IFT POSTEN – 23.05.2008
Fra Instituttledelsen
Ukens nummer domineres av 12
publikasjoner hvor Alex Hoffmann et al har bidratt med hele tre stykker som
rapporterer målinger av flerfasestrømning i sykloner og
nanopartikkelproduksjon. Våre to BFS personer Førre og Holst leverer forteller
om Rydbergdynamikk og feltionisasjon av Helium og Stamnes et al beskriver
lysspreding på ispartikler. På den subatomære siden skrives der bl.a. om hva vi
kan forvente på ALICE eksperimentene de nærmeste årene.
Jan Petter
Nyheter og generell
informasjon
HUSK: Eksplosivt
fellesseminar i dag!
Kl. 14.15 aud B, http://web.ift.uib.no/fsem/Wingerden.html
Fagutvalget feiret
nasjonaldagen
Tradisjonen tro arrangerte Fagutvalget ved IFT frokost på
instituttet 17. mai. Deretter gikk turen til Muséplass der Universets studenter
og ansatte samlet seg under Universitetets fane, før oppstilling til
Hovedprosesjonen på Torgallmenningen.
Fagutvalget – ulastelig antrukket - marsjerer fra Muséplass
Eldre tidsskrift
Overflødige hefter av en del tidsskrifter er lagt på et bord
i tidsskriftrommet for henting av evt
interesserte. Kan avhentes for samlere uten vederlag og først til mølla seinest
1. Juni. De tidsskriftene det gjelder,
er: Science, Scientific American, Ottar, Naturen
Forskning och Framsteg.
Nordic Infrastructure
conference
During the
conference, the participants are invited to take part in one of the following
thematic workshops: Climate, Energy and Environment, Welfare and Health,
Future
technologies in eScience or National
Strategies and Solutions Related to Research Infrastructures.
Date and
venue: November 12-13th 2008 at Clarion Hotel, Stockholm, Sweden.
Please register before October 13th.
Read more about the conference, see preliminary
programme and register at: http://www.vr.se/nordicinfra.
Studiesaker
Mastereksamener ved
IFT
Onsdag 28. mai 2008
avlegger Knut Solvåg sin mastereksamen i Fysikk – Mikroelektronikk
Tittel på
oppgaven:
”Design and Testing of n-XYTER:
The First Dedicated Neutron Detector Readout ASIC”
Presentasjon av oppgaven skjer kl. 10:00 på rom 366, IFT.
Torsdag 29. mai
2008 avlegger Ilker Meric sin mastereksamen i Fysikk – Industriell
instrumentering.
Tittel på
oppgaven:
”Monte Carlo modeling of the intrinsic stopping efficiency in Geiger-Müller detectors”
Presentasjon av oppgaven skjer kl. 13:30 på rom 292, IFT.
Alle interesserte er velkommen!
Formidling
Amnytt.no
Artikkel med
Julie Katrine Berg, CIPR
Tittel: Drømmereise
venter årets teknologistudent
Den harde kampen om teknologistudentene gjør at FMC Technologies på
Kongsberg går nye veier for å få tak i de beste ingeniørhodene. Flere studenter
har kjempet om å bli Årets Teknologistudent og få mulighet til å reise til Singapore
for å besøke FMC Technologies virksomhet der. Den som trakk det lengste strået
i år er finnmarkingen og Bergens-studenten Julie Katrine Berg.
http://www.amnytt.no/xp/pub/venstre/hovedside/307198
Publikasjoner (siste 4 uker fra ISI Web of Knowledge,
http://apps.isiknowledge.com)
Impact of ice
particle shape on short-wave radiative forcing: A case study for an arctic ice
cloud
Author(s): Kahnert M, Sandvik AD, Biryulina M, et al.
Source: JOURNAL OF QUANTITATIVE SPECTROSCOPY &
RADIATIVE TRANSFER Volume: 109
Issue: 7 Pages: 1196-1218 Published: MAY
2008¨
Abstract:
We used four different non-spherical particle models to compute optical
properties of an arctic ice cloud and to simulate corresponding cloud radiative
forcings and fluxes. One important finding is that differences in cloud
forcing, downward flux at the surface, and absorbed flux in the atmosphere
resulting from the use of the four different ice cloud particle models are
comparable to differences in these quantities resulting from changing the
surface albedo from 0.4 to 0.8, or by varying the ice water content (IWC) by a
factor of 2. These findings show that the use of a suitable non-spherical ice
cloud particle model is very important for a realistic assessment of the radiative
impact of arctic ice clouds. The differences in radiative broadband fluxes
predicted by the four different particle models were found to be caused mainly
by differences in the optical depth and the asymmetry parameter. These two
parameters were found to have nearly the same impact on the predicted cloud
forcing. Computations were performed first by assuming a given vertical profile
of the particle number density, then by assuming a given profile of the IWC. In
both cases, the differences between the cloud radiative forcings computed with
the four different non-spherical particle models were found to be of comparable
magnitude. This finding shows that precise knowledge of ice particle number
density or particle mass is not sufficient for accurate prediction of ice cloud
radiative forcing. It is equally important to employ a non-spherical shape
model that accurately reproduces the ice particle's dimension-to-volume ratio
and its asymmetry parameter. The hexagonal column/plate model with air-bubble inclusions
seems to offer the highest degree of flexibility. (c) 2007 Elsevier Ltd. All rights
reserved.
Transient intrashell
resonances in Rydberg atoms
Author(s): Fregenal D, Forre M, Horsdal E, et al.
Source: JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL
PHYSICS Volume: 41
Issue: 10 Article Number: 105003 Published: MAY
28 2008
Abstract:
Rydberg atoms of principal quantum number n in a superposition of a harmonic
and a slowly varying field pass through several resonances with the harmonic
field of frequency Omega as the splitting omega of the shell by the slow field
varies. These transient resonances which are met when omega similar or equal to
N Omega, where N is an integer, have been studied for the n = 25 shell of Li.
Coherent elliptic states were prepared and used as initial states, and the
dynamics was probed by the probability P-a for the atom to remain in the
initial state. The harmonic field (E) over right arrow (Omega) was circularly
polarized and had constant amplitude, and the slow field varied such that omega
at first decreased, then went through a minimum and finally increased to bring
the atoms into resonance at two different times. This led to interference
patterns in P-a(omega(0)), where omega(0) is the minimum splitting. These were
quite regular for coherent elliptic states of low eccentricity e and for strong
fields (E) over right arrow (Omega), but less regular for large e and weak (E)
over right arrow (Omega). A few states of Li(n = 25) are not hydrogenic due to
quantum defects from the (1s)(2) core. Without quantum defects the dynamics can
be reduced to that of two spin-1/2 particles and this reproduces the regular
patterns quite well. A full quantal treatment, which is required if quantum
defects are important, shows that the more irregular patterns are the result of
quite complex dynamics involving non-hydrogenic quasi-eigenstates.
Field ionization of
free helium atoms: Correlation between the kinetic energy of ionized atoms and
probability of their field ionization
Author(s): Piskur J, Borg L, Stupnik A, et al.
Source: APPLIED SURFACE SCIENCE
Volume: 254 Issue: 14 Pages: 4365-4369
Published: MAY 15 2008
Abstract:
In this paper the correlation between the kinetic energy of helium atoms and the
probability of field ionization is investigated by exploiting the narrow
velocity distribution of supersonic molecular beams. Field ionization
measurements were carried out on supersonic helium beams at 298 K and 95 K
corresponding to energies of about 65 meV and 20 meV, respectively, for the
individual atoms. The field ionization was performed with a tungsten tip,
radius of curvature 12 nm, kept at room temperature. The ionization probability
was found to increase by about a factor 10 when the beam was cooled from 298 K
to 95 K. The results presented in this paper are of importance for improving
the understanding of field ionization and for the development of a new detector
for helium and other molecular beams. (C) 2007 Elsevier B. V. All rights reserved.
An experimental
investigation of scrubber internals at conditions of low pressure
Author(s): Austrheim T, Gjertsen LH, Hoffmann AC
Source: CHEMICAL ENGINEERING JOURNAL
Volume: 138 Issue: 1-3 Pages: 95-102
Published: MAY 1 2008
Abstract:
This paper reports experimental results for the performance of natural gas
demisting equipment (natural gas scrubbers), and on basis of this discusses
possible improvements in the design of gas scrubbers. The separation efficiency
and pressure drop of gas scrubber internals: a vane-type inlet, a mist mat and
a cyclone deck, for two gas-liquid systems: air-water and air-Exxsol were
determined at a range of gas and liquid flows. To interpret results, a model
for the cut size of an axial flow cyclone is given. The results show that when
reentrainment limits the separation performance of the scrubber the separation
performance varies with the nature of the liquid injected, so that design on
basis of an air-water system has to be done with caution. The results and the
analysis presented further indicate that the K-value, although generally a good
evaluation parameter, does not take into account some significant effects, such
as the nature of the fluids, changes in the free area for flow, e.g. in the
mist mat, and the action of scrubber internals in general. The separation
efficiency is shown to be dominated by reentrainment from the cyclone deck at
the liquid loadings and gas flows used, loadings and flows which are typical
for an industrial scrubber. (C) 2007 Elsevier B.V. All rights reserved.
Effect of
calcination conditions and precursor proportions on the properties of YSZ
nanoparticles obtained by modified sol-gel route
Author(s): Suciu C, Hoffmann AC, Vik A, et al.
Source: CHEMICAL ENGINEERING JOURNAL Volume: 138 Issue: 1-3
Pages: 608-615 Published: MAY 1 2008
Abstract:
The effect is studied of some crucial process parameters on the properties of
YSZ nanoparticles produced for solid oxide fuel cell (SOFC) components by a sol-gel
method using sucrose and pectin as precursors. The role of the new organic
precursors in the chemical process is also discussed. The produced particles
are characterized in various ways: by differential thermal analysis (DTA), by
nitrogen adsorption using the BET isotherm, by X-ray diffraction (XRD), and by
transmission electron microscopy (TEM). The DTA profiles of the gel are
compared with those of pure sucrose in the same temperature interval, and
substantial differences are seen. The XRD signature from the nanoparticles is
one of cubic YSZ and no other crystalline phases. The analyses indicate a
significant influence of calcination temperature on the particle size, which
increases with increasing calcination temperature. The mean particle size calculated
from the BET analyses, on the one hand, and the mean crystallite size from the
XRD analyses calculated using the Scherrer formula, on the other, agree in
terms of both order-of-magnitude and trend. (C) 2007 Elsevier B.V. All rights reserved.
Experimental
investigation of the performance of a large-scale scrubber operating at
elevated pressure on live natural gas
Author(s): Austrheim T, Gjertsen LH, Hoffmann AC
Source: FUEL Volume: 87 Issue: 7
Pages: 1281-1288
Published: JUN 2008
Abstract:
Experimental results for the performance of a near-full-scale natural gas
scrubber operating on a live natural gas system at high pressure are given in
this article. The scrubber configuration has three types of internals in
series: an inlet vane, a mist-mat and an axial cyclone bank. The variations
with pressure of the fluid properties of the natural gas system are calculated
and given, and the performances of the over-all scrubber and of the individual
internals at a range of gas and liquid flows and at three different pressures
up to 113 barg are shown. The results show that beyond a Souders-Brown K-value
of 0.15 m/s, the primary separation efficiency breaks down and that beyond this
value of K, the scrubber relies on the cyclones for satisfactory separation.
However, at a K-value of 0.26 m/s, the cyclone separation efficiency was poor
at high pressure and decreased with increasing pressure. The liquid
distribution to the cyclones was highly non-uniform, the outer cyclones
receiving much more liquid than the inner ones. (c) 2007 Elsevier Ltd. All rights reserved.
Subatomic large collaborations:
Measurements of
partial branching fractions for (B)over-bar -> X(u)l(nu)over-bar and
determination of vertical bar V-ub vertical bar
Author(s): Aubert B, Bona M, Boutigny D, et al.
Source: PHYSICAL REVIEW LETTERS
Volume: 100 Issue: 17 Article Number: 171802
Published: MAY 2 2008
Abstract:
We present partial branching fractions for inclusive charmless semileptonic B
decays (B) over bar -> X(u)l (nu) over bar, and the determination of the
Cabibbo-Kobayashi-Maskawa matrix element vertical bar V-ub vertical bar. The
analysis is based on a sample of 383 x 10(6) gamma(4S) decays into B (B) over
bar pairs collected with the BABAR detector at the SLAC PEP-II e(+)e(-) storage
rings. We select events using the invariant mass M-X of the hadronic system,
the invariant mass squared, q(2), of the lepton and neutrino pair, the
kinematic variable P+, or one of their combinations. We then determine partial
branching fractions in limited regions of phase space: Delta B = (1.18 +/-
0.09(stat) +/- 0.07(syst) +/- 0.01(theor)) x 10(-3) (M-X < 1.55 GeV/c(2)),
Delta B = (0.95 +/- 0.10(stat) +/- 0.08(syst) +/- 0.01(theor)) x 10(-3) (P+
< 0.66 GeV/c), and Delta B = (0.81 +/- 0.08(stat) +/- 0.07(syst) +/-
0.02(theor)) x 10(-3) (M-X < 1.7 GeV/c(2), q(2) > 8 GeV2/c(4)).
Corresponding values of vertical bar V-ub vertical bar are extracted using
several theoretical calculations.
Observation of
tree-level B decays with s(s)over-bar production from gluon radiation
Author(s): Aubert B, Bona M, Boutigny D, et al.
Source: PHYSICAL REVIEW LETTERS
Volume: 100 Issue: 17 Article Number: 171803
Published: MAY 2 2008
Abstract:
We report on our search for decays proceeding via a tree-level b -> c quark
transition in which a gluon radiates into an s (s) over bar pair. We present observations
of the decays B--> D-s(*)K-+(-) pi(-) and (B) over bar (0) ->
(Ds+KS0)pi(-) and evidence for B--> D-s(+) K- K- and set upper limits on the
branching fractions for (B) over bar (0) -> (Ds*+KS0) pi(-) and B- ->
Ds*+K- K- using 383 x 10(6) gamma(4S)-> B (B) over bar events collected by
the BABAR detector at SLAC. We present evidence that the invariant mass
distributions of Ds(*)+K- pairs from B- -> D-s(*)K-+(-)pi(-) decays are
inconsistent with the phase-space model, suggesting the presence of charm
resonances lying below the D-s(*)(+) K- threshold.
Measurement of the
branching fractions of exclusive (B)over-bar -> D-(*)(pi)l(-)(nu)over-bar(l)
decays in events with a fully reconstructed b meson
Author(s): Aubert B, Bona M, Karyotakis Y, et al.
Source: PHYSICAL REVIEW LETTERS
Volume: 100 Issue: 15 Article Number: 151802
Published: APR 18 2008
Abstract: We
report a measurement of the branching fractions for (B) over bar ->
D-(*)(pi)center dot(-)(nu) over bar (center dot) decays based on 341.1 fb(-1)
of data collected at the Upsilon(4S) resonance with the BABAR detector at the
SLAC PEP-II e(+)e(-) storage rings. Events are tagged by fully reconstructing
one of the B mesons in a hadronic decay mode.
Time-dependent Dalitz
plot analysis of B-0 ->(DK0)-K--/+pi(+/-) decays
Author(s): Aubert B, Bona M, Karyotakis Y, et al.
Source: PHYSICAL REVIEW D Volume: 77 Issue: 7
Article Number: 071102 Published: APR 2008
Abstract:
We present for the first time a measurement of the weak phase 2 beta+gamma
obtained from a time-dependent Dalitz plot analysis of B-0
->(DK0)-K--/+pi(+/-) decays. Using a sample of approximately 347x10(6) B (B)
over bar pairs collected by the BABAR detector at the PEP-II asymmetric-energy
storage rings and assuming the ratio r of the b -> u and b -> c decay
amplitudes to be 0.3, we obtain 2 beta+gamma=(83 +/- 53 +/- 20)degrees and the
equivalent solution at +180 degrees. The magnitudes and phases for the
resonances associated with the b -> c transitions are also extracted from
the fit.
Heavy-ion
collisions at the LHC-Last call for predictions
Author(s): Armesto N, Borghini N, Jeon S, et al.
Source: JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS
Volume: 35 Issue: 5 Article Number: 054001
Published: MAY 2008
Abstract:
This writeup is a compilation of the predictions for the forthcoming Heavy Ion
Program at the Large Hadron Collider, as presented at the CERN Theory Institute
'Heavy Ion Collisions at the LHC - Last Call for Predictions', held from 14th
May to 10th June 2007.
Real time global
tests of the ALICE High Level Trigger data transport framework
Author(s): Becker B, Chattopadhyay S, Cicalo C, et al.
Source: IEEE TRANSACTIONS ON NUCLEAR SCIENCE
Volume: 55 Issue: 2 Pages: 703-709
Published: APR 2008
Abstract:
The High Level Trigger (HLT) system of the ALICE experiment is an online event
filter and trigger system designed for input bandwidths of up to 25 GB/s at
event rates of up to 1 kHz. The system is designed as a scalable PC cluster,
implementing several hundred nodes. The transport of data in the system is
handled by an object-oriented data flow framework operating on the basis of the
publisher-subscriber principle, being designed fully pipelined with lowest
processing overhead and communication latency in the cluster. In this paper, we
report the latest measurements where this framework has been operated on five
different sites over a global north-south link extending more than 10,000 km,
processing a "real-time" data flow.
