Solution to Math Skills Problem 4:

Rachid:

Totalareal: $\quad 4 \mathrm{~K}+4 \mathrm{~L}+\mathrm{M}=1$
Rødt areal: $\quad 2 \mathrm{~K}+3 \mathrm{~L}+\mathrm{M}=\pi / 4$
$4 \mathrm{x}(2)-3 \mathrm{x}(1): \quad \mathrm{M}=\pi-3+4 \mathrm{~K}$

$\mathrm{x}=1 / 2 ; \quad \mathrm{x}^{2}+\mathrm{y}^{2}=1$
$\mathrm{y}=\operatorname{sqrt}(3) / 2$
$\mathrm{S} 1=\mathrm{x} * \mathrm{y} / 2=\operatorname{sqrt}(3) / 8$
$\operatorname{Sin}(\Theta)=1 / 2$
$\Theta=\pi / 6$
Rødt areal: $\quad \mathrm{S} 1+\mathrm{S} 2=1^{2} * \Theta / 2=\pi / 12$
$\mathrm{K} / 2=\left(1 / 2^{*} 1\right)-(\mathrm{S} 1+\mathrm{S} 2)-\mathrm{S} 1=1 / 2-\pi / 12-\operatorname{sqrt}(3) / 8$
$\mathrm{K}=1-\pi / 6-\operatorname{sqrt}(3) / 4$
(3) og (4): $\quad \underline{M}=1+\pi / 3-\operatorname{sqrt}(3)$

George

Each circle is represented as an equation where $(x+a)^{\wedge} 2+(y+b)^{\wedge} 2=1$. Placing the centre of the square at $(0,0)$, then (a, b) belong to the complete set $(0,0),(1,0),(1,1),(0,1)$, and there must be four crossing points @ ($0.5, \mathrm{~A}$), (A, 0.5), (0.5,1-A), (1-A, 0.5$)$. To determine A:
$\operatorname{sqrt}(1-0.25)=y=\operatorname{sqrt}(3) / 2$,
We can then do a double integral, but easier to visualise if you calculate the area under the circle (1) centred @ $(0,0)$ between $[0.5$, sqrt $(3) / 2]$:
S sqrt(1-x^2) dx (solve by substitution: $\mathrm{x}=\sin (\mathrm{u})$):
$\left(x^{*} \operatorname{sqrt}\left(1-x^{\wedge} 2\right)+\arcsin (x)\right) / 2 \mid[1 / 2, \operatorname{sqrt}(3) / 2]$
$=>($ sqrt $(3) / 4+\mathrm{pi} / 3-\operatorname{sqrt}(3) / 4-\mathrm{pi} / 6) / 2$
=>(pi/6)/2
Isolating only that quadrant requires us to subtract the remaining area underneath, bound by the line $y=0.5$

S0.5dx | [1/2,sqrt(3)/2]
$0.5 \mathrm{x} \mid[1 / 2$, sqrt(3)/2]
$=>(\operatorname{sqrt}(3)-1) / 4$

So, each shaded quadrant has an area of: =>(pi/6)/2 - (sqrt(3)-1)/4

And thus the total shaded area is...
pi/3-sqrt(3) + 1

Not able to typeset in LaTeX or anything right now. I feel like there should be a simple geometric solution almost immediately... the circle has a radius $=1$. Each quadrant has an area of 0.25^{*} pi. Two opposing arcs form an eye-shape with an area of the square - 2 * the external area left by one arc (which is $1-0.25^{*} \mathrm{pi}$). So our 'eye' has an area of $0.5^{*} \mathrm{pi}-1$. But I couldn't then make the leap to remove the curved triangles without integrating, at which point it was simpler to do the above.

Håkon
\square
$\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$

$$
\begin{aligned}
\Rightarrow I_{2} & =\int\left(1-\sin ^{2} u\right)^{1 / 2} \cos u d u \\
& =\int \cos ^{2} u d u=\frac{1}{2} \int 1+\cos 2 u d u=\frac{1}{2}(u \\
& \Rightarrow \frac{1}{2}\left[\sin ^{-1} x+\frac{1}{2} \sin \left(2 \cdot \sin ^{-1} x\right)\right]_{0}^{1 / 2}=\frac{1}{2} \\
& \Rightarrow I_{2}=\frac{\pi}{12}+\sqrt{3} / 8 \\
x & =2 \cdot I=2 \cdot\left(\frac{1}{2}-\frac{\pi}{12}-\frac{\sqrt{3}}{2}\right)=1-\frac{\pi}{6}-\frac{\sqrt{3}}{4}
\end{aligned}
$$

$$
=\int \cos ^{2} u d u=\frac{1}{2} \int 1+\cos 2 u d u=\frac{1}{2}\left(u+\frac{1}{2} \sin 2 u+c\right)
$$

$$
\Rightarrow \frac{1}{2}\left[\sin ^{-1} x+\frac{1}{2} \sin \left(2 \cdot \sin ^{-1} x\right)\right]_{0}^{1 / 2}=\frac{1}{2} \pi / 6+\frac{1}{4} \cdot \underbrace{\sin \left(\frac{\pi}{3}\right)}
$$

which gives z :

$$
\begin{gathered}
z=\pi-3+4 \cdot x=\pi-3+4-\frac{\pi}{3}-\sqrt{3} \\
z=1-\sqrt{3}+\frac{\pi}{3}=0,315
\end{gathered}
$$

