Answer to puzzle, Uke 17

A lot of trial and error is needed, and, although there are ways to help limit the set of possibilities, there isn't a surefire method of arriving at a solution in a reasonable amount of time with a pen and paper.

To start with, we might notice the first two digits make the number 98, which is quite close to 100 . So, if we can add and subtract the rest of the single digits to make 2, then we'll have 100. In fact, there are eight ways to do this:
$98+7+6-5-4-3+2-1$
$98+7-6+5-4+3-2-1$
$98+7-6+5-4-3+2+1$
$98+7-6-5+4+3-2+1$
$98-7+6+5+4-3-2-1$
$98-7+6+5-4+3-2+1$
$98-7+6-5+4+3+2-1$
$98-7-6+5+4+3+2+1$

But we can do better-we can make 100 with fewer than 7 pluses and minuses. Here's one way to make sure we find all possibilities: Use a computer simulation. Each pair of digits can be connected by either nothing, a plus sign, or a minus sign. Since there are eight paired connections, there are $\mathbf{3}^{\wedge} \mathbf{8}=\mathbf{6 , 5 6 1}$ possible combinations of pluses and minuses. I simulated each one of these combinations to determine which sum to 100 .

The simulation unearthed that there are seven other ways of making 100:
98-7-6-5-4+3+21
$9+8+76+5+4-3+2-1$
$9+8+76+5-4+3+2+1$
$9-8+76+54-32+1$
$9-8+76-5+4+3+21$
$9-8+7+65-4+32-1$
$98-76+54+3+21$

The bolded solution is the winner. It uses only four pluses and minuses!
The computer simulation also revealed that it's possible to make every number from 1 to 100 , which could keep you doodling for many meetings. (In fact, it's possible to make every number in more ways than one with one notable exception: 9+87-65+4-32-1 is the unique way to make 2.)