------------99tv06Q0G79G6zngvXP3HP
Content-Disposition: inline; filename=image002.jpg
Content-Type: image/jpeg; name=image002.jpg
Content-Location: http://web.ift.uib.no/~janp/IFT08/posten_uke21-filer/image002.jpg
Content-Transfer-Encoding: Base64
/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkS
Ew8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJ
CQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIy
MjIyMjIyMjIyMjIyMjL/wAARCABYAZkDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEA
AAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIh
MUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6
Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZ
mqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx
8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREA
AgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAV
YnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hp
anN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPE
xcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDG
ooor3T44KKKQkCgBaKsJp97Iu6OyuXHqsLH+lNlsruBd01rPGvXLxMo/UUrofLLs
Q0UgOehzS0xBRRRQAUUce1GRQAd6KMj2pMj2oAWijIoyPUUAFFJkUuR7UAFFGR6i
jIoAKKMj2oyPagAooyKMigAoozRkeooAKKMik49aAHZ5pQxpmfcUZ96LAShqcGqH
I9aXd79KVguThvxpwNVw49aeGHrSHcmBpQ1Qhx604OPWiwybdS7qiDD1pQ3vSsBM
GpwIqHcPWlDe9KwE4PvzShveoQ3uKdvoGShv8+lODDNQhqcGpATBqUNUIb3/AFpw
f3osBMGNLmog3uKUNmlYZMCKdmoQ3vShuOtICbNLz7VEGpdw9RQKxz1Haj+daOi6
YNSvD5xZbWEb52Uc47KPcngVs3ZXYoxcnZDtM0WS+iN1M5gskbBkxlnPog/iNbVn
cWdvfWVrp9tHEl0hKTuN8zHJCgk8LkjtmonuJ9SlU6d5tpqNkWEdnnA8sdk/2h39
eay7vVluJrOeO3S2uYGyxXlSc5BC9vpWNnLc6U401df8P/kbEF1dz6xcRS3T+ULc
uN8zFFcY5JXHSmpcX8fieWyjvLmGBW+RZH3A8cDLZ4J6H3rZHgjU7yWSVdaQxfdG
1COG5I9O9VbvwlqGiW9zeS6tE8MMO4AxklgD8o54yDWSnB6XN3SqpXs9730/zMwS
Wes3NxBd6eY2iUs1zAArpjg716Ng/SsfUdLm04xuWSa2lGYbiM5Rx/Q+1PW+MmnN
ZwxObu6mzNJnJk9FH4/nxW5bfZdPsBpmplFZlL3EA/gHY+0gznHpxWusNvuOe0ai
1+/9DkqKtalYvpt/JbOwYDDI46Oh5DD6iqtbJ3V0czTTszStM/ZkwZPwQEdamw3r
J/37FV7XZ9nXIXPPVjU37v8A2P8Avo1m1qWth2G/6af9+hR83rJ/37FN/d/7H/fR
o/d/7H/fRosA75vWT/v2KMN6yf8AfoU393/sf99Gj93/ALH/AH0aLAO+b1k/79ij
5vWT/v0Kb+7/ANj/AL6NH7v/AGP++jRYB2G9ZP8Av2KPm9ZP+/Ypv7v/AGP++jR+
7/2P++jRYB3zesn/AH6FGG9ZP+/Ypv7v/Y/76NH7v/Y/76NFgHfN6yf9+xRhv+mn
/fsU393/ALH/AH0aP3f+x/30aLAOw3rJ/wB+1ow3/TT/AL9im/u/9j/vo0fu/VP+
+jRYB3zesn/fsUc/9NP+/Qpv7v8A2P8Avo0fu/8AY/76NFgHYb1k/wC/Yow3/TT/
AL9im/u/9j/vo0fu/wDY/wC+jRYY7B9ZP+/Yow3/AE0/79rTf3f+x/30aP3f+x/3
0aLCHYb/AKaf9+1o+f1k/wC/Ypv7v/Y/76NH7v8A2P8Avo0WAf8AN6y/9+1pfn9Z
f+/a1H+7/wBj/vo0fu/9j/vo0WAl+f1l/wC/a0o3+sv/AH7Wof3fqn/fRpcp/sf9
9GlYZL8/rL/37Wl+b+9L/wB+1qLKeif99Gl+T/Y/76NFgJPn/vS/9+1oy396T/v2
Kj+T/Y/76NGU9E/76NFgJfn/AL0v/fApcv8A35f++BUX7v0T/vo0fJ6J/wB9GiwE
uX/vS/8AfApcuP4pf++BUWU/2P8Avo0uU/2P++jRYCTL8fPL/wB8Cly/96X67BUX
yf7H/fRpfk/2P++jSsBLl/70v/fAoy3Zpf8AvgVFlP8AY/76NLlP9j/vo0DJdz5+
9L/3wKT95/el/wC+BTMp/s/99Gk/d/7P/fRosFzBrpIXstO0mxtb2S4iFz/pMrwd
T2QH2xzXNHoa6/U9wvpYINWs4RGVj8i4TptUAHoe1VU3SHR0TZm63e5EEaQwLhcp
cxyl5HU8fMf6Vk2cfm31vFgHfIq4PfJp+o+QdQmNtjyc/Lt6dOce2c1Y0BlXxBYF
8bRMp57800rR0Jb56mvc9dj+028zGGCRvJRgFVvkfJGD9arapZy3VpeRyJO3mo7E
yMMLleFA9M1cSa4a2laERw3L7ljZlO0MDgbvbFPllkt0QyDceVkcDpgc49cmvMvZ
n0DScbPY8KBIwQSD19MVuaXZWWqiaW9lulZAZJ7jcu0DPGc8kmsi5ZGupmTJQu20
nuM8VY05Emkkt5ZRGsifLvbapcdM+w5r1JarQ+ehZSs9TRvmt7/QhLbGQjT5vKUy
43mFvu5x6HisKuli/sz7PqltYsSv2RiWJz5mzB3e3Nc1Sp9UVWWzNK03fZkwHxz0
xWjJp91HpkOoMrfZ5XKKQRnI68VjwTRrCoJhz/tE5rqb6ZF+HWluTDj7VL3OOpqZ
tpr1HTipJ36L/Iw/m/uyfpR8392T9K3h4RmSWBLm+06Dz0V4t8py2R0xVWDw7dya
1dabKbSF7RDJO7O21U45/UVPtI9y3RqLoZnzddsn6UsaSSuEjjmd2OAqgEmtD+zL
SPUrCOLUdPuYp5gpZXYYx1yD61taxYHTPHVmmlyWUU00gEMeSdhx/EPehzV7IcaM
rXfdL7zlXSSNykkcqODgqQAQab8392T9K7HStNGrP4il1CSya7XKF2YgIw/i9hXL
S6c0OkNqXmWrQC4NvkM3LYzn6URmm7CnRlFKXR3/AAIPm/uyfpSZb+7Jj14rUsdI
zcaPLNJaCG+k+Xcx6A85ro00KyHxDa3LWLW7BpBbhuV+UcEeueaTqRRUMPOS+aX3
nEfN/dk/StOw0K/1CxmvIgqQRHBaVwuTjOB61S1iKLT9WuLYTWjhW4Mbkge1dTb2
CXXw3T/S7OMfaDLl5CF4B+X/AHqJysk11FSpc0pJ9EzkAWxnbJ+lLlv7r/kK1rTw
8JbG1uby/sbMXYzbpIzZcevtSxeFdRl1qTSytqsyKWzvOGHXIp88e5Psp6abmPlv
7sn6Vo6Xot9q4ma2UKkQBd5nCqM9s0apoc2meSGlspncEsIpC2w+ldB4d0trnwbq
0RmtYjO6/ec4XH970pTnaN0VSpqVTkl0v+RyDq8cjIyvlSQcY6im5b+7J+Qq/Pod
zBpaagfszRPMYQA5ySM8/pUj+HL5V04qtsxvv9WA54+tVzLuZcr/AK89jNyx/hk/
SpPIuPLjkaCcRyHarFQAT9a1NQ8NixhkYX9hLNEcPErMCD7etTXKasfDelJM1s1j
5/7pATuUg9z+dLnWliuS11LoZWoafdaZePaXKMJUxnaQRzzSw6ddXFhc3saMYbfH
mHIB59BXSeJtGuNU8Wai8Zt44YY1eSWViAo2j9araTC48F66oWMksmACcHkVKneK
fXT8TR0oqo4vbW3yOa+b+7J+lGW/uyfpV3UdEutMECzi286VA5jDnKA9M+9Jpmi3
eq3n2eFLZcAs7s5AVR1JrTmVrmFnzcnUpZb+7J+lLlv7sn6VsXnhmSGwkvbS6sru
GE4l2MwKZ749Kkt/CV1Np8V1LcWNu04zDHJIQX9Knnja9y/ZTva3mYWX/uyfkKMt
/dk/Sr2raJd6PeC1nW3ZzGHyrnv2/Stzw3oMV/4f1Z5vsaTEosTOx/d46k+gOaHN
KPMEKblN0+uv4HLfP/dk/SrNjZXOo3kdrboxlk6biAKu2HhuW6s2vLi4s7W2DlFd
2Y7j7CtTQtFudI8Z2CSm3eNwXjliYkMpHUUpTSTtuVTpOTjfZ2/E5mRJIpnjZZNy
MVPI6jim5b0k/StS70S6kjv9Sf7PHAty6JuY5kbcelPtPCt1cafb3zzWMFvKxBaS
Qjbg4p88bak8km7L1+RkfMf4ZP0pfm/uyfpWne+GL6z1K2s0W1mNzgwurnDirb+D
5dssdte2M91CpZ4EdsjHXB70c8RqlO7VtjMXT7ptLbUQjfZ1l8onIzuxnpVX5v7s
n5Cuihhb/hXVwu2LP28HG44+6Kii8Iy7IRc3tlb3Eyho4Xc5OemT2pKa1uU6d7cn
ZMwst6SfpS/N/dk/StO08M31zqk9iVtomt8mZ2c4QetT3fhS4t7C4vknsp7aHA3R
uTnJxj2p88b2uSqc2ua39LcyXhnjRJJIZ0SQZRioAP0pmW64k/StvWY9TfSdJS8e
2eARZgVSQVHTn9KxPs0n9yL/AL6NEXdEVHGMrXF+b0k/Skw392T9KX7NJ/diH/Aj
S/Z3/uw/99GmRzx7nOt90/StbxGmfEFwyKSJtsijGc5UVlV19pqyQaRZ3zebhALe
V4gC6sn3eT0DLxVzbTTRdKKknFu3X+vvOUuLaa0lMU8bRyAAlW64PSi3l8i6hm/5
5urfkc1rapDd6hB/ar2y20ONscO4ligJ+bnkjJxmtDw74IutbtvtlzL9ks/4XYfM
/uPb3pOpFRvJjjRnKfLTVz0dYkuoZTLIHjl2AAtw6lR0HbNV9blW00K4uzhhHbEA
ng9eBVewj/s+0tYm1PzmhAiiQDIbbnnA5I9ak1LTF1TRLuGa/LC42kBeEQjpj2zX
npJS1eh7jbcHZa2PGRwBTljd0dlRmRBlyBwo966HxJ4Tn0JUuIJftdi//LZR90+h
qpAbvRbVLmS0imgulV0LjcoI6Z9+c4NeiqiavE8F0ZQk4z0sM0ZQIdVmbOFsXT8W
wBWXXSapdqdC8/BE+osoJIClkj6sQPVq5unB3uwqJRtFFuBnEK4MuP8AZArqNQL/
APCuNMP73d9pl7DPU1ykWzyxkJnvkmtKbVXm0K30lkg8iCRpFYM24luuaznG7XqV
TmkpX6r/ACN7xkX/ALZ0vBk4tYegHFaeuazHpPjXVBc201xbXNuInRCARkDkVyGq
axJq11b3E8cCtBGkahS2CF6GrcviY3Or3Go3en2Fw06BGik3FRjHI9+Kz9m7K66H
Q68eaTTtdr8maN5Y6Y+n6dq2lxXkCveLC8UpVuhHNXr8sPixbj95j7RH0Ax0rndR
8RPfW1tbRWtnZ29vJ5qRQbsbvU1Ld+KZLvV7PVGsrJLu2YOXQsPNI/vUckvzB1af
Tunt23N60LGTxj/rOEfGQPU9KynL/wDCuY+Zc/2h6DP3apWXiWayvr65NvaTJfAi
eGQttbJzRY+JDZ2txZvYWNxZTS+b9nl3bUb/AGaOSS6dg9rBq1+jX3u5sTlzpPhP
/Wf6w54H97vVy33f8LbuPv7fMbsMf6sVy+peIJtRuLSQQ2tvHZ48iGLIVOc1Ym8V
TSa5Bq8dnZQ3cWd7JuxKSMZb8KXs5W26MarU7rXZx/BWMy9Mn2+4x52PNbsvrXQP
v/4Vmv8ArN3270Ga5/Ur6LUb17kWttbF+THEWxn1qU6vIdBGkbIPs4m87dlt2a0c
W0jCM4xctd0zZ8TF/sfh3Hm5+xjOAP71dfbsT4zYZbIshnj/AGa4W28U+XZW1rda
Zp96LUYheYNuUenFLbeK7qPxBLqsggaWZDGw5wq4xxWTpyatbube2ppqV+qf3Icd
2Wxv6nsK39Mz/wAIlrGd3306gVzvyn+7+Zq7b6k9tpt1YosZjuCCxJORj0q5JtHn
UaihJt9n+KNO5Lf8IPZ/f/4/G7D+6at3921jZ+HbrYzeUpYr61n6fqV5Y6OynT4b
qwaQkeapKh60PEF4yW+iXE0URlEZcwsMLg9Bj0rKz5rebOyMl7NzTs0o/g1qMkTS
datdQuLW2ube6hQzEswIbJ6VHeFv+ET0U/Nn7Qc9KpzeIN1nPb22n2VqJxtkaLOS
PSqkupvLp1rYlIhHbOXQgnJPvVKDM516euurXRW1vf8AI7PxSrXFnex2JIkikV7q
NR8zrt4P0FZ/hKWCLS76S7UmFZELbgPXg/nWMfEV1/bbaooiWVxtdMnawxjB9qgX
VmSzvbSOGFIrtgzAE/L7CpVN8vKayxdN1/bLz0/L/g/eSa9DdwazcfaneR3O5ZFx
hlPTFWvDJbztRzv/AOPOTqBVC41WS706CznSJ/IP7uXJ3Aen0pmm6jJpd358IjYl
SrK+SGB7GrcW42OVVIRrqaeho6Tn/hHNe+9ny4uw/vGpPEefI0XG/wD49BjA75qr
da951hLZwWVpaQykGXys5fFWo9WvrfT7OCfTIJlCj7LLLGSQO2Kmzve39WNVOm4e
zT6b2/vX/UTxaW/teH7/APx6xZ4+tLouf+Eb17O77kfUe5pPGJzribyu8W8Yb2PO
aoaZq7aYlxGIIJ4bgASRyZwcdKaTdNWCc4wxUnJ6ar700a8Qsj4Qsv7QNyF8+Tb5
QGc+9WLHULa98R6RHZiYRW8RjzIBk1h2etta2slo9pa3Nq77xFLnCn2pV1xo9Tgv
oLS1hMIwsSZC/Wk4PX5lRxMFyu/a+munmavipXmgt7m0ZjYIWjMaD/VyZOc+5qtf
5PgzSfv/AOtl7D1qhbazLbLeRlIpIbvJkjcnAJOcj3qKbUnn0u209ljEVuzMpBOT
k55pqDVl2InXpycpX1krW87r8LI6WLd9p8J/e+4M8fzqnoJb/hKrv73/AC37fWsp
tZnYaft8tGsVxEwzz9auP4mf988Gn2VvcTKVeaMHcc9aThK1rFrEUnJSb2af4Jfo
SxE/8IJP9/P24dh/dFP8QE/8JFZfe+5B2+lYy6k66O+m7Y/KaXzS2TnOMVox+JmA
gaews7ieFQqTSA7hjpT5WnexCrU5QUW7aL8L/wCZsSE/2h4q+9xCcfkKztN3Hwdr
HD/fjxx71V03VNR/tK7voIFuXkQm4TaSCvvWob03ng/VGNrDaw70WNIlKgnIJ+tQ
046ehvGcKl5J9J/jcra6W/sbRcbv9R2xWDub/bx9BVi71N721tIJEjCWybEIJyR7
1T49F/M1rFWVmcNeopz5l2X5Iky3+3+Qoy/+3+QpnH+z+Zo+T/Z/WqsZXOSrU0PU
Y7O4eC6J+x3ACycZ2MD8r49j+lZf50Guhq6szpjJxd0dXew6hfauLKWQxwBTLLOS
CvlkclT/AHSB0962Ydeex1C30qaCS5sYwS1sjBnhwSArnoQAM4965LT9ZWO1FhqC
PNZg5RkOJIf909x7GtYWMl2mqSWk8V1HfEP5sIwyndkqydQD7ZrmlDpLY7adT7UN
/wCtDvU1vQHmEkdzFbXar0MeGwexwORVO+8T6HBMs8rGeWAlsWylwCeMsOMfjXDW
8cdtrV1ErSm2itWjiMzeWT04BbGO+KZp8t7H4gla3aQC4Qq7IvmgZHGcDDEVmqEd
7nQ8ZNpKy3NXVvEv9oXxtrhEtrKaMOiR5dZGJ4LgYz0PTvWbp1lcWV5NGLlf7MMW
+5kkTCqp/wBk9H7Cpb60iZbafVfJ01oAQY7ZsyS85GF/h5z1x1rI1XWX1BVt4k8m
zjOVj3bix/vO3c1tCOlonLUm+bmnv07/APDEOq6h/aN6ZVTy4EURwR/3EHQVSoor
