIR Search with Text and GPS Location 

Criteria.  CAIM-TR-6, Dept. of Information and Media Sciences, Univ. of Bergen.  

 

 

http://caim.uib.no/publications/Chr_m-thesis.pdf
http://caim.uib.no/publications/Chr_m-thesis.pdf
http://caim.uib.no/publications/MMIR2_Report.pdf
http://caim.uib.no/publications/MMIR3_TR.pdf
http://caim.uib.no/publications/BergenBy3_TR.pdf
http://caim.uib.no/publications/VISI-Report.pdf
http://caim.uib.no/publications/VISI2_report.pdf
http://caim.uib.no/publications/VISI2_report.pdf