dKysjjbcndluHd5QwsmPYjFP+b+7L+a1DEUEYBMGf9oNn9Kfuj/vWv5NUNajH/N/
dl/MUfN/dl/MUzdH/etfyajdH/etfyagCT5v7sv5rSfN/dl/MUzdH/etfyajdH/e
tfyagB/zf3Zf0o+b+7L+Ypm6P+9a/k1G6P8AvWv5NSAf8/8Adl/MUvzf3ZfzFR7o
/wC9a/k1G6P1tfyamA/5v7sv5ij5v7sv5imbk/vWv5NRuj9bX8mpWAf8392X8xR8
392X8xTN0fra/k1G6P1tfyaiwGvZTNJFtYPuXjkirPzejfmKw4J0hmVw1sOxwGrV
+02//PWD9alownGz0NWy1jUdOQpazyIh5KEBlz64NQXd5dX05nuZJJZDxkkVR+02
/wDz1g/DNH2m3/56wfrU8qvewOc3HlbdvUn+b0b8xR83o35ioPtNt/z1g/Wj7Tbf
89YP1p2I1J/m9G/MUfN6N+YqD7Tb/wDPWD8zR9pt/wDnrB+tFg1J/m9G/Sj5vRvz
FQfarf8A56wfrS/abf8A56wfrRYNSb5vRvzFaVtr+q2cIhgupFjHQEK2PpnpWP8A
arf/AJ6wfrSfabb/AJ6wfrScb7ouE5wd4totTTSzytLK0jyNyzMRk0z5vRvzFQ/a
bf8A56wfrSfabf8A56wfmadidXqyf5vRvzFKoZiByMnuRUH2m3/56wfrSfabf/nr
B+ZosLU0v7OuPVf++v8A61H9nXHqv/fQ/wAKsWV/BPbj99GWXg4NWPtEP/PWP86i
7OlUotXM/wDs649V/wC+h/hR/Z1x6r/31/8AWrQ+0Q/89E/Oj7RD/wA9E/Oi7H7G
Jn/2dceq/wDfQ/wo/s649V/76/8ArVofaIf+eqfnR9oh/wCeqfnRdh7GJWtE1Gxl
821nMT4xlW6/Xipr6bVtSVVu7neq8hQQB+QFSfaIf+eqfnSfaIf+eifnS63sWotR
5U3b1M/+z7j1H/fX/wBal/s+49V/76q/9oh/56x/nS/aIf8Anqn507sj2MTP/s+f
1X/vqnf2dN6p/wB9f/Wq99ohH/LVPzpfPg/57J+dF2P2MTI8b+Dm0Kc31kCdPlb7
v/PI+n0rjs0UVeGm507s6cdSjTrNRD6UqSPE4eN2Rv7ynBooroOM0U8QavGmxdQm
2+hwf5imy69q06bJNQnI9AQP5UUVPJHsX7Sdt2Z5LM25iWY92OT+dFFFUQFFFFAB
RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAnNGKKKADFGKKKAFx/kUmKKKQBil
xRRQAYpMUUUALijA9KKKAExRiiigLBilxRRQBa0+YQ3IDfdfg1t/lRRWdRam9F3Q
Y+lH5flRRUI2Cl/z0oopBYSjH0oooCwY+lH5flRRQAuKKKKaVwsf/9k=
------------99tv06Q0G79G6zngvXP3HP
Content-Disposition: inline; filename=image004.jpg
Content-Type: image/jpeg; name=image004.jpg
Content-Location: http://web.ift.uib.no/~janp/IFT08/posten_uke21-filer/image004.jpg
Content-Transfer-Encoding: Base64
/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkS
Ew8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJ
CQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIy
MjIyMjIyMjIyMjIyMjL/wAARCABYAM4DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEA
AAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIh
MUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6
Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZ
mqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx
8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREA
AgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAV
YnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hp
anN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPE
xcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwCa
CyjeUxRzLLcNvWKCJslgMkY9wAc0huraxlSa4u7e0lnGdkzfKCDzj3HArttek0/Q
tKsdRt9MhWVk8sSw2+5l7Y46AjNefeKNA1XxBpujNpfh24dkiuEePbyPmX5mJ7nt
UWvPlOf2Whq75msBeQpEzNjBA+VgRxz79qdJYXsiiV28ssgc7Twpx0+vNX/D2geJ
fsRtZ7Y6fttljzOA8bYGAm0deec9sVS1Hw74yl04AaRDD5TF5ityAGAHUfXFYSnN
R92N2HsiQW6RW6GSd9ygqUUZIq5FcLHvhlImgA2GTq2fQ+/NYlyqjQo9SdGN2IN0
kAzuifBIHuDyR9DU/h25utU0xbiOWLazHzG6YY/zwCKrWyTJ5TutE0bT5rDzpo2l
ZpGQl2yMDoKyb63sUt5fLZVXaTsC4PHvVX7Tf+H7G4ms1N9bxo8rQ7+HY8H9Ofwr
M0O5k1Xw3bidZRJKhjmkc4xkZ49sYGa2VSKVmU0rFzMrMpLqVyeeOPT8KXzGQOPM
G5eF9zW7oHh+yk0r7WrB2nLMrOvMYXI24/DNVrnR2uhGsMduJhyu2TGTjvVKF0Lk
ZUhukkGCwDEHIJ5qwpR3XO04Xdg8Ypkfhm9+TLQiQjjDZ4PH5ipx4cvUlWFVmlkw
XbC4Qe2/ufaocGmJQbZZkYQ6eTLZOJyCdzDn1BFTLZwSjHmTQsY8qZY8BiACce2D
VS90PX1sD/Z9vYm7yABdScYPUcfpUOot4wWzt21m58PWBaVYYWzIxaRuAOB1NWmb
chpHTroXPkmEs20kMOhAweKhaGWLaJEKlvu5HWtyGxvkntzPeO92kZJIH7vPAOPY
1U1LS7x5cw3itcR5kClOAWPp9RTuKVPsZoLeZtYFGHbFODkA9wO+Kv39lNdxAIHk
upIgs0iYBikxwwHpnPFTxRXB06WLyN07Ao77MbmA447VRPsjKz8vOfb2rnvF+o3N
jb20UBaOaSTBJ7HBxn9TXbyWf22NLlYys7FUPynC49K858Z6J4k8QeIftEWizvGE
VEkjwoYLn72T1yfyrGs3yaDVOz1Os0GK5m0bTTcLOGkgBaR1yxx3I962RaxljuWd
/mzxHjFS+Df7WHh2CLWbM2txCBEqtIHZlUABiR3PPFb+KqLaRcYJHOfY1bKrZ3Tg
cDJCj8KwfHfhfUfElnp9tpsTIYDljO+IwMY6dST6+1d7HFsYnJP40jzqsmzkkDtV
XZSSXQ4PQ/BEOnaRa297p2n3N9HFsluDGW3/ADHA59sVpS6Tb2Efmf2bZIGbGI7N
P8K6bzlACtyazdZtzqVrHEkzwYffuHXoRiptcdzYMKYACrgdtvFOwayItea4iEtv
p1xIhPysSqhh68mspfGc010kEWjTAMyAu8qgBWOM0roVzT0HQo/D8FzDBPNcLc3U
l0zTHJUuc7R7DtWjcRG4tpYHJRZUKEocMARjg+tS5xnj8fWquo3b2em3V1HF5rwQ
vII843EDOM9qduwHKn4ZaI9q9vLc6lIJGBZ3uSWOBgc1Jb/DbQrRVRHvDGowqGbC
r64A9azdA+JN9rt1bImhpDFJcRQO/wBqDFA4YhsY5+7XoJ5GKFZiaR5V8UNLh8Oe
CEm0yWeGQTpbZZ8jY/3s5+nWuP8AAd/u0u7gebfB18px09cHqeB0r0T4zsI/h3JI
UDhLuA7T3+b/AOvXjHh7WZdMmhWO1ggmVxucjLSA9j6cZrCtpG8UY1Ek0e0eHbie
71eCGzmMW2J5CkyHDJ0z+bD8jW8/hOXBaDUWglI4dYwdvriuX8A6yNV1OUxki58l
ghdPlMYYZI9eeK7W7uNUgeEJLbMJJCpJQ8AKT6+oFaUp3jdG0dh1roSQ/Z3nnMs8
BUrJt2nA7Ee9a/HSvO77xZr0TyLHNp4KQSSEBCTlASR19qpv4t8QNdSRrfWyhJNv
EI6EZFW5NlHetoNi+qHUWEpuC4f752ggDt/wEVPqGl2WqJAl5AsqwTLcRg/wyKcq
34VzvhW+1DWvD9td32pOLmV5UxHGqgkMQOMdgKsa3Hd2ek311HqV2ZLa1eVV4ALq
pIzx3pJgdNjnPWmhF8xn2DceCcelchb2V42k3M82sXzmW1SRD5mPLYjccYHvj8Ko
2tneS+MbjTm1fUJLaCG3uNjS9d5k3DPpwPypgd8FVSSAAT1I707I9f1rKGkWeEz5
rZPeZjUMmiae0qOYScMRzK3c/WmBs716bhn0zTDcQp96ZF78sK4m8srW9ttRuY7E
29/bXIs4sSnDBGDbh7EE/lXH6kLqLU54bdpmXzbYIoBIAa7KtzjoU4PtQx2PYhqV
ipI+2W+e48wUPqVkgBe7gUE4BLgc15h4w0mK1v7aKxgdEQ2afIucg3HOfwzn2rQv
X/taXxE7W3lrFCsESAfKdkrjeOOpwPwqXcR28uv6TAcS6jbJj1cVFd6vAkcc0IE6
SAMpVgBt/vAmuDm04v4U8Q3E0BaSNbwQKy5Yqy4GB1+ldVpcSx+GdHWTbEy2MK4k
4wQgz+NMQn9vyvMwawjCIPvicHk+2Ky5PHejXDtHDfaY7Rn5jJdYAPPHA61qLd2E
V0Fe6t0YckA8149ptvaLcSGPTI3JDMTlATlj+nFIbv2PUdCv7fXNInstKu4rmKNW
ijk3Ydl6byD05JA9Rg1em0K7lVkVBEpVF3A9Nveub8PX+p2Om2h0m30lYLiGJkZo
njcjcI8MOvHrWnYeJ/FF24X7Fo7EPtYfaGVsBsFgCORiojayuLQ7Ytk57VV1EBtL
vAzJtMDgl+mNp6+1TnGTioL5lFhcl9hUQuW3LuGAO471qI8e8JS202oQy28cCp/a
Ni6oibDGPLZSR/eHT869s714to3jq7vtesorfT9H+wvqFtbo6W2xykoLbh6EYxXs
5yCcYqIjucB8aFVvhrdF2CqLmA5xn+MV876c0qwFisZGc7pH5J44H5V9FfGOKS4+
Gt7FDG0khngwqgkk7x2r56h0PUFVHj0y+mPQEW5+X19qp2tYxrRuj1T4W3LDxPm6
ISNrOWQqBwg3LhF9hknHvXrbalog3+ZdIPLALb2I2Z9fSvGfhqbvTvGUVzqFvLY2
wsZUL3Pygvlcde+B0r1fUIU1fTr6K3vbTF4ibZBIDtwR19elZ01yqxpT+BE8+o+F
raUxzz2McrDcQ+AxBpo1Twk8jIt1ppc9QGXJxWdqGhz6rrf2qaS0cxRyoFC87HXC
Zz3Hesf/AIQbUUvRdeXaOnnLJsHUADB/HvV2ZZ2EWoeHWCtDeWeEyy+XIMDPXGKm
S80Wfeq3du+MhwJQevY1jeF9DbQ7BLa5tIzL5kh3ogICliRk+uDVnSrWOw1fV5J7
dFW/u/Ph2x5LqsaqSfxBo1QGn5mkEDE8AB4A8zAxQk2jnDJcW+SMbg4yfbNV5r6K
1kna5sFSzhiVxcED5yTgrt68cH8arRa5oc93aWixxNJPnaBEMKQAeTjg1MqkYy5W
9QNVJ9LA2rcW5/7aj/GhpdMAIM1vjr/rB/jWNBBYxavJJFpMbRtatItztXY7bz+7
x6nrWa8Z1eXQLufRY7cTWszXUbKMW7ELtVvU54qwOpVtKdxiW1Z1/wCmgNTBrHZl
Wt8Z6hhXOX3h7R7uxW1srS0jSG6jlkZVC5Cne3PWsTQxpn/CXamkgtio08BVVQIm
G5juUH+LBwfpUSqKLswud8hsQWCyQ5PLYcH8+aUfYXKlXgOOmHFcZ4bsLOy0XTYx
pdm80u1JWY/MqsGPP4AAVb8QeH9LttJupodOhWRgiLsU5454xVXuB1G2w3bswE9c
7hWdqlktzJwT5e0cKcjFM/4RXQ5FCvpcH3VB6jr+NM1OG4jjS2smNvDEqqvlvg4x
0qgKCaJGspGyTBOa8lt9AhjEqyXUDMWyArDgZbHOfevTU03UBNIxvLlt2Aoe4JAG
D2rx7RtN1K4t2DRxMuSwxGpP3mGajWwHrGuMug+HbWS5fOoRW8cfkk7mVSwOSRwc
Muc+1Yltr01v4bTWbTyDd7yjA8sMsBlvY4J/KuH1bUFaGytbjVtRlijXc6NKS0TD
A28jNQx6nHHEyvJ5yFCipCRkDPXHcjj8TXmV5z5rw9DmlWSbSPddB8UwayrK4ERj
iWRnLYD5OMgemRW1ft5emXjjnEEhx6/KeK8K0XUo5rgmCV5JHh8z9zzJvzk8NwO/
Hqa9sjuRdaAZ7VslrUlQSCVbZkBveunCVp1E1PobRd1c8F8H2txAdGaWGUMdTsJS
ChyqgOGJ9gT+tfRePmP1r550Dx/4p1G/06O71VAsl7aRskcCLuR2O4E4/wBmvocn
DN9a64qw+hk+Jb7T9N0Ge71WOWSzj2mRYkLN14OB6GuHb4geD44t8OianJGZFjBM
BUM7DKjk9SOa7bxPb3d54duobBEku22mNZCAuQw657VyFpoHiGaCKO7s7JJE58wy
ghmHfH4US3Hchk+IegQeUq+FbotJGk6CRUG5HbYp5PdiBTE+I8G65W28IAG3ExkD
SoDmIgOB+JFar+ENTvZCbiLTAuU2rknG0gg9OxGam/4V+XjuEaW2UXHmeaUhJyHI
L46dSBRbsF2YU3xF1gW8DW3hayzcvNHEhueT5Qyx4HT0+lOh+IXiS41w6THpmlxS
K5VpTI5XAjDnA79QK31+Htsq2oe9ZDaF2hKpjaXGH6nnI/KmL4I0q3vTef2tJFdM
cmZZEB5AU9fYAUtQJdK8S+JdRsDfHS9PRRJJH5AuGLko2DzjHrVX/hLL2XU7T/RJ
HbzTFGkUgCsW6BiR0HP5Umu3Uvhe0W1tomks53wZlYEs7/ez3BPXI9DXOeHZLiO+
huEj+3TR5nWOGTIbHB5PcdvWvLxdeXtYwi9OoJmj4o8Uy381zp82mTW0kQVUBkw2
T13DoR3BFcpa+If7H8Q2UMEYkW3kEhjD8kMDuIz1wcnPpU2vMNR1C4ubO+aW0SXZ
M82QwdQT5e369vYVyZtWvNYZ0aSOVVCqsZxtQg8sfTAz9Tiue/NVcpMznJp6HtXh
zx5p93pluuoTk3gB8xVtmA4HLcdvet5fE2gyWn2oXkf2Zhv84xnYRnAOcV5R8P3K
TNLbTvN9qjaz37N32WQsSBIO28AYYcV11xaappHhLR9Ok2/ZLawlt9QREDfPsHlk
ewYHmvVozl7O8uhpF3VxPEXj2xs/tFvZRQNEokid/wCLfgHKgdVx39a8ktNa0t9R
ilNm1xcgNIqCQpG5z0z25Gak1TXEF0tukgdp2CRK4CsgcYLMfr2FcnqGnx2cEM1r
dG4t2maB5ANueAehrlhB1p3qadjCc3ex9BfD3XbPXr7V/tjWw1R5d8kUROFRQF4P
Qiu+FnbOoAy2O4bPNfL3hJ0tbxbsqIbeaWLzFBziHd849sjr9K+h4fD+httuLSBk
EhwDFM68AemeK7qTVuVPVGlOalG5snTosn55uf8Abqhqd2tkQqQ+awwDuY8DFVW8
OWhuDIlzqURwo2pePtPHoT1q3d/ZrQIJ5tq7QqlzknA71sWYD65fb5WNlbqqqSpB
ZieDXi4S/m08vBDeqd6ggzBM43cjH1r26fVtK23AWZmKIwO2M4HynvXjuhXS2BeS
+vrW4tygGYXaUhySRkdOm7mpd7DVuoy8fTtW1e7udG2SREBXhdvLblwqEqep5PA7
Lk81m2dmYIgVDCOBzl2A+Y7j932JHesyaeS5Espto1divlGIYywwCcewq5FcKwdY
naGRGUs0inacngY79RzXnVoyt7p5spKRtaPfTWEMsK2sMt3PN5ZZyMsBzhu2Oc5r
todT1Sx1ayjWS3lgl3GWGxGRJGBsJPfgHPr8teYPFMILiKDTJo5Q6NcHBO5ScHHo
uRXR+Hrua31FWSOeOeIsXa3wWK5G0Aeo6H61g21qnqdFKdvdZW0HwT4gguNNuH0i
4VYr61k3OoXEcbtuP6rxX0Y/DkZHWvmzSpNbkvJp9R1S9mjjntvJBuiQpa4UEED1
X1r6RfBduO5r14O5umrGX4juLu10KeWxkjjuN0arJIm8LlwCdvfg15bL4s8Uwahq
tteeI4rZbOeOCF0tUG8vjG4Hp1r03xZbSXfhW/ghtZbqV1XbDDII3Yhh0Y9PX8K4
GLw7qslwXHg8OzndJNqWqKzSen3R1HrTkHUz4r3xLql3Ci+NLvyniLkRKqk4JGQQ
OBSQ2WqXOo38V3r2pTwKsnkH7aV525QcehzW7a+FfGMd2zx2/hu2tCSVtiHk28Y+
8ACeeaztbudQ0m4XTLp9LEmFLyWlqUC56YLHnOMYrGtWVKHMym7K5hanpGPJR/ts
+bhSzNcu/wC78hSc89C+fxqvF4chfxdLK2nzPpySqYs72XaIgB/49n8a67S3udWW
Bn8U3Vo0kqxJFb2sZXLZAGSM5+Un2re1LwvJp9n5r+LdZd0O5UknUKx64woGBUxq
xnT5kwv1PPA/9l2kdjLuhnDsWXdvKhsBRjsB29M81NpryaTd3DaZdSskOW3R/KGU
E547+mO1F/qK3V3GbeCOCJZQkIaQSGQt94s3VgWxx7VDYRQn7XE7osSjieDKv83D
bM+6n5T1zXiOzm3czvqM13VXu7GGQ7ZI7T51swApDt0dmHXbnHPNcudcNpHPAba3
luWOd6lsKeMD3AH4c1q7XjXDRkAxtmZxlVCnLEj1C8AepNc9NYzrHPDHIouHi8+W
SZwDED2x2JG388V24flnfn1MZyZ0nhLUxFrlrrkrs0kUXliCL5QSPlQH+8B1574r
0DU/H2q6f4hjuI4Xm0t4/wB9ayxhXj7YXHJ7Ek8YI9a8ns1uNJt2uXnL6jAI2aMc
CIHsf04q1q81758Ul6XL3Kj98knzuvGUUdunftj2rRTmptR2HGraNiLUrmPWvFry
bY7C1lleZHYbzFxltx75PA7DNUFuLBIvs1nf2zb7tY988ZxIrbgXP91Rgcdc81Hd
NYy3ENg4fMmDIVc7t+T94+w4qpDplpazukW27kCiE+UcgyHnd9AeOPSt42dnLQhS
W7Oii0K81bV7ePTbGGeMyqJII7orE2OCwbqBww+hr6NtdBhtbC3tbaa5t0iQABZN
x6dyev1r5fs43OptYG9jtrqJFWErny5pAcgEjkbhnn1Feg+EY31C8ltjqWp28YtI
JyY7ttwkZ3Vhk544HHtWtNtbm1FpK57G+ly7wU1G4UjsQCDVe901bi4y4aQ4UE/Q
YJrzfQ7zxHPpDXI8WXnmLJMiiSFHX5JCi5454rvtTt7iWFZJr0RwxR7pJt2wfd5Y
/qa15tDXm7Hnl34z0/S9R1zStRiLX1vMyW6Km0NGeOT6gHOe9cevhtYdOG2C5c5Q
LhyuRhuf1H51i3j3er+I2RGeY3QIaVoy58sZIf1xxnjtVyxjF3YsralFeu7hibqR
gV2grxgjjnj8aw53FXfUhTu9Tl1vPtGoSmWAMzne5YngE549OavWxBjA+1Ltyd5O
d69gAOn40UVdVaWOOcVdmj/a2oiH55DHFcfJuLfNgcAfT3966HwdDcXNjdXkMUtz
cLKh2wOMuvOQV6ngYJHqPSiiuPlile3UqirzVy/o/wAO9dtJbhp7qxtUleIkXE+G
/dyiQHHcYGBXsdx4g0WCRzPq1ihB6NMOOaKK7oaLQ7VFWOe8S/ELRtP0G9m03ULW
7v4490MJBKsdwHOO3NeZL8YvF8tzPbx2Gm26xrIRL5DEHaCcDJ74x+NFFMZmTfFv
xzNpFzd/2hbwPDNHGFitgMhgxOc+m2jUdf1W+tLC9vrl7meWKNi+0YmyxBHHTHT6
0UVz4uKfKmZVHoRNqEkjyQbWRtrIqo5Uoynhs/Qfz9aSCO9eGK2vlDTi4Mao07ZR
Qmckk8/NyPWiiuL4VZGUG2Pvr+Gygt0HlNOqhV3N0dukjHsAB27mnaY5Er2iPC8m
wTSHPyFsnLcegAwPeiis+SPsOYTZR1HXVj1S6unkJiFu0VvEvRgeCSOgPU1gTTah
qlgIlhy5JklnbgyjGck9wMfyoor0aUIwgmkSmaVnm2kVcsXeIPctPyvPKg/ofypu
tyoZllmlMewdVYMS3AJz6UUVMIp1EyItuVmZGlX6/wBpJJ5ck8j5UKOr8H8+31qu
gvYpVjVGiI+aUL3IJ5I9qKK6/tnRLR2NbRLY71uba4aO/jkBScEHg8YC92JPFe9e
EZNN8Q7ZbW9ubLVbaER3VnNCnmDGeeQCRnPP9aKKz5nzjpSbujXh8Hy2dr5FtJaN
EWZmTYydTkkYPUnk1yfxMl1bRtQh1qwlmjRbZrW42xmSMkgfMVPGccZPpRRVzScT
WastDyTV5lS8z9pvUu3QN5j/ALscrgkAdBjjHvUOmeGdVv3ZotBuLzcu4hSSF/Lp
1oorCMnGCSOZfEf/2Q==
------------99tv06Q0G79G6zngvXP3HP
Content-Disposition: inline; filename=image006.jpg
Content-Type: image/jpeg; name=image006.jpg
Content-Location: http://web.ift.uib.no/~janp/IFT08/posten_uke21-filer/image006.jpg
Content-Transfer-Encoding: Base64
/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkS
Ew8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJ
CQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIy
MjIyMjIyMjIyMjIyMjL/wAARCAEqAcADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEA
AAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIh
MUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6
Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZ
mqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx
8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREA
AgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAV
YnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hp
anN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPE
xcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDp
PMhiPzSDPpUkV5DjAOfqa5pnZjkk5rStrFZYUkDsDXqSpJLVnnxqNvRGlNck8opI
rNuLiQgt5bY9SK27Gy+UKcn1zXPa9Y6rYazNqVrJ9ptYo1aW0LbcqcgAe4xnNY88
YPY15JSW5AZpHPHerilVTbkk+tcmPGjozNPoEqn/AKZThv0IFSp4508t++tL+AD1
h3D9DWnt6UtmZ+ymjrYomY8Gp30sTR5L4PauYh8Z6FIoP9pLCx7Soy/zFbVprml3
CYg1S0kY9xOv8s0cy3ix26NFhfD+7/loR+FXIPD8K5OWJ2kdfUYqW0uFYALIrj1D
Zq5LqMNuyoZFB4zmpnUmVGECla6FHaOZG+b0zRdSqqMNvGMYxUkmtxyRnaKybm78
xcAkZqoxnJ3kTKUUrRKNwibeFI+tVljLnA/WrLuSCCQaiFdkb2OVvURrcqueoqMr
UxZmGCeKclvLIu5UJHrT23DfYgT5TmpRkqelBjKttYYNG0DvQIiK80m2ptuetP8A
LVVBJFFwIFyvSge9S7RR8vpTER5+XGKQjpjin4o20WC5HilAx2p+KMUxDXCSpskj
R19GXIrN07T4rS6vWSERl5cjC4+Xrx7VqYqe75mjHpBH/KspJc0TSLfKypto21Li
jbWpmR7aNtSbaNtAEe2pIfknjYDJDA4HfmjbUkS/vk/3h/OlLYa3LV+b+XxPD5jx
qj2MwaIDOxdrd/WuR0UKNdjtmlMFukyEqDzK2eAf8K9H1BAmuJtGP9Am/wDQTXD6
JEratOzoG2zx4yO9eJTV5JHqVHaNz1SyHzTj/pq3/oFX5R/of/ARVGy/10//AF1P
/oFaEgzZ/wDARWZaPPfEwxplsf8AprLj81pPh7co1lqFoSPMjuN+PY1Y1+zuL2zt
4LaF5ZTNLhVGe60nhnwudF1Ga5uLwNdyqQ1vEMqgzn5j6+1WmrMlp3Rj+K1/4q1D
/wBM1rlL1T9vn4/irsvFUDv4lWVR8qxrk1y15Cr3krGIsCTyrFTSew+pnal/qNLP
pOK9BsAN2gtj/l5YfrXB3FvFMsKyTzxrC4dQyBhx7jmu7s3VbTR5sjbHOzk5xwME
9aQrHbagPlT6N/Kp7qSOKFvMcKSpwO5+grn7vXft6RJYxFy8whQg4BJUn72OnHbN
Wo9CMv73VrsyA8mKMlU/E9W/GkUczqGnW2ravJKqSXTMqoYIlB6f3m6Ctqx8MzeW
BPItpEBjybU/Nj0L/wCGK3leC0tj5EUcMCj77fIgFZzaobzIsLeXUD03/wCrgH/A
j1/DNMC1aW1jYJ5NhbLnofLH82qrd6zbwzeQ0zTXH/PrZqXf8T2/Sl/si8vh/wAT
O+Ii/wCfWzzGn0LfeP6Vo21lbWMIhtII4Y/RFxn6+tAGSsOs3owDFpNuecJiSc/U
/dU/nVqz0WxsZTOkRkuSPmuJm3yH/gR6fhUetawdIiVzFlW43sTgH0wOSa851Xx1
eXisbeFzDnHnXTeRD+C/eagD0m61iztWKbzLIP4IxnH1PQVx2sfECKF2ggmUzZ2/
Z7QebL+J6LXHR2mseIjjN1exf3UH2a2H49Wrbs/B0UMRF7dhYxy1tYLsT/gT9T+J
osFyimp6lrMt0jBbRliLbS4lmI/2yeFFd54H0ufTfDsYuWBlnYynHYHp+grnrW30
hrO7h0o2cSxYWXyn3EE9mb8/Wu70kKNJtAhBXylwR9KAOaXw3OYgS2H9MVLbRyWr
iGVCuOnHWupkljC4NVHe2LZKFia7PbSluc/s4x2I4GCc1R1BJboajHbiNpTEgUSd
D1rVKKwycKB2rIWYR6lc4Hy/IP0rPl5jS9jy/VtNEN6htXmSPG5kYHqeo+lZ3lXq
pxKC2/PzAdPSvRdShjkvZVIVgTnpWHc2QN0I4zj5M8n3ril7i1N4+9scrItwRITB
E+CNgI6ioZLWAs5k06M7QCCBjJro3gKMVdcH3FN8hfQflUe0iVyM5oWVkjfLDcQk
JuzHIR+HBpwgTerJqV+jFdw3SFuPxzXRfZlPYfnTDZxn+HtjtVKou4uR9jMg1DV4
FVbfXQylflWaJTx+VW01zxAACX0649OCufyNSnT4sg7RwMDio/7KiBQgY2AgdeM1
pHETW0jN0YveJYi8TanGf9I0VJV7+TPj+YrYsvGejQMDeaHqin2CyAfka5xdL8sp
sdgEBxhvWlWyuY9mJ5CFBznJzWn1qq+pKoQXQ7iHxr4MlOXM9ufSa1dcfiAa6Gzu
9NubRZ9Omingfo0Z4/8ArV5II7pNnmSIwAO4so59K67w88lvpCYj2NKxdvlxnt/S
tqEp1ZWZnV5aaubOrwqJA6LgnrWYEY9ATV8yFiDI2R6U3cq5K9K9GF0rHFKzdyOG
1G3dJ36ClFllGbfjuM09pg3tTfNOOvbin7wrxKpTaOaTbUpyx5pNtaIgj20YqTbT
kiLtgDmmBDto21fh0+WZtuMVak0ZoxncT7etZurFO1ylTk1exjbafOM3P/bKP+Va
Nvpbyy/ONsfv1p76b5l7cKh4jEaj/vms51Y86LjTlysydtG2tZdJJcBm47099NiT
rk/Sr9tAn2MjG20u2tG4hjjAGMelU2UZ4q4y5iJR5SLbTo1/eof9oVKkDyAlV4FO
WCQOpKnqKG0CTN3URnXIfeym/wDQTXGaQn+lzOP+ftQfyruL2MtrdtgZJtJQB/wE
1h6L4fuLdpTfN5KyzLJHGBulOM/w9hz1NeJCSjJNnqzi5RsjsrJSZ7jAJxJn/wAd
NWJLqIRJBuJlKjKAZI47+lVYNoa63zeShddzA47HjNVb/U7O1QWkCHfJ0VULSyfR
Bz+JwKgpE1siG0YS3Bhh8xi+Dt3dOM9fyqrfatZ2IS2tk8tj91BGWlf/AHYxz+Jw
KjtdH1C4G6Vv7Ng6nDB5z/wL7qfhz71rWGn2enqwsLYbm+/MxJZz6ljyaBnlviUa
hHqxmmtrmEyICBJIrNj3AGB9Kw5ZpJCSZCr9Muhr0LxhBcNqgwY5MxLlSuMdelcl
JBMmd8QxTsSznJmuljYtOpx3Qgj8jWjD4gjS2062nKz+VdbnQr91eOvrVp4Y3+/B
+mapy6fbnc8QCSY4IGDUOD6MaZ3kutxyNYy58qKG5VgFXLFCrDIUduRW/HNqN8d1
pZm3jPS4vhl/+Axjp+OKoLplvpWiokMahxHh5So3sdhOSfrWjrmttotms5t3kTbk
uql8cegogrIb1JU0G3eQT38kl/MvIa4PyL9EHyis+71F7XWvPe5t20+CMhYogd24
/wB4/dAGK4bUvGurajJ5MMfkBvuif5nP0hT/ANmNQL4X1bVcSagXKfwm+fCj/dhX
j86oR0Wo/EF3gnl0toZBARv8tfMUfVuB+Vdpps01zpltPcKFmkiV3UDABIzXAxaC
lhaSJDM1xKSu8sqqqLnPyoOgr0lRhRjpimBU1GET2EyFS3y5wDjOOa8ujj0fQtOO
r6rBEHaVlEsoaQjk4VV7cCvXCuQR0z3ry7xxYY0GKCcmUG8yd3cHNNAcxf8AxNlu
m+z6Lpstw3QPMOB9EXj8zWRNY+LPEchGq3kkEAAbyxwoBOBhRxWv4Z02G3vLtUAj
jV4yAPpXW6pAHvJxHkjy4yD/AMCqQ8iLwl4Ui8P6bdweY0huGUsT7Zr0S1UJaRKO
gQAVhxSwSW4SKRXZcbgO1btv/wAe0f8Au0LYDBbUY1JZzk+gqsdXJfIXjNZmBnrS
jA7Zr1lRijz3VkajayzjAXFUvOaW6nIOASv8qjJUmooyVmlwf4h/IUezinoHO3uJ
Mf8ASGHeqLjOpdP+Wf8AWny6rZLcOr3CqwODkEf0qs17bHUyVnjwYxglsV4uI3fq
enR6EWv3RsdIkuI4N7pgDPqaw7LVJ5dCm1G4t8eSxU7e/T1+orW8SyBvD8hRw2ZV
+42fWs61BHga8Y7gDKRk/Vain8KKnuyHT9civbGe5liMXk/eHXjFTadrVnqUEsqB
oxF94MMcetQadbI/he/uN3Q4IK8EYH+NQ6VaK2malKkaeWIwGIXA6Grsn0J1Rp2O
p2OorI1vLnyz82RjH51NbXdreBzbTpJsOGwc4rB0ezRdP1KSGNRiA7ipz2NUvCce
YNTkA+7CMkdutHs4sOZo7BGjlBMcivjg4PSnBRkcDrXK+DdrT3TR5A2rkdia61Vy
wAGeaxnFRkkjSLbjqTRRq8yK4BUsARW87x7Aqr071iQKTOnH8QrZC17OCSs2eZim
7pEfNGM1JtpQmetd5yEW2jbVlIVY8mrot4REBiolUSLjTbMnbS7a0pYIiuVHQdqq
iEntTU0xODRDHEzNhRk1dhjVHwT+NMRhCCByTSbieelTK8io2ia1txzuFSTzooyW
B9qxxcOqlQTURdick1l7Bt3Zo6yS0NJ7wg5BCio45W+2XbDnIjP/AI7VNVZqlEgj
urn12x/+g1M6aTSQ4zbTbNETfJzwaou8rykKfxqhf63a2IT7VI0YkyFOxiOOvIFQ
w+INLmAEd/blj6yAH9acYxT8xSk2i9PC5ILPupYoIf4jnFQLMJhlJFcH+6wNOwRW
/K7WuZcyvexpeZEigKBTPNUMOmCap9epp0AJnThmORhVXcWPYAcVm6aSbLVRtpHQ
TkJrli7MFAicFs4xxUtxqNpZD7NaxMbiQdApeV/ovX8WwKZb6bcXzNLdXkdsqHaU
hcPMPYv0X6KM+9a1pZ21hEy2kEdup5aR/vN7knk/ia8g9IxYNHvbjMty40+I8kIQ
0x+rfdT/AICM+9a1jp9tYoVsLUJu+9K+Szn1JPLVC2s2DXJgtZPt10P4Y2BC/Vug
/DmqGqf25PBKHmht4mBCiAlm6epx/ntQBb1TXNK0g4vroST9RAg3v/3yOn1NcnB8
Q/7c1k6Vp5it3KlgS/mMAOpYrwD0wAfxrzvxFodwJY4P7Qn8tlXzIwPvsVBJJHU8
963fAulxafrlo0VqEjkR18wjluPWqjG5MnbQTxrbzW2qRSi8uDK8QJYjAPJ6YrnB
rWr2xwRcTQ/38bh9MGu5+IESHUrJSo2mPGPxNclqCywalFFASIA2CvbGKT2BlYeK
okOJwqnuChU1fsdetbnMjI3kgjkc5HqPyrO1yyVjeFlBxACM/U1e8OWG/wANRSY4
d0TnoeTSQaHr+qFZdG8xQQrRlgD6FDUutW7XXh+5hjxuaHjPTpRqyBdLdR0CMP8A
xw1dMazWOxwCrxYIPpigo8k1XxPY+BoLa0h07zLmSFZN0QCBs92fknn0rkbrxr4p
19pEtHWzi2liIOGx7sea6jxvaouuwx7QV+w7Rx6E1zegQyjKRxFlMHXb3x60mKx1
nw/0FobK+lubmSd7ry2Yv7Z/xr10D5R9K4DwlNutGhkVEnVFLxq2dv1r0Bfuj6VT
EhK4Dx8B/ZCZ7Xa/1r0A1wXj1c6OD2F0n9aEM4ixv4op5ls7d5rg7fMMh2qCOnvV
66Gq3J3T3BiO3LLEuDjOAMmsqxG3VZCvBYR10mpTMlzkNglAP/HhQlpcV9bG1oGk
x6XBMVd3eUqWZySePrXY2/8Ax7R/Sub0+UywOCSSMHmult/+PaP6UWsCd9Ty9PE2
it/zEI1/31Zf5irMes6XL/q9RtD/ANtVrmlswek7/iQalXS1dhuEbrjq0QP9K6Fj
5dUY/VI9zq0mgk/1c8T/AO64NLEpMk3GfnH/AKCK5qPQLV/vWtofrDj+VXU0S1O9
vs6/u8KPLldeABwMGj+0EtXEFguiZav7WArLPKAgRSxfHYVi26NfwQyiNTuiVsBR
wD0qz4lvG0zw0wSSKJpQIQZvnIGMkgHqQPX1p/h4+dbRvv35iUbsbc/hXBWno5I7
qcLRs0QrYSRnKwlT6qMUkkMrALJ5hUdmJI/I10lxJb2ECy3BOW+6i9WrmLnxLI+u
RRwpGLXyyGTflt2etYxlOWxUowW4pjc27W+cQN96MKArfUDGelMC/Z7N7aJUjglO
HCrjdx0zn+VdNbGC5t2nLosaj5i/8P1rivFOpXZvo4bKFHtxIDCyrjedvOf1qoTk
3YUoxSuX7eBbW0uLaCJVS4XbISSSRgjjPTrVfTtLttKs7u3tkcm5Xa7yPkqMEccD
171taYYLq2XzYgkq8OpPINP1SfTNO8gSSAtNKI8I2dpx1PtR7WV7WB01vcwtC02H
QYrhY99y0xXJfC7QM/41t2+oxRybns5OAcFSDVgWEEihlckHuOalh0uIyZLHABOM
VLmpS1Q+VpaMZDqVrcTIghmSQnjKVqgEVS2Q2UsU2WALbM9hkHqewq+jRvyjo3+6
wNe3gX7rPLxa1TGnmjbUwj7kGkK812pnI0MXipfPbbjFN20baGkwUmtg3nGBxTOc
YzT9tG2noK7I9tLg1Jto20XER7aULzUmMDJqeG2Z3RSHDPyiIu6R/wDdX09zgVFS
rGmryZpTpym7RKskghTcQx9lGT+VXLPTprzU7mOO2eeRRGCN22JflHLP3+g5rorH
wz5sZW/Ajhf71rG2S/8A10fqfoMCneG/LR9ShjZESOWNdoOAvyAAfpXk1sW5/Dp+
Z6VLDqPxanOeMfDaJokMtzNNPcCTavk/u44xg8Ko7e55rzabSwMK8sgPo4B/nXtn
jEY0eAYP+u7fQ15veWy3N9FESQDGxz6Vyp+7c3au7HJNpG35ozET7JtP5g1IsWpw
f6m6mX2S5Yfo2auiS0mu57aC4SSWBtsgHakDwlGeOZWRDhip6GrU5RM3CL3IV1TX
YDjz5n/30R/8K09G8S6l/bNlHcRwbWnQM5iZCBkZPUisO8vpLZspIsiPgrgZxVSW
9eaENKwyGGAhwfTmk8dOKtdmTpU+x6je+NNJ8MzXv2eOS5kZi5lY4jGTgcjJP0H6
VzmleJNQ8YeJ4oJ4ZPsboxYhtirgZAC5zz6k5+lckNSeFViVmNuwJaPOQvXnn6mt
Pwrrtpo+o29xcvshBclVGSc8Diop1oydmU5Heao6eEdCt5NLjAvJtxRSMqMDLNg8
55wOe9Ra1reuxaHaw3F1aJekr5xjOCQwyuB644OKz7jxTouvXNksk3lQQbo3Y5BK
k8n05Hat7xNr+jW0IuVsjcK6hQAvJHGPpj/GtG1bRmiOASy1WC8i+2sJ2dhwT22g
g/kRXeWTRpHoIDKCrSDGenymuFk1ua8IdLSVWiQBEX7zYUDj8qpWlrrRWxvDI0nn
ysFi7pgE8ntwKpSUVZENXZ1/xB41CwP+wf51zGor/pPmYP3xz+FM1/UZka1S5ZyF
yBJIclueuaq3GprcNwCF3Lnj29aTqRtqOzLmsIM3ff8A0Y1b8NyFvBtqpjwEmXDe
vJrOv9SgufNMfzb4Cn0rY0NAngKxIPJkBP8A301VGSewmj1HVhnTn9wf/QTVuDmz
i94x/Kq2ojdp/wBcfyNWLMf6BB/1yX+VAzybx07Q+IIZEVSy2hIDDI+8a4uDVr2+
maGaTbF5UhEcY2qCFyOldt4/H/E7h97Rv5muFtEC3MZHeKUf+OUMZ2nwyOZ7z1MK
En15r2FP9Wv0FeN/DAn7Rcj/AKd1/wDQq9lj/wBUn+6Kue5EANcN47GdGf2uUP6m
u5NcR45GdGm9p0P61KLOB0tN+tEdgqGtvV1xcr/u/wBRWPpLBdbbOT8iDgZ9a3dS
Rpp0xgfLyWOMcimvhIfxHQaRzDJz/drqbcf6NH9K5HR5oQkwMgGAvXiup0+7gurb
EEqyGM7Hx/CfQ0SeoQTS1PCbTxBbyXUcE0Yj8zhGJ6n0ro40TGcCvLL3/X2mDg+Y
MfmK9YhgkWFWZSBgVxVoKNrHXSk2tSpN4g0nT7gQXN2kcndc9Pr6Vu6e6zieWOQs
jSZUg8EbRXgdzI0t1NI7FmZ2JJ7817T4N8x7SZOSqeWFHp+7WorUuSm2mVSnzTsz
mPiFdS3E8dgSNluwdTjHLrz/AOgj866Hwc4fS4T6KFP4Vztzps2uahqghiLTrdNt
cn5QAMAE/nXSeF7KXT7M2s5UyIfm2niqm7wTNpJQ9y+qIPHF08IuHViGVFWMMCPl
xyR7V5j9okMg/efOeeteqfEuNItNtHVBvNtknHX5zXlBkLZOFH4V1UV7iPPqP3me
hWU7N4W+1vIPMVN2wt97HtXLWdzJe3jzXc8kcUY3sU5I5HSuoht1/wCFa207E7t7
gemNoNcMk0sVpctC20hQSw7UJKwSbvY6jw5qq3El9b/Mzxl5xIWyZFzz+lZV3rtx
czhhgIjZRcdDVTQLpZ7xwqBJTA7SOFxk8cD2/wAazlkbPU4pximxNtWPUvDuoz3e
lm4VNwTO8DjGOtdLZTpcKXRgRtP4VxvhTzv+EQupIZChDgHnqCcEVp2Uktu4KNjI
wfeuapFc6N4v3WL4tmiAsreSMu0jOQQ+AMLjkdD171zaaRCRxHCD7IR/KrfijVI5
tUthIUH2eNtsanLMzdS3oBgY9aoJqpSMs8KKB/t9f0q5VOV2KdO8U0i2unvECY3k
XHaO4kX+tWUi1KP/AFeoX6/S7z/MVlweJInfb5O338yrv9uRowEkTqMZzu6VSryW
zZk6Se9i6LnXYhkape4H95I3/pUy6t4gi63iuP8AppZD/wBlNSW00dzEJIZA6HoR
ipXnjgx5sqJnpuOKpYqa+0yHh49kMXxJrKffjsJPqkif40//AISnU/OQmysvKH31
W4ILfQkcVMp3qCCGU81JgfxBfxq1jqn8wvqsOw9PFRP39KuPrHNG39RVlPE1qw+a
yv0+sGf5E1U+zxOQWhXg+gp62luf+WAH04qv7Rn3RP1KHZmzpGu6PNcSJd3wtAj8
TTWzgsO2xSMfi35V2Oma94WiVhZarZB2P7x5ZgJHPuW5NedpaRhgQZFGOgY1YNpB
lAzkbh0bHP5iuSpWc3dvU6YU1FWS0PVoNR0+RgUv7Vx6iZT/AFryjS7ue5ufFEbT
sYMBgqnjIkUA/lxVXUILO3sriUrau0ag4aJTjPTNaXwzgtG0vWdSuwGRCFfPC7cB
uh9wKKckosU1eSO48YKW0m2AGT5v9DXl+qX8FlepJKC3lofk9ea7fxxqOnXmgKyS
xylHDZEg3AlTj6V4ldXIuYiS0iHnk/0qak+WNkTJ2dyxpF9b6fqeo3EoDG7OME4C
Atu60q3bR202QqFiMbDyRisCdinLzrnGAScED+tUJ9QlYCEkBlOVz/F9Saz55zW5
i2X7y7mQErHlSDkgAd/Sq5uJnCtbvucqcg8AVS+3SRBVkO5RznqDU0JaW4jY747c
rnAO3d64o5LLUCYx3BgPmPub+7nn16UkN1LYjcJoysg5Vlyf/rVVu7qIsfILiYHA
bdnio5ZzJZx7zn1LcHv0qopgaNteLkkBA2cgngH2ran129vY42u5N2/lMDsOMfhi
uRt4fO43hOwJNb9nutoVkkj3JjaMqG46Ejv1NVy9EUmaCXE5lKSbgVUOrA84I/wr
a06S7u1sbYzloBIzrCQQQQrdx2rkJpbqzmikmO35QcDrgjIro9H16CeDT7dpTHKt
2TwTkKVwenaqincbJ/FWrHUryKCYRgwrsBC4yD3/AP1Vk/Z5puMgJuA5PtVnxRbT
WWoJ5zxMXX92wkDt17//AF6o2t55GxJrg7C4+ULx9c0NNvUH5GhdaYLG4lhhkGRE
W3H2HSt/SJ7k+DbPFuDAXO6TOTncccVk6jqFrcylxJGHELLnfjrW1oTAeAoo85KS
H/0I1rC3QTPV73/kHr77ansTnTLY/wDTFf5CoLsj+zUJPHyc/lT7CRE0i2Z2Cr5K
ZJOB0FaDPL/Hy/8AE5tfe2cfrXEwLiaH/dlH/kM16R4q08ajqdtN50SQRxMru7be
p7ZrIttN0SKRfJJupV4Hko0x6Y7cdKAKnwsmV726jDBmW3XOP94V7TF/qU/3RXAa
fa3dkhNnpL2kbDG6fbED9FAJrtdIjuotLgW8kElxty7A8c9B+A4pt3ElYsyOsaM7
Z2qMnAzXD+J72wvbOW2a7ih3OrZkYDofTr+ld0QCMHoazINCsbebekEIUNkIIxik
M86s4oSNllFe3bf9O1sQD/wJsVpw6FrVwf3ek28AP8d5OWP/AHyteiABV2gAD0FN
OBQBxsfhfUkUfaL0vu/5Z2aiFV+p6n866DSNMj0qxECBtzMXcs5Ylj7mr7TRKPmd
QfrVeS+hQZySPpQB85Dwxfz6hYsPI8tJlL5lA4yPzr066OIZgBxziuU0/wAZafea
nbLNFdSTSTKoDIMZJ9Qa6TUr2CxtJri4YrEjfMQCe9cta7aRvT0TPHT4X1hpGd7G
VY8ks/BCj1616V4V15NPmj09rRibp0IkDjjgJ0/4Dmqsni/SpopbaPKpKpDzSxlR
GMdQevXHQVJomgXlxq0N1FJA8FrIoLBjlsEn0q6tuRqZNO/MnE6eKCO3DRxgBdxP
Tqc9TUFiv+n3C/7Qq2332PvVYFY9WvQOAJOlRV+AuDvO7Mn4isNRsoYrGSOSSOIQ
lCwB3BsmvOV8MawUOy0d8/3XU/1r0DxO9rbXjXNxDIkZOS7HKnI6j0rGi1nQiw/f
x1tCTUUYyinJmvcWM9r8MrO3dCLtdxli/iXKgCvPPJmt7C8iuLaSMzIqoWQgkhgT
j14rvrhbOe1jmiaUq2CMKcEfWsPUtAtkT7dJd3QWRycA9ORwAaqDb0Dk5noU9C0n
T9P8N3GsXF6BfNIbeO23DITGSxHX0rnXECEKkpdvULxVzVNOdr2ORHm+xT5ZGdMZ
55GehqS2BtiqRyRblbO4jt2pOTiyvZc256D4UhZPh1cTEfK06L+OWqxAMstEd7Ld
6Vi0vo5Y8fMg2qefbFLArI21mQun3lByVz0yO1ZSvKSaL5XBOMtDJ8SWCyRRXUcK
GZG2luhII4B9ea59LEXbutwVQRfMB2Psfau7vpYI9HufOGWbaIgOu7I/pmuFuzcW
8M7i1k/fYBf0HA/p096pqN9RKUmkkJb2Ruo3LPCImO1T056cDHFVL6S8swLBzG8Y
UMzKmR19aZZ3EqDYylhIdysVyQenHvVwxzXMCWUUcjSnBVplxnvzxSjy3FNSW6NT
weCtrcp/CsuAPSsTxRLJJr0iM2UQAKD0HGaauuXegXMtnHbo0gYPJuz6Dilv7O/1
e8bUYLNzBMqlRkemD+taJWqNmb+BI6nwhLJLo3zsW2SFVz6Vy/iDU7t9cuEE8iLE
+1ArEAYrrPCttNaaSY54zG/msdp9OMVxuuWlymrXs5gk8oyMd+04x9amCXtJDlfk
R6FoFzLd6JbzzcyFeT644qXUYZ0HnWl23nINxjYjaw7jpxXK6D4oeKySBbEvbwja
8gf5ievAreOr2ojdZLmNZ5kJjjJ5YHv1p0qceaV0FSUlFWOghmzaJMxC5UEljgCs
TxTdSRLHAtwG3KDlRteJsnkjuPer92Wj0YFXRGVRgv8Ad+hrh9V1aS9uo4nBMiJs
bJ+6fY+lciUdVY1nJ6EYvJPNkfzctKAHVzxIBjH8uKtR3s9pA0ayOsTZ3xBsZyuA
cd6xLkS2pleX5ApztOQR7jPBpl/dBTbkr5nG4gjA5Fawj7rsZNu5fg1EPD5cjELv
O4c8DHc9/wD69SRyQ+WJAcJ3J4B/zms/R7cGNyhDANu+YEsPbHQg1YuoBDHMoZgE
GUG3GPb05rCqrS5SZNlG+jg2gRyxPIxzl+ij61krE90WRZEIH1wPzqSdNwieR9oJ
PyggZHrmp4Y1uoF3MYbdeMnIGf61rFcqIJVtrUWsSMVkYDkbyQD9M1Xnv42cvcLu
wQAAu0//AKqP7OkZgUkDRtyvIX8eaW5t47eEBnWVlYfKykDFCtfe4DTd2krrDiPy
VGQSuOfTNVbm5EuyJQoijP3VPH4U2O0+1SE/JGTkhe1NMQicbwAAfTOa0SSYGxZW
8sgRIIIplk+7nI9uajku7mI5VWiVTtZAMUkCB7hG2iFJMkJH/MgnFWpbKxMcwN8W
KYcExldxJGQozjv+lCjG9xlX7Y7W6xSZaMHI55XNWoIllh+R0SVU2r0GT71n3LRK
H8qR2XhVZuDxwaS0JRGcNl174zj8KJXWwzVa9ncQJffNIo2jjJArSjyiZG1R34rn
5HCBGeZJCemP4a1LWQyhWdyMDJGOMetZSk7AXI4xIWdjFz13xhq6HSpZIfDtysgj
VPNAjCcAdzx+Nc0biNolMXUtk8U4amUtHtw3yk56dKuFVjPZ/El/mwtYftAjX92x
VH+ZxjkY7VuaQkVz4etUPzRyQKDg+2OteIa1qX2vUYrxGLRmNFQoOWIwMGuv8M6h
d2NrbW0l15AkwylnzweMKMdc10Rd1cT0Z3Nt4V0qKTzJrKCZ/wCEuu7H59a2ooYo
V2wxpGvoigD9KwE12bylSG2uJ2AxvMW3PvzTTfavMflt44x/00l/oKYzo2KjliB9
aia7t06yrn25rnTb6jIpMt9Gg64jjyfzNJ/ZCyAG4urmU9x5m0fkKeoXNuXVraIE
s4AH95gKz5PE9mr7VkVj/sAv/KoU0iwTkWyM3q/zH9atJEiD5EVR7DFFguVn124l
4t7O6cepUIP1qFp9Xn6QwRD/AKaSFj+laOKTFOwrmU1lfupabUdg64hjA/U01dFg
ZQbiSedu/mSHH5CtSQA7V9Tk/SlxRYD5b0+R49StXVirCVSDu6civTNYunu/Dd7E
Tl/L3Aj2Of6VxFrYQ2ls8dy6TXBZSgR/l2jrzjr0qtareJdgxXHlqykPiTjuOmOn
4VnOF2vI0i9Gu4kUEN00MCymOeZwpaT7gHHSvRtP1pNM8O3Vxa3UYmEgMaS4BkAw
Dx1rzeG0FrcxTtq8cU8bZDRqxZT6jjrVu5XR5xGW1G6eVM5Zl3Zz178daKtN1FZl
UpRj7ya09TstN8WXd9dwwCGJzKw5GeK09cvHs7m7ZAC8l0kXI45bBrgYNR0q0e3e
JZHaFSDyQZCe5we3pVd9R+0659uty0ZDrKImJKbx1wCe9S6TB1E9tDu/iMduiE89
B1+gryAOSANo6+nNd34g8RRa+YwfNSNUAaDb97pkj344puj+HNHl0STVItQma4JZ
Vt/J/wBVnhdx/A/WmrxSTJtzNtHUeTLb+GbaToGtlkXH+7wa5XTZ7iXw0rzOsmyZ
nfzXySrFRwOo5/CrqX7zaMQZ2mktj9mj8tM78rhVUenHP4Vx5ZjO0hZl2rtUD+7j
+VON1qXdQldanY6vf2Nvoy6FP573ESlrdU4jjJIO7r6bh071zFuwWQvNFlV67Opq
mm+WV5JXZ5W5LsckmpSXCnMhNTK8txxnaXMka0TgQJeWcrBd+0jcAwI55X+taiay
1sgm+3zM1w22TKjdweCSevWuPt7kwyNhGHPJ7H61euLqCWPARgFwyEno38QPtUct
n5HoQxTqw5be96aWLN34jvri+dXmR7aB8qshClsccY71pa94h0KTTVtLHzJZpUBa
RwcRd9o9/cVyXmbrt38tefQYp8GnJLfxQoCwdgNzD+lPli2Z+2r04SUVo99DWt7i
wtNNt5mlf7bFcAvGG/gwCOO/fmuyOo2s6hfPi8+CQNHH5hBYY9vqfyrzLXIpIdSL
SIqh1DLt6YqnHKVAC8NuyCO2K0UEmcM6jnY63xHdQXGsxN5QjeVdrlDzkdDUmna3
rWmvA0iPLZqNrRlQOB6GqNnb/br+3E04nVSuZH6bj0HHbj9KnmvNWne4wlvHtfYI
wc8H056UpS97QcYe7qd/puoxapaC5hiaJSSNrHPIrlvG2u2r6YdOtw4uDKBISOMD
/wCvip/AV9dXr3GnSRxiG2GTMp5yTjHv0PNXtR8HJe6tFcRABA29iTyxznBq6dCc
m5WM5TjZI4Gzs1ayWUTSKSPmIOAuKLWXf+9laQkjlh12jpj/AOtXoUnh7TbjU5GQ
qqLnzrcHuenHauIlguDLe6faQgx2rvKm4fPsHUA0ezlfUrnjpY0k1uU6TJaG4uJ0
BBBuOo9ge/HasiXWpDkIgH91uQV+n4cVQh1BY5VMkSmMc4PPNamlpd6jPHa2bhZJ
5MK5+6pxy3rwKw9n72xMncm1CS51CyYC3kMZ+cM/UHHb1FWoXiW2DG3WXcoUkgDG
B712kPgq3MCR3uozTME2sI8KPcAnkVzWvxRwanfQZxHAkbRgnHykYwPxFbqhOMdR
U5rmMO5vI7OSB0iePcwJVG+bA+lWJbddZgjmW8Kx7j8gHP8A+virFjpDa39oiszG
JIY0kDNxvBzlT6YPen36S2NuLWdEiZcBYQSDntgj8a5cRCUbSSFOV3oUpdJ06EGV
/NQoMA7s8jjgd6k0q2sbm7t/tYmeJjhSTtP0wDxUclzbb408x0kQeXgYxu/AV3fw
603TrsXf2uF57m2xMsjLtC5AG33rKN7ajox5ppM4zxFo11Z2jzGCSHy5SoYHAYYz
nH+etcc91JKQJX3BenFen+Nbm6uPLu7s28dlKXjjSKXftCnG4r2zmvNbmCBSfLDB
v7uOBW9O1tTSvBRlY0LWdIbdt7xuSBtULyPrUsE6PdS7YQwHOQoyP6Vk/wClyQbc
s0ajGOwqzbNLb2gVUx5rck9f/wBVPkRgo3Zq7ziQyhYSQX808gkD+da2j+D73XNO
/tNbiKC2CkqztknHoK56aLytMYzOZGlYGMKeAO+a7rSb+yHhO0gh1maygijfzY1R
SWYHIzwTnJFKS5FoddClHmtI85vLeSC7e2l5dCQMdD9KIZJIVdUbOB8wAzgfWm38
pmuYmWRpZTyWPc5rZe7t7ax2RARjBJA43Ej9fpV7rUzcE5MyrdhLKF2hE9R1JrWR
0SLDEgPwc4+Y9hmsaydxJ8m8knolW7i6im2qGA8vn5e7ZrOUW2YE1xI1v1b7gypU
0hi1RlWaCItG/HT72OtV2nivLmKO4Dx27OvmMo5C55NeuxaZo9j4dsYllkKLtC3c
ZxvTOc8/dJH86L8i1RvRpe0ueYSXV7HcOlxGyNGikRZ4HI6V1fiTXBJpuj3FriF4
1JlVOAp42/iRXL+IprSfVpXtZZypY7TMctjPGTVJ7x3CxtNgDg56Cqc3y2Mqi5Zt
HtPgrxS2pww2d1JvuGUspY/M3eu2r5q07xFeaBqIubSVGkiXCOwyoB7Y71sR/EXx
lqc8pttRjjVFL4SBQMD6itIS01JR783OF9TTq4f4ca1rOu2l82s3AkkgdVjZEVeC
CTnA9q7gRL3LH6tWlxi1R1HWNN0iAz6hew28WcBnbqfQetec+O73xVezTjR4Daaf
YyYaSOQCSRhzn6e1efzeLNV1YQab4gnNzbLLne6gOmeOopKSexTg0rs9S1D4w+Hb
RytrFd3pHdFCKfz/AMKy/wDhd1mWwNBucf8AXdc/yrzy50i2trkqhJTAIB5PSprq
zt49NsnEYB+fJA5PNTzsVj3Tw1r48T6UNTt7VreNmKBJXyRjr0rXIlwSXRQOuFrl
PhmFXwZDsGB50n865r4peKRFcroCzTRJsEk5iOC2ein271ael2JK551EivIFZwAe
4PFX5tOjeEzQx/vE4Mf971B/oawbaXpzXRwXQFsshONgCyc9V7H6it1CM9WRNyhs
U5tJaez+12RMgAO6NvvLjrj/AArOt7pIRuLMxGcAcCr7X1xZTPNG21Jzz/snsazb
5FldJ1xGZGw/HGfWueMuV8pt7JzjzIje7w5ZF4PVTzmoTdt9oEqjYVOQAeKd5Khi
Gl+6cEhOKVrMIcs+cHpjFa2bMtEbGoJugtL1MIsv+rcfd4+8p9wSPwNbfhnW9Rtk
u9PtG0+K0nZZrl5uXfHGEP41xpw8TrNNIsaMfLjX7ucf/qrb8KafbXmuW9jOzbJF
Zx6n5TkD/PasnobLV37kN3rNzpWoXEFlc/u1mE0ToQ2w/N0/76NZck7tNMzlmdhn
pXbn4YSwytLFfIyKd2x4Tk+2Qa4cKwuZC4GcEYpXuIlidwvAHPNK0sgByopEbhfp
xSSNkAY6mpe4CM22JmPVulMMjeSyj+EA/nS3bAKADj1qO2yyyblOCOtD2LptqasS
K58rcANw/lViC+MNzDOi8od31qspxSEDfgdDyKyR67va3ctalcR6lBCQ2Z43K7Nu
PlqxoHhy+1i6k+xBVhjOGkkPyj2z3NZVw0TXEkkSsuQN2f73fFe1+E9LTT9AtLVh
tcp50h9SeT+VdlKCk9Tw5NxMm08BRW2mXjxzST37x4U9FBHOAPf1rntJjj1bXI9M
uLNAJ0YT7SVPCnn2Oa9qggt0jWRkzgEhQcA+maw7jwvb2niH+34olCGNleJe0hxy
PYjNVOmm049Bxm0mn1Ob8OeGo/Dcd3FHM8rzOGUsuCAOg/WtSKVCsqsScMR+dRWW
p/a5bqCSExT2zYZc5xn+tSiMpeS8Da+GH16GuqnJNWiZTi4v3ipc6fHNqkGopJt2
RlJFHWX+7n6GiKztoLoTJEqyvnJ+tT3TlrZ3HQH5fwrMW4aTXo4BIDFtD4A6YFVZ
XJOD8beH10jUlnt8C1uQzqv9wjqPpzxXSfDXSjJp76lKMAM0cWfTjJ/pW14w0Qa5
p9tGoKmGUE7RlthwDj3qzcWq6VpcMEW6G3gXbGoBwfr796xdJKo5dCub3UjXjYyI
Sv3u1YHinTWvdInu4YwLuFCDjqyZyw+o6/nWroM7SWMZnOZX+Y/Q9P0q1dyPbo5R
VdWU5BHXitHqhLc4zwIqiHUJyvOY4gfUAE4/UVD4z08X80L7ypVcf5/CtXwpbGx8
PCSUANM7TMD1GeF/QVs+HvDo8W6tbJIv+joS879wmeg+uAKwqL93YqPxGB4T+DN1
rrR319dtbac3Kuy/vJP90f1Net3HhnTvB/hZbHRoW2MxMjyODJIxHUk/TpXS3yrF
DHHGAkULIFRegAOP5VT1rTY7vS7+FUDyKqyIjcjcp3fz4rn9mmrM1UnF3R4dqHhW
+1S7nmu9Pezt2QCORV4BHQY9CDXneu+HdR0a4bcpa3YkLKpypHofQ/WvpeWay07w
w9z5a+bfRqI414wQMZx2wc15zrsMV/otzDBKsssiuhQ9QwA64960jRjy+ZE5OT5m
eTaZM6hnO1Vj6H1NaCLFe3I8zeCOh6A8VRt2FzH5Mr+XIODjC9ParykWyuWfc204
IFc9ilsVdQijWZERnZQi7sjGDjmuvuF0ux8EW95pd4i3lyBb3Vm43byOrr3U9PY5
FcL5zTAnccnj6095JUnEkcJbbj7x4NOUbm0KlndlR8LdAyHKnlsDp7VvX2nWt5pr
3NjcK3kLuO5+fcHPesa/P2mczwxGOPshOT05p2laadWnkhF1HBtQvh85fH8IA70N
aakOSV+w+xuIrWORmj3M67RUuoWz2rAzxrFhR+7Xr06k+tQwvDBqkDMu6OKQFgPQ
GtTVb6HXdSlIDC4kkztUgoF/xqbu9kNRXK7mRG0s6oT8qDv6100/i+e3sbWCCE28
8UXltIrbkkUcZKkcHHcVgXCGyk8jIITgEVBNH5jqx+6PeqcU1Zkxk4vQr+bPd3LM
43Ock44xUyMSnO044BIpHzGMB8q3TPUVGUmjjMpjcRk4DY70pLsQ03qXIfK2NIVU
soy2TwfwrX8PMkk04AHMbf0rnA4ZCqjAx83vzWx4dlWG6lDNgGNhz+lEVZkHr/wv
K+TqwXPEy5yfY16BvA6kD8a8o+H2qW+mW+qT3EbyNJOgREGWYYOSPatHxf8AEaOx
tTZ6Wnl3ki5MpwRGD6f7X8qu62KitCxr9xBZ6lPH597Ess2S0QDIvGenv6V5SlrH
qPimOYI5tvNGSy/eOe+OKqvrmorbSwLPlJWLOzDc2T1wTyM1VttYudMukeIlo1Ib
ymJ2sR3/APr1lGFptnTUqqVNRRv6udl3kdCBUN+4OkWJH+3/ADp8WowatEJWLJsO
DGSDt+n1qwi2d0YYX3fZoW+YrzjJ5p3szCx6Z8MGc+DIwI+PPk5Le9cF8YdJlt/E
NvqZUeVdRBDg9GXt+WKgTxFdaRYx6fa3zQW+4ny0OMk8nPek1jT/ABX4l061kktb
mTT0kxEzLjLEdcdce/Sr5tAirHEQHgMOhrXiuAAoK7sJnb6ise2KhyoJPHH1rStL
Y3auI5As0Sltp7r3q1O0WVKNyK4YXNsWGVZDsC56+lUw9wI3jWTHmjY4xnIzn8Ol
XZ5okjIIG88ZHWs+UYm/dtkHnIrNMu1kXJ9MmgEULzh5JBuYA5Htz3rTg0WQqhec
AkFgdvHA6ZNY8IkUeaTlU4UFunPQVWnu3llYszEZ+7u4FXGWhlJLoWJ2CTtCWDqr
YBB/Wp7LWJtP1y2volUyQkbQehwMVlk5YNwOegrQ05omklLqDjGCaT1BaHbJ8RNV
cHEFsM/7J/xrjVDSNJI6lXyQVq8pi/hUCobptrxkHg8GhpLYLlT7sak/w0ow0ox9
aWUYX2PBqGJuWJA4XtUjBlaWUhRmlWZR5kfO7GKWNhjCt8x4pjwqjkqp9sU0rhew
yRpY8ZUYNOhLPOoJUHB5pZmEluD3BFV5N24MOBjg0OCNI4ionuX9LtH1LXLK1Vcm
4uEjx65YCvoK4txaWzyYICSlB/u9D/OvGvhjALn4gaGrKSEuQ5/DJFe/eJ9I+z6X
dzq4QsjsSwz0H14rejpdGNS71ISAoiTPAIz9KmiaCLw/cSzyjzrhCqJj0NZVldG6
05J9wLeVGTj1wM1s3Ajs/DtvujUySRkAkcjP/wCutCTz0y/Y9buPOBWG6iUJJjje
CeCexOeKuKGeAncBgEg0y7VJLeQTDdEYyGB6EVHpv7y2WLdvQptznJIxVxTuJvQj
lkMtvsiI+Ve/fNcbfaq+h+JYJrpXSCSIxsV5289R/nvWymnRQNJA97drJHwSsnFc
94ugSxtoJVma5VnxicBu3UVpP4bmavex6fbyGewiniIEbpuXPUgjrSDyr7QnAZpF
CFQT/ER3rxePxJqFyVhDMZCNoJcgAf04rctNb1i0gihivG8tQFEanIX2HtWf1hNb
F+z13PQtLeN9NikTKkKBwO9WzL5mzzAykdF/vf8A1qxPDtyHh2E8nmtfKxB5ZSoG
OWJrRklS9xFBLgDCxngcAccCu/8AhtaCw8OxTuP3t2plBP8AdBwP8fxrkbbSk1Ce
OPcshlYBCDkHPevQdXjOmxWFnZAKltEFC+wGKxmuhce5JbagL3ULq1+bcqM/TjAI
xWnLKpuGOMg4VvxrmvD0L3PiOaeJiI0jKOP6fnW4zEavcQkYHlow/DiotrYo4/U7
FPt628s+3ypGRUxwqAFh+decrfQNqE8dtEFAlkZgD33H+mK77xvJJHq8JiGJDFtJ
7E8j+Rrx/UNR+xeJLmdIibfCpOU5wcD5wP51d7WYbpopa1YwWetzyNEgWVfMAY8c
9R+YrJlK/ZTsAwqKePrzXR+LlhuNItL6HbLGDs3g9jyD+Yrm0AMaoB8rRCuepG02
OLuilZoN0hP3Y27nqT0qVH+aRNwJAPFRWagecr9mHUZqV2EasUBLynBYrj8qgYxM
GAD0Vv5VBp0rw38RQ4bdt/PirFumIJSewIFZ3IcEZHOQaAZ1ieG38pLqd0UuQWTH
IUnB/I4rFntRpeqAy5EZySEOSAen9KvQatd/Z3i85mV0KkNyMGobuVG0eRDGu9WX
5+rN7ZrNXRCk27GVcSxGfMW7Zn+LqaRJ5DgHGBVfdS760LPQH8S6TZ+ErSGytrZb
6MhyTGCS443NnrXPajq954jlR5njLxxhXKJt+X6d6wCDWpo9mZJTJISkaj73vWUo
qKbNJ1W42JbayjkjdFQtIM4cggVo2ljHagM7rLIOOO1WWKyRlCdseeAp/nS2djby
TSsgZiiMxLZAwBmuR1JSOa9y5ZavPYAz21w9vNuAUoeo7is7xFff2lqktwHdywUF
n5JIFXbN4bneZgkYU8Kp6/pWVrAiW/ZYSNjKDketdNBWRrH4TIfKNz0NI0RTa7gA
ODgnvirNtdR2OoQXT20VwInDGGYZR/Yj0pL/AFYXl7POlvHbxPIXSFPux57Ctne5
UeW2po29lfaO0E93beTFcr8pkGeOoOOvcVfGrxpItv5kCGQ/flUhIvfiufm1S+1O
RfOuJp2XpuJIX/CrVpax6x4jtLBmbbcSqjsvBC9/xqbdwbXQ9T8BeDkgmk1Z57e9
y/7ubyuP+Alu30Fegy6gq5W7txEh4D7wQf8AA1JbQW2n6fBa2kZSGJAkaY6AVyXj
rUlsvD8s7j/ltGowcYyetWI8FRoopA24k+1MmnKzF48rkFW56ioCGxna1IckfMOt
ZJHZOcbWLca28sali288E46elVmDxysvRumV71Yt9nkAOuFBJ3VUikZnbnqc1ojl
ZKCVjK/pVZ12t9RmrDfdOOtEcAuFU5xhcfrTIZXA3Oq5FXYgoOAuPwqSOyjQg4JI
qYQgHNMQsYHqRUkhUR85NAUCmzY8ommIqvdRrlW3Ee4pLdhIzlQdvA5qO4TK561X
ildCFVsAmk42GpXLwMcTqGwCTitIiE9jWbaANMzNyQO9Xiw9aErBe5kTHBkA+7k4
/Op5Uia3g/vEgN9KjkUvM8fTLdTV54o3QKwBAoA6P4fqsfj/AEER8f6Yox+dfR/i
uEz+H7mFfvvE6jv2r5b0XU/7C1ux1NF3NazLIF9cV6jpPjDVfEov7463eiKFNsdq
ERVLkE/Nx0qudQV2VGDn7qJdNnlhtolTdgxhWGK7S6kttRjjuJPltba2ChT1MhHT
8K4lJJIrW1mfISZA6k8deo/CtbTJonvIxcsTb7gzKD1rpVmroyejszL1KFm0q8kX
GBE2B+Fc/wCC7831uEkG2ZOMeo7EV6VqMVuPDMUKIu+4d2c468kV4Mksul6sI7Vm
jYSbJPLYqGUYJBHb61V9BdTv9WWzgvma4nSNpVyAe5H0rjPGEkN3psS286zMsoOA
egwa7CBtNvjHO8ItLuU/eUHa7Hk96ztWh05rh9NvgrkL5mFDYYDng4rGpXcY8sos
0hSU3eMkeZ2AmtLrzfKBwp4auisXNw5eW3aEBCVc9Ca7vwrq3gLSdNura7tYy8x3
LIYt7KcdiRW1F4r8DvamOeGxdhxhrThh9B0rljXgmnZmssPNrdHN6Cyi3ilU9V/K
repXWLC9fORFA5J99prUi8Q+AjnFhY23+1bq6H9DWBLqWjT2dxaPcxiCYMpUOckH
3roeNp26kRwlQ0fgFeXepahPZ3KmW10+LzY5T1Qk4C/zI+lejeL9Zh0uS7vZmG2G
MbVJ5ZuwH1NcP8NtQ0/wxBqUOlywyRzMsjtJ8zZ6KueOByfzrF8beJl1uBoiI0k8
5WOx8qRg468is6dZS6lToygtT1f4Zb5PD326clpZ/mY47klj/Otm6lLa5HKIXVNu
wlu4PQ/nWP8ACydJ/BsQHVH2n/vkV1k6IJC7DJxtVQOTV394z6HmfxCk8rUbcAfM
0PH1yRmvMJrVf7ZQhgjSJ8ueh7EflXqPxFCjWrRDjzFt/mAPqTXmeuSi1vbC4b+C
T5gOeOM1tpypsm7vobniLwt9j8EmR0VXnXekQ4AUc5/GvLnBj2DoQgFe3/EHxboy
aZaBUnkikh/csANhyvGRXiEkhljjfg5XmsJzU9UXyuOjKkBVbyXOCCAc0+XMt0pP
CqPlH9agiYrdgupwylRViQhmwgOXwo+lZgLEo8l2x97IUewqjMqiGNcfMo/nVyaX
y8RqPu8cfrWfkiUFjznJ9qAZbtcsoNSXQKwLnlQ2TSKyK58s7kB5YDAqWT95HtVd
26o6mPUpJZpcMAshDH/ZzTjp6o6JLNFET1ZmOB7461DP5trKACUOM8VB87nJOfc1
WpsttTUa20aFv3mo3E+P4be3x/48xH8q1LGfRFRB5E2QckXUrMPrhAK5hULMFxyT
iuijsbYIA5JI6jdik43HdGhJ4hmjkaG0jsVwfldLccjvgkE9P5VJYX19fz3VtJcz
TyNEVUyMcLyM47dBVWGzs0ZWEQJBzyxNb+n6hYxFUezVCOBJuqPZq1rGjqRatYgs
IbmxWQThGAGRlck8evauf8QKGvt+RlkBCqMAV2h1W2nnmiimKhMbWVeG49/euQ8R
rJ9sRpcMSnBHBxmlTaUuUi1onOSQSH5lkJ9jVdkkAywNXmKoMsGA9+BT7GH7bqNv
bLy0siooHbJrYk2Leyj06wtZLq3YNPGJAQflIz35xnHY1reEIIdS8c2Bii8uMP5z
nPZRnk9hnFP8Y6fLY2q2v2hZgsoC7RjYmMAH34rovhFYZutTvmVCkaJCu8cZPJ/k
KaS3K55KHs+jPR7i7k8zIVlU/wARXANeQfEnXxfPBpsRwgk81+fTIH869I8Vas+m
6bLNHOq7FJwgGPxBryjw34fvPFPjBbrULK4TTyfPkdoyqlBzgH3pCexxbTN/E4Ps
BUTSqUAA6E1GQPUmmjrU6FykycSH7Oy9s0gjeKcoww2OlRZ4Iq9fyRyTpNGDgoAS
e5wKaIbK0sm1cdzUlnKR8voOKhEe85YmrEUap0piLgcmnBiagU+9SA1QiYMTTJuY
W4pATTZXxE3XpQhMgl/1Y5qmikShT9ancsQAQTimzjy7hSOuBmqYkW7ReXYdOlWD
nrUcGBHx3OakzSGiECBJWluG4I+VV+9mpEk3rnBGexpTgjkCk4FICG7bEQx61ueD
IlnnuEld9sichWI6GucvMvMi4610vhLbHqTovTyj/MU1ZuzGm1qj2ixi0i58OLbX
F3IzxITFEvODjgZIzWNayW8U/lzSMpHG1gQRV/wpMEuMIcZ7e9dZrXg9dTAvoXAv
Ao+XtJ9T2reL5HYUtdTBAa+CRiRfLjGIwTjI614nfp53i67RflAuJMqTwMdf5V7T
pBKa1qekXsbQ3tqqSx5/uuv8uteReJIhaeNNQ3RBSsjljnGVPb8QatyRFjVls73T
4rRPIkjLFZFimHyupHBU9s07XrFpbbTJVa9tZjEx/d4O35z0Oa9auLqx1n4Nx6lc
WihY7P8Ac+YeUKnaCD2zivLtWnheHTBJGwP2JDt6lSTk1tQl7S6Zy117Nqxi6fZw
2bO00U12XBz5qL1Pcc8VfZ9NYH/iTkcY+6v51CxsgMr5j8Z47fWkU2RjOVlz646+
1aPD0+zJ9tLyLUc2mRrMP7FBaSMopZFIQn+L61Qu7C0ubQwxW0sLkg+aqLkY7daf
G9o82DFLjjG0+3+NWV+yc743U5PT0zVKhFaJEuvJ7tGTbaPPADDBeXe2QjcpiXk9
u/uap61pT2sKHzJCxY7yyYyR07119q+mJIGMM27HHPWsDXdQiRjAkRbdlgD0xk9a
yr4enGm5WszSliJymo30PXfgpM8vhaa3WdkkQgkYBzyeQf0xXb3+o39hOpH2Wf8A
uq7BHP05wa4n4JWUieGJr4svlySGMLjng5z+tdD44tFn00NsUtGxbOPauJJN2O6+
h5l4r1+Sf4m+VfxGCK5tkRY92Srrn+eaw/GWn3FqLeTiS3kyY5R0YensR6VzPjhn
t/ENtLG5DLErrz0IY17h4ZtdM8SeDlhumE1nfxCVDgBopMYbB9Qc/lRfRxF1ueH3
GoXs8UUU8rSxxbfLjk5UBc4GPxP51AIJNSuVitrdYGPbg59celavizw7eeEtVa1v
EaWCTJt7heFlX+h9RWPb3iLIkkcgR1ORmsWuiKvrqZ89pPZ6ssc+4kMVOe+OoBqx
KcMSifNjAPZR7VparY6heyx3MjpNBuMoGApUnk9OxxWFeBpr91gXyU6hAxwoxT5J
Jaic4t+7sNkKxAbj82c1WZvlB65NEMEtw+FVnPsM1JKvlhVIwQaFHQTfQiEhBxgV
bt52LqFTgHk5qO9jHlRuOMjBqfS1BLj/AGaFFXEN1ZQxSRR04NU4sMMGtS4gaSB1
68ZHNZMRw1IofAublV9GrYJHODWfZxbrwt2AzWl5ee4xTEN3EcBjn61E5fruP51M
YgaaYTjg0hkMV1PGx8tmyB1zxXWaDqEupRmKRkkZDg71B49BXJNbNnIPStbw5LLD
qoG4hWQ5H05FENJXJn8J1GrW0RtBlI8Acgpmq3gzTLVtSGoxNETGWAiCnIbGAST0
6mpdbkc6VKwUZ21R8HQPp4vZJZAYsF8jJDYGeg+tazdyYo7nVNE0+TS5WvJAZWO4
cZGf89KTwC1vZ+FJSQpU3UhcscAYx2+grz+91c3DPucpFuLLDCeT9TUnhadG11be
8uXi0yVHldPMONwUke+cgfWueM76HdWoKCWuvbr+B7LFqmnpEBJFBuk42FQT9Oay
dZ8Z2r+H50tJR5jDy0QDoDxxXlVnZeL7ywub+0M4tTuiMpwNqg889QPpTrKwvtPs
Q15MZPNJMYD5GBwTjt0o5iPZSS5mtE7fM4ItSZptLTsZXuKDWjcRhLC0bILOC2R2
5Ix+lZ1TrKWhRCSSh4HtTEx61KKiGacM0xEwp+QvU1X59adQBPvXPUUyWQeUcHmm
ZpkmShFNCZGpLMMmknbfOxz3pVYCRR70yQ4kb602CLsDERDJLemTT95FQRHMY56V
Jj6n8KQD97Y7UhZjQFbsrflThG5/hNAEZyetbnhIEawec/uz/SscRP3AH41s+GQU
1dckcowpx+JAeqaBM9rqUTAbkY4I7167azN5Cv5ZAI6GvG9KkxNC3XDivZbBWazj
IVjx6VrNDieceJr4aF8XLO9mO221OyS3m9B8xAJ+hA/WsL4qeD2Mn/CQ2MHO0RXU
SgkDkYf6cYP4Vc+Niqt3pUwZSTC6HByRgg/1rKu/jGkHhKysoLeO61d4jFcmbmMK
OMkdyRWUJe84suovdTNnW7i+svgtHbNGk1vL5cKnONnz52n8q4jU4nt5rDayKVso
htfJIyvQ8V2+g6nYeMfhy2lvEzyxXaNLbZwcdQcn+HI61wviXUD/AMJPc2aWsGYk
WKGJQSflAGBzzXXQqKnzNnFXg5yjYreZJvLeZEM4yApxwc+lOFzKoAEkGB/0zNYt
7qN5GxIjhgBAwnlhivrn8aS41a4g0cEpELpm3rKsYIZAPToPWtfrdPsR9Xn3N6GY
RwhDJESGBUhDkY5qyuobRtXyCeRkxHvXA/29qB581h8uflgT/CpU1/U1ViJJScDB
MKYH6UfXIdg+rz7nodvfsoYs0BOMKRF0rj9bUDUAFfdhBzjFUotf1d5I4xO43MB/
ql/wqfV5ZG1OUO+51wpOMZwPapr141KdorqOlScanvM+ifhBA1t8P7djx5sruP0H
9K2/FCBtMnYjgRngVD4FtzY+BNHhx87QB8f73P8AWruvHytHupH5KwuxH4GuRaM7
Oh8qeO3z4iCn+GFR/Ou5+EGsutjd6XIxxFJ58OfQ4DD88H868r1bUH1TUpbp8jdw
oPYDpXV+B7h9NuLe7UZUsysPUHgipi7zuD0R9Aaxolr4o0V7C9g86J+hX78bdmU9
sV85+KfCN54W16fS7p/nT5o3IwJEPRh/nrX0pb67pPh/w8NU1a7jghk/1e45d8dl
Uck14n488Yjx/q8CWdgIYLUNslkOZHU9S2OAPQD1okruyDZXZn/c0pV/6Zj+VcUX
CGck/MVIFdbcTKlh5YLYRQNzDGfeuRZQ3mSH7ozWtR2MIG9o8SW+gmRusmWY98Do
KxNRgkTEjjDE5YemRkCursEjOmWkZ+YGNcDpmuf1yGVJZJWZWjZ9uVPBb0H0pTVo
ocH7xSmO+wX2IqTS/wDWMf8AZxUSkGxYVPpUiIWZyAOhJrI0LkxSGJpGwABXPK2X
J9fSrWo3v2iQqnEY6e/vVRVYANg4J4OODUso1bEZL8elXc4FVtChuL69+zwIGYoS
cnAAFdSvhe/bGREvsWpiOeDHNBb6flXTjwdcH71xEPpmnr4LfqbxOvQLSugszlM5
FWbXzF8yWB1WRRgfLkkmutt/C0Fuf3oaUj/ZGKdfW0FmqLDEkbMTnC9qcdXYUtEc
pcwaqluJLreVl6YbIP4Vp+Frq40nVraWQOluH5VhjOeDj8607adZtSlnkOyCziHz
EcEkc/kKxXu21G4a9eR9kpxGm7aFUHjp69aq15WJ+zdkfiSFF8TXoiG2OR9644GD
3FJoOjf8JFrlppaSiIOSXfuFHJx78VDq9vql1IJLUNPJGgD4UEgdsVU0SHUhqsUs
kdxAIwTv2lST6Z/GoSd7Gjkmrnvt3Zw2/hebTLFknaK38pUiYM2f8a8d1tLy2mSz
u/Nt9iltm3DlSSfwFdvp2tfZNPihht0tWUYVlXcGPuCc5/GsPxCbnXGE5vLa4ulA
QRJEUfb+J+bnsKUqUk7m8MSnT9l53PIcUYNWltifSniAetBjcphWPapYoznJq2IF
9KlWFQckUBcrAelOCsegNWdgHQClxxTJIBE5Hp9acID3YCph0owelAEQhH94/lTZ
kVYWPJP1qxjj3qvc52DAJ9aYFWNdzqCcHPWi5VfP+UYBFSQxO77trceoq0bVZCC+
QfrSGNt5B5KjHI61KXNKtuqLhQcd6XaB1FMBPMPSjcaUIMdKcFx2oEN+YinwTz2s
yywyGORejCjAJx/OgoeDQBfbxRrqACC+ZTnsAD+eKbP4k8RXcbLfazfyc/dNw2Pp
jNZ7RvJ8i5LHpjvUl3HJAqs8bqG7sMc0nqx3On1GIvoNlLaaVO8jxgNMhZgeOS3v
XAlNs8gBKkH+Ic1614XFxqvhGbTopUgmkiIVmGcr/ToOfevL9QtriK8lS6RlmDEN
u61EEktC5ycnqd/8P9esUhbS5N0V1ISRKD/rOOntWX4jRj4iunRiCkgwQfQVi+Dw
B4otBIQAdwGfXBqPUG1H7XNezzFi0h4buD3/AFrqVdOHLJHI6LVTmiy6qsswkUKM
NuwTnPsfUVDdWPnTMTeMytzhV2gH2FYDzylj+8fGf7xpvmv3dvzqeeH8ppyT7m2N
MiB5uJTxj71SmygY5eRzxj71YQkPcn86t2jqvnbjyYyFz3o9pD+UXJPubNrBY2t5
HOMuY2DbS/HFZ9/eSSapczFQIzIWz3rOiDIWYEgk4I9RTx0wTke9KVRNWSsOMLO7
dzvbL41eMbLTobS3nsFit4xGha1BYgcDv1qnrPxV8a6laeRc6xsSUFXWCFEyCMYy
BmuGQfvRnpmr3kC5H3iCpxWRrdmfXQ2OoXNnBGkLqpUcfKDjNZraeYV8xnBAI4xV
q3a3ZiLiSRAejIoOPqKpOwmWbq8uryQPdXEkzAYUu2cD0HoK19Nja3sGdQBLLzu9
BWOttb3EqQ21xLI7MA2YsYXuetXdT1W2aaOyt2kjhHyyOq/MAPQVpTaV2zOab0M7
VLwyz+SkjSN/G5OfwqnINlsyHpjtXbabpeg3UI+zKjnHIZ/m/GoNd0m0VLaCCBUD
vuY55wO1Rzc0ikuVGUHmhtbURLtbYoRSevvUN7HcmF7OWMY3Fiy4IDex9e3FXQEg
Z7kjcysEjB7t2ArfsNPg04GSeWOW4Iy0jsBt9gD0rSo7IiCbZ51dQyW8UaSKyljn
BGOBUG/Zbkd2Ndl4pEF6szptLKqrGynOe/8AjXFSA4UY4xWXQ0Lej6TLq935aHai
DdI3oPb3rpPGEdvFpGmQ2tuIYrcsg45OQDknueKp+GtWt9ItJSInlmlYbhwAAO1W
9b8QxappUtsbIxscMrb84IP0rN3uWrGZ4U1aLR9ehup9xgwySADOQR6fXFemReKP
D10p2ymM9eVI/lXjKdRT95Vsg1TRKPXJPEejqSqXEzY9YjzTT4k0wKSZ2/CM5ry+
PUJkxltw9G5q/FqEbj5l2n2osh3Z3v8AwlelgEiSbPYeXWZqOr22orG43xcEKG5y
PU46Vk2GmXGsbxZRCYpjdggYq211Loy/2df2jRSKco+A3HXr/wDrq4cqepErtaGZ
q+q3EdobBSojnIZ3x8xH19K1bdbG2tEaYsionAKkZ/OuZvJGvtQ8+OQQ+Tjasijn
v0AxWjZ6vt1KCe/t0lCE72CfN7Ef4U+ZJticW0hTI93dsIZmgiY8Bs/riuk0nSGg
jkmFy85cADAI28+9Rt4t09fuWspP+6Fp9h4pF1qkUAgEUMmVJZsnOOKUG+ZMcl7r
J3BYuud7A8KDtI/GqVxp91MjHBGOSJkGPzHStKVmQ+X15PpzVPVblrLR5G+bzpWC
KeRj9cdK7JNJXOaN27I4QRc9VFPWDIHzqKfmID/Vlz2LGmHHsB6V56bZ2MetuhP+
sHWrb6aiRM/2pcAZIxVWEZcEjgc1PcSN5YX+9zUScuZJMata7Kwj7/KfTmk2HBzS
gMTgZ/CrFtZXN02IYnbPtWpJWEZJxilCHupA9q2ovDN9JyxjjA9Tkj8qtR+FiBmS
7XHoq96V0FjncL68fSggDtXVx+FrTIL3EpJ64AFWYvDWnkMSJDtHOW60cyHZnF4G
OBinAA45Oa7qLRNMDKgtlJYcZParcelWagEWsC7TzhKOZBynne0k4AJ/ClFtO4Oy
Jz9FNejeSkSt5cSjr2FIyFVBABJODgcGlzD5ThItG1GTG20k55+YYq0nh3UmyDCF
5x8zCu3WQsp3KOOlOXlQvl5PbnpRzBynJJ4SvWGXlgTHXnNWIvBrsMtcgA9wneup
7seM9cepqTd0C5pczHyo5yDwPC7KHuJdx/ugDmpj4NsGws8txKwONpfpXQq2eCuM
c4LYx9KkDfMACQcd+lK7CyIbHbplvDDFYWk8cC9JNyP/AN9CuX8UTa/rMkcaeHrW
1t4QRH9nAkznuSef0rqzO/O9VwflPc5p3mDy8YIOeMDJFJaDepwOleF2Z4ruf7TD
cwuH2lVXpzxVfxLLo0niEwQCa304KcjGX3Y5/XNegyOzEMpVgTnaazLrSdOvWM09
lDLKerMvP6U7k2PO1t/Di9bi+k5/55gVnXltbLcH7HK0kJ5G9cEfWvSW8O6TH0sI
s8cc1bh02xjQrFawhTwfkH607hY8iEDDpS7HA4Ga9dbT7RThbO32f9cx1p32O3TP
lwRru6gxjn9KfMFmeRRqzA/KRzUnkueisfwr1v7PEGx5KIe+FGDThgA4QYzgfKBT
uKx5Etncbhi2lJ7YQ1pWFpcFXV7aVTuzlkIzxXpoQldpHT1NM8sNuBTcDjOaVxnm
t8SIQApwWxnFUM16Le+G7K8YNK86Rg/cVsD+VCeGtJQECyLY7u5OaIvuElrocbby
raaeLiOTZKWILA4NZa7nO92JY85NelyaFpphCpaQq2cglM496oP4Rsnk8yaack9k
CqP0FO+pNjh1do2DK5DDoQcGuns3mbThdX0zcKT5sh+6D0H1rSl8I6WF4+0A4/hc
H+YrHe9JEUNxZI0cI2qS3A9Dt9a0pzindkTi2jEv9Q+1zqsIK28XCD+v1qDczsAT
nJxyavDdHNPIJEhIfIRwWB/TFEWpPDOsv2a1d0YMrGIdQcg8UpO7uNKysa01skUE
YCvLtHEaEDAHGST+Nc4YIip8xZIzuOMrkAfWt+78THULoXE9hBFMTl2t/lVj7p0/
Ks69u4buVGEUiIByoIAP0HQUN3QJWH2Fhoe4GfU5lPdfLKj8+a6KGz8OLEWVoJAB
95pMn8q41lQngED3OaWO0mlOIYnc+iqTUNFJopNEftbwwjzPnIXHcZ4q55LRARzI
Nw9cVq6Po1/aapFeyWKyJGSxjmOAePSmXtpLk+XptyjE5J25FV0AyTbIxyp2/rTT
byx8hdw9Vrq9M8OxXdsss0s0ZPVCm0j8614fDemRgZV5G9Gf/CpbQK5g+C72a21K
ZI9w3R5IHbB/wruH1aDU42hvLSK7iJGFccr7+o/Cs9dJsYnWWK2jjkHRk6/nUy2a
FziWNQR0YEZ/GspXvdFxFPhzw9dTo0cl1aFWyMNuXP4jpU+peFbS5iEizL8o+UoQ
D+XSq8qXCoRuJjB7HIFU9Qvmh0y4ZugQ7cH9D6ClzPqOyI7TT9N02RllkS4LHPzq
Gx+VaUK2LtlLNUx0YxAflWdpGoy21hEm2HGNx3pnrz9a2l1C0uXVfLZCQActxmmp
MVjOu8LMSVJDDIx2Nc74ku/Nuo4AfliX9TXVX5jCh8qQgJOPQVwN3I08rSnlmOa6
51OaCMIQtJlVYJHAAic59FNWodJvpm2x20hJ9q7pC67c7UJHQdcVe06FLi6QkOFQ
BiCODXLOqoRcmbxhzOxT0PwTbfZFl1GNxIRlhvxj8qhn0rSxcsYrZCikgbj2FdTq
N39msmUth5MqD7d650SfugwbJOD0zXFhHObdSTN6yjFKKEitoEC7USJcZ5SpEkRn
/dhjjJ44zSswkC5LZI6ZpFHUhVIIznOK7jEc6k4bcVJ+8MDn2pdwxlQApxuJPP8A
9amLHk7shWHIViBimswL7t27OOcd6QDwdgICn2pilyNpA3f3vSnszHawG1SepxSs
CrMyg+xpgSKQgIXJIOOD1pzSBwME+p4z0qGPKI+9wCc4A/WpVO2FdvPsMUgBmAbO
05UcnORmodwIJJG3dxUuSikE9+gqLBOxTkk5yccCgBQwTcoOCc/MRzVhCeVKqAfz
qrgBNrNkjgjPepuoC5I47nPNADx5ZkA3cdu1PzwVfJz27/SotzAY3beOvanlmmO4
kqwwetAEyOoIwDyckdcUrRsGYvwuc5B7H1HrUe9VTITGTwRxzShiQCoLdywoGBOQ
MJwpxlT1p6kjBIIXggEVGGyfmXPGcAYzUoZGCCUMhXgEigRIcNtJ2qM4OB/Wo5EJ
OQMY6gn16VCQN2VZwB/DuwPxqcPH/FucY4GcmgCvgL0bPqPT2pjKRtJJ4J5A6VbZ
lmlBYMreuO2KiMWSX+Xc3OB3+lMCISK4JUlMddo5HvQuSxwzbQOuKSSMZDHhvQfl
StIcndgHHBHOaBDwuVCsc85wBzURk8uQqwyo6N/eoyzMpG3J+6B0p0mCoDYHsp6Z
oARX9ACSeueaV9rDgc9//r02SMD51XjHKZ7e1RJJnCgcnoueRTAnKFtq7gwxgk9B
+NPThSMdO54poO9QcHjgrjoakB+TLcAHO30oER7fXgjuDSjDqRnAzxikZQVDFm24
64zTADu+8WJ6cUAOzgYAOeTgdqimsILnPnRo24HnAzj69qmIDE8Z74zjFIrYIJIG
RjB60gOduvC6zQFYLjae25c/rV6w0WG1tRFPBBKydXEQGfr1rV3EqSocHvgU1Spb
IDc44PencLFVtOsV/wCXWAAdzGMUi2Nl0a1gPOM7AKthVZjg49qaSO2OT2NFwsQf
ZbZBjyYun9wU/EcaEKAPbFOQFTksBz+dDE889fTnFAAVG3aOfc96iCIFwQQc/SpC
CSSxwexFHJPzfTIoAZuKghlYegPelJGOBjHY8GnMM8AZ4pjAAjIxnnnmgBzPkgAB
SenvTTkcZz+FN3DG3AAzkA80FgVyoOSemelAEiSNGeG298dqbcLDeRFLq3R1bGSB
gn8qFCnI5BPPWk3NjpzSaHcrLoiFcRXUZP8ACsilSPbNVZLWWDgtlunBGD+IrVLI
UUDcXzyc8EVHuCAnaAc+tTyjuY04lktLhUDFymAM5471zWFwwbIIH6130tv9stJQ
jBWK7VkXhlPrXn17qGuaZdNBNIrFeheNTuHr05rVQajcjmTdjvCMSYLE8/wkflXT
6VayQ26CQAFwGbI59h/n1rEsbQXd/GoUeWg3sTwcVvXk628TzMF3n5QW4z9PpXmY
ybk1Sj1OuhGyc2Y2symS+YMrbFG1Svp3P51RKoeVJyDjHXvUrTyYySGbPHPbPoKj
BlL7cZdjx61204KEVFdDCT5nccMlTy+/BBJHP0pzKhwSwLn09Mc0ycO23DEFuc5x
gf4U2IbX4YMq9yQD9aoQq85BUNjAzinKFKEqdgHXI6UmSWYlSCCGC54NJ85yctuP
OAOv4UAPTBDM3AGMZPWn85XexbC5AaogQ0YOAuTyMk5+tSEg/MSd7Yxu5FMB3lNw
27Ck5wRgfXNL5hEgB6j5TgU0MX3jADLg47Ypyk/L2z1yevv9aAH+YFJ52qeAScVC
AyDcqc7sZz1FKTnDEJ24GTgdqbPKqKIyrf7J96QDvLkb5wDgfw9hSBfnYllAGOvH
6URGPy8FiSe545pN2UKgEnOCfagBwYkqwxzngfzpwbo6glWBGWHP5UwHeDjAA4OT
T8jO0HGODk8A0wJlBQDPpngdBSCQ7iR8p6qeuB9PpUb4Rtu3OcY+hqQqHwAE3KvB
zn9PWkBJv8wBj8xBGeMfr2pXIb5hw5bg/wAJNM3MpzJ8ueAR1H4VMpYjiI475bni
mBXckqd0mN3oP6U9CwXaACORyP5UpCncVVgzL1ye9IiKEIChdvfPUfjQBKXG4Ekk
LyACcigGbfuHOzrxj6Co4253lVJxjk8gVYTBzgfc55bGaQEcrZAcLu4wTnj0qPaC
+7kgDjnoae4SQHy5FbvgggcU1YSAflLL0PPemA0Y8snaMn0zx+FMVYFYMznnknHb
NJIIy3QjAxnBBNPZGQNuwAPTr9KAFX5g7HcFJwq9cCoZVZ1D7FjfHBJ6VIsiowID
FiMg+ntQW+QDZt38HIyPrQIj3CHG8jJUY96fnOCXJU+wNDiGSNc/fJGCPWoCzW4B
kYKq8BgOTmmFixkbgn5elNba58sdSO/b0psZDbVD5HSnSAbjz3oEKT8qllyemAet
AYAAAFWHGMZqNtwVQCOvalUtu3ccc9O9ACoCvy5ySemTQwXJbGCOcHqaVlG7OTnr
8x600IzNnoo7Z60AIOF+UfiKcCykNtI6Y2jmk3sxYgHPbcaDIdzAk5BwB6UAKWAx
uQ9cf/XpM5kOM46Yx1FBlGSFwuOue9NBcqPXHHOB9M0AI3A2gAKBnPvSgNv4ZcH3
pMndtK7f1qJlO9UXJyeuKAFIYt1BC9cUuQSARj0GO9BR2+YZ98d6bt9Tx7DPNAAw
JAIwADk59KR2IBABBx2OcUPhioCE/jg0m3aOM5Pr+tMBAA3fOOcnjFBZmwTgAdTt
wDTdp3ZGBnoe2KXdlCCS3PQmkAoJycDrx060p4GV6mo8kgc8Hov/ANeiR8qcE4x0
Parpw55WJnLlVx1xsZkRVjJU+pB/Sqt1aWWqwJDexE4BxIASyH6inxsxbB7nGTST
kuqIpIBJBUcV32VrHHd3udTpVqIIt5iYNMNxyc4HaodYmaRxbGMgIuScjgntz9K1
NsgUyuVVB8zDFcpc3f2m8lkC/KTkqelfL4VOrWdR9D26vuQUUMUbW+ZQC3QLgED8
elSSAqqhSm45YsD+lMSRWYfeYZy2Occ/5NLcbiT5hYvnAJHA/wDrc16hyCsqCEHe
WPUcYyPemySgsVDp8o6juaQL1Ysq9ssM/h+lNDgRPhF+Y/IQBgeo9qAJFyAoyQxG
SCc/r2FKhMj5YKVXORVcebtUOSOmAeaeHEQ53YIHcDnPemBJIQIxtUM3ptzgVEl1
HJKIVxtUEt1HPtmgbTCzDhuee3+TUZ3sv7zIUDHA9uOaBFp2DpuyMtxheRj3pCrL
nCc9lJ6UiMgOV2gYwQfShxtYYK4+905xQBJFnfg4/kPypAT5hIKpjkA802ZUdCzk
s33mOenpSBRIAyjBYfdz19zQMRnckBVVZB0wuQOaVXKk9lzkZGD9aVeV4RSWPAHG
Mj/JpsanayyH5m4LE4x9DSAeSrIpYFueQvUin7wo2hcgnGOAT7U1QiyfL9zHUdSP
8acNqsGXI3Z3dsenNACoqhssGRupycjHYYp/CSFdo3c4OOCfrT9mcltoUDhvWiCM
AbtoJbJKg9fQ0AEbEDahyeoBOcVKHVHD5IZs5z6/WmKwTcdnzEYIX0pmQFIVhw2c
P/WmBPIQ5Lb8g4wDwP8A9VPTIyr4G3v1PeoSoZ03tyfQ5wKVWVZdiDAI7nB9qABd
6xjGCoHAC8EU5DtdQRsPVe9NLfITHI27dgfLQQJJMsSMfKd5AwfagCfcBbktIhYj
k4569KjbJO7P3gflP1//AF07Kvu2SAHguxGc/wCFRB8H5No3cMNxH60gANtw4Csc
lQD1FRhpnB2kFU4JYdKnY5i3bSVPCj1PrUTHDglgQRgheMHrTAargtj7+D25P0pC
CAN5xuPAwacpAlZQoAPOen/6qds77wAhyxx+VACJGWIJAA7ndkr9KdgsWAUEhcbu
mDTSoBwWyQeg4qJkIwyqSx+Vm3UAQmKSP5oSoIHA6jNKkymTaz4bjjHIp42bWUEE
/wAP4U2SKO4yzEByc7h60CJNpZ8leMZAPA+tEbMA2cH07AVXSZ0Yhzgrx8vRqlVm
dcsTgcHB6GmIcSARhffOOopAM5c7kxwCO9IjnZkqGG44zTvvAlmbY38JP+eaAEXc
QcZIBznGPpTo94OGbIIxgimt8ojXKqp5OOuKEAU7wMY6ZbO7tQBIVLBmYrtz27U0
/OOSWzj8M0isQSBjB6Hrn8KQuYxt4GeAQMUALGB5Z5PynaRjIpjOV+UEsT+eKeqj
b5e4Yx1J6/jRtxJuCswIwAGoAYsikluMg8qD1oRt4BYc56Dt9aWVV3BTs+bv/wDX
poQo3CnBOMZzQAxh5ZIV8gjt160EtG2QxYngjincgnKHAORnnNRkqwJxwCTg8Y+l
ADRuyemT1wfu0AjcysW4x9KURMoJI+X68EGnbG4UKCfvZPagBm0YLLzjkikuIw+1
mwgK9O9bNroMuq6VLc2MyS3kTHfAvDbexHr3rn7mWCBClyrRzLwxClj9MV14e1rn
NWu3YYZizgxDC57+golYKgxxls5zzz6flWLe6xaIrGKdmc9FKEfzrWdjLAMsNuQQ
3rW909DKzR2euXr21gwVSDM2FzxxXLSkhUJ27j8rc9at6zqJe6MUcjskJ2529Tn/
AD0rOQmR1cLlnJ+U9gPWvBwdP2dJeZ6tefNMu7RHz8oyu0MMVE7MfnY5QDPAzUSO
fvJj5cln3YAoDlmdCF2HDMf0rrMiaVl2q2VLE547/nUJL+YsbttXl85z9BTiCZDM
rhgnRmHSnI0aMDIPnBztU45oEDhBGDkSbyfm6Yx/+ugnfgZbAOTzgn3pudskalVI
J+bByR2pxXapUHkH+LvQA0kD5gBnHRjkn6YqVXjBG1RkeqnGD60JIEmEoCB8YyoP
zUi3DuXdY8tkjOOB+ftQA5QodWRiEAJyBnHPbNSO6NHzs3NzzxkVCpYEgEY9Dz2p
4LBMqVwME0ATpj7PvYbQxydvGP8A61IkeYCpTAZ+uc9f8ighRhQGO5eW6fkPrTfn
jCg5KdflHJHt70hjim1/9Zkkchue/wDSo2i34+dV5Ocf4n8KsIxciYxEbv73U+9N
lYYJYgA/NyM7jQAkYYKgCAhsj/GnMPLy3mIw7jHA596SIyNEdszuWGCMAGlReTuG
7IwVU52k+ppgNT95IdwLf3R6VYAUqTuwOO/btSbkcNwNo5JXqDSlRGhcqm0YAbHT
8KAHs8W1so5QDgKcdR9KYsYkAdcshyCuME/SnIu9AzBGONy9Ov8AhTYpHDgDJJO0
OpGBSAkXNuyAbsvwN2OM9s0rpiZgxAIzyFwTUJcqw5O4OSCxzjH6VJgI+HkDBhuy
B69j70wJGRltvm7Y7UxVMaYYoOrAheWqBk8wIiEldhbauTt96kMaSFQnI5+YMVwc
ehoAYsiCIlRsPoRkt247GkaJ5y0ZDRlRu3KcEf0qe42sB5eATj5fQ+tRSebFKzBy
FTAAHQH1oAlDmGQbZXUMAwLLkn05ppALMZMKccZPOfalR1GA6sfQr27Gm+eVleNM
sDyVHzEf4f8A16AGfLvJCfLk4Zxjn6U0n5iYzlQ3O4Y5zTiishwGAUEqCM9KaWad
Qrx7ArduuPrQBHhCTvGW9+uc04Rs6EFCFXncBjn0/KkUBQBw27qOwFSMI1DFzlWA
4J4z60CEADoBlUxlvnxnmgoJJVZdoA4wrY/HmnEAgSBQVBxjr+GaaDkOMeYAAORj
jPFAxQmUYkJkAfLjOPw71EieUMKcov8ADuH41J5b7iMsuRxg4P0yKiD+WVTmT3bj
HsaBEyujRZzufPP/ANakYKCVG5lHRsdfaqrwxxljGCM/Nw3U/SnW8xlYiSQjB4+X
ke3vTAnWSPbyQT0Ht2pCYxgqcAd89f8AGgKgBAX5O1HljGwZA6Ecce9MRGCvGclz
znFOdtsgIAOeu0dT7UzzBESF2lu64xxTkeJkYqufXsBz/n86AFVwiYwcN2I5pSWK
4j5PfHOB6VGzBcMTsTGfm5BpVYKCyYz95VHFACq3muqZVh9Dn6Uow0JZACRk4P8A
DUUb7jj/AFbD5uV6+uafvJBLqBgcbT3+lAD0ctHulxuJ4HY1GyqRxk4Oc4ximsvI
yobI/EUrKoDYcBuBzSAc0+wFQucHGduPxqMO7oSXUEHg+9Nc8ZeRgD2HOKImVnwf
u+o60wHRyTW7ia2uJI5E+68RIwaI0OqXgXXZV8tvu3kK7ZEPbeOjL+tNB252qzEn
9P8AGkWRvMO/5QOGUii7WwHQXnw1FxoyyW0/22Q5PloAcjsVJPNcmyNb+ZaMj74v
kKsuGBHqK2rfWb/Sv+PK8kiGc7Ryp/A1Sublru/nvbnb5swJJVcAnua6KE25WkYV
YJK6KckkkkyyOrKS2Sc5zUykWyIpUvKxIxt5A9M+lQSAfPwODxU1uxMJyScA9/au
TZHQNkSRicsoVhkkDGPwpyOrlUV2OcB9wAzVd3cRLhmGcg89asLwkmOOaBiMAikb
/lJ4AHOf8/zpQwYkyREsSOTTIiSzZJORk0icSIB0LrmmAqxlGYITHwcnGQTnpUrM
Y5F+/wBsEjI98VF1kfPPyZ/Q1NLwMDgdMflQIYHRXZtoDD+IZIAqZDvTqgU88DGK
itQDqEIIyN44qzd/LINvHGOP+BUAN3qyI5JyPl3Y4JPrToYis/z4OTywHGB60lsS
YXyc8j+lWLfrIOxZs+/AoGQmRScyFkDfc46+nJ5qZZGij/cRvt6Md3K0y4A8yXgc
EAe1ErN50Y3HBXkZ+tICZZAS+05JHZuFPXrRkCcwrOyKHJZwuT07U6YBHZFG1S7A
gcA0yxA8tTjkvyfXkUBcSI7C6mRhxxkYDfj+FCRhlDNcDa3Vd+3pk027ZluyqsQo
EZwDx1NPdV+2J8o++O3vQgGIdxbDJ8g5Ug/nn3qXPmDzHdcr35P6elMwBdSnHPmk
fhkcVE/N+inlcdD9KYEn3uVYKSMkhhgD3H51PCI2jG2MDOSGPQY96pOSGwOnl/4V
IWYLcAMf9WO9AFgTBUJVhIcHvgggU6GB5otylgc5GTnb3qlCfng/2olJ9zmpwSru
ASAWXgfSgEWWEb4YkOckDDZ9zUEaJEGlZyQSAgznt/Kr1soMUAIGBv7e5qtbgPIV
YBlHIB5GdtAERAfGwBuBuyTk/h2pHHy7yoJxyucj0p8ZJhBJydrf0pZCTLICSRs6
H6igAVVEYG4EkA9Mdf8A69JsfeDPw2Tjb1b0IA/rTj/x6/UDNSMo+xzHAyOh/KgZ
HCm5naUgRAHIzz75/M1OsSbI40H7soTvHOe/TtVS1Zn3BiW4HU57mnScWwxxhAf1
oEMYxqzFH2hvukKcEelMZUWNScliBgqafcALvCgAAjAH0qC5YqibSRgcYP1oETrH
tIVHV1PqeFNQMsiY+cE/xFQDzUzAEHgdW/kKpIOID3PX35oQ2WZMyIRuIGMfMecU
xSIlk/eqxIxyuQPX+lWG/wCXv2I/lUMSg7cgHKsT9aBEcSFXbI6Nzg4pblVkc4Vj
Jk4IGCo7dKWcbkXPOVJ5+tMyRuIJzlf50wEO4Lu3bgg5cdR/jT4wWP3x0+8DyaST
hxjjjt/vVPOoEwwAMR5Hsc0CIeAmXPBHUdT/APWpV8shwqnd2OTTdzFGyT19aJOI
5vzpgMOFISUElgDg9/SnAqwAG0KPl3fzoiAMuCMjjikuPlYbeOp4/GgAaRgxyAcg
Y65pAAJeTtPoTx0pBzDGx+8Tye55pZgPMcY4GcD0oARlYMSoK7j83XNNlL7srHwg
54yD9afc8Rrj3pIyTNCMnB6+9IBMxhcKhBI57daEbOCyfKOvvSgf632Jp8AHnjjr
HzQBFwDyoUDkc5B+tKTlySeMZx/SmsT5pGTjeRinpyzfSgCJ8Mc7uB1qPVtSlg0Z
4QiFZGUozj5k4OcfWpZQMvx/FisTWCTJCpJK88dqNtRxV2f/2Q==
------------99tv06Q0G79G6zngvXP3HP--