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Generalized Polar Coordinates on Lie groups and Numerical
Integrators

S. Krogstad, H. Z. Munthe-Kaas, A. Zanna

Abstract

Motivated by recent developments in numerical Lie group integrators, we introduce a family of local
coordinates on Lie groups denotgdneralized polar coordinatesFast algorithms are derived for the
computation of the coordinate maps, their tangent maps and the inverse tangent maps. In particular
we discuss algorithms for all the classical matrix Lie groups and optimal complexity integrators for
spheres.

1 Introduction

Lie group methods for integration of differential equations has been an active area of research over the last
decadeT, 20, 24, 17, 22]. Consider the family of integrators based on local coordinates as presentéfl in [

(see Algorithml). These methods are expressed in terms of a local coordinat@ritam a Lie algebra to

a Lie group and the inverse tangent magbof

Analytic coordinate maps include the exponential mizg},[the Cayley map, and more generally diagonal
Pack approximants to the exponential. It is well known that for certain groups (e.@)gLlthe only
analytic map from the algebra to the group is the exponential mappijg Matrix splitting techniques
yield non-analytic coordinate maps. Among theserdinates of the second kinstudied by Owren and
Marthinsen R5], show excellent computational cost for certain groups. Unfortunately, it is not known how
this approach can be applied to e.g. the real orthogonal group.

In this paper an other family of coordinates based on matrix splittings is studied. By recursively applying
generalized polar decomposition$ the Lie algebraZ7, 23], we obtain coordinates on all the classical
matrix groups, where both the coordinate maps and the (forward and inverse) tangent maps can be computed
efficiently.

Let us briefly review the generalized polar coordinates as defined in S&ct@onsider a nested sequence
of Lie algebras

9=90281 0 DG
derived from a sequence of linear maps: g, — ¢,,¢ = 0,...,k — 1, such that the following relations
hold

U? = 1
oi([X,Y]) = [oi(X),0:(Y)]
1
Range<2(l + o-i)) = i1
An arbitrary elemenf € g is decomposed as
Z=P+ P+ -+ Pi1+ K, (1.1)



where the components are computed as follows.Hgt= Z and fori = 0,...,k — 1 let
Kii = SU+o)Ki€a,,
P = K,— K= %(I —0)K;.
The coordinate maps to be studied in this paper are of the form

O(Z) = exp(Pp) - exp(Py) - -exp(Pr—_1) - exp(K}). 1.2)

It is assumed that the computations in the last Lie algghraan be done fast, either because of low
dimensionality or because it has a special structure (diagonal or block diagonal matrices). The computations
involving the matricesP; and the tangent maps are relying on the structure of 2-cyclic matrices to be
discussed in the sequel.

The paper is structured as follows. In Sectiwe review basic results of linear algebra, matrix Lie theory
and numerical Lie group integrators. Sect®mtroduces the generalized polar coordinates, and develops
the theory of their tangent maps. In Sectibthe classical matrix groups, symmetric spaces and spheres
are discussed in detail, and in Sectl®we present numerical examples.

2 Preliminaries

2.1 Coordinates in Lie group integrators

In order to motivate the theory in the sequel, we will briefly review a class of numerical integrators intro-
duced in P1, 22]. We will present the theory in the concrete context of matrix Lie groups. The generaliza-
tion to general Lie groups is discussed ir].

Let g denote amatrix Lie algebrai.e. a family of square matrices closed under linear combinations and
matrix commutators,
[A,B] = AB — BA.

Let G denote thd.ie groupof g, defined as the set of matrices obtained by taking matrix exponentigls of
and products of these exponentials. The Lie group is closed under matrix products and matrix inversions.
Let M denote a linear space andG x M — M anactionof G on M, defined as a map satisfying

g-(h-y) = (gh)-y, forallg,h € G,y € M.

The action induces a product g x M — T'M, whereT M denotes the tangents #f, via

d
Y = — t Y.
Vy i, exp(tV)-y

We consider differential equations evolving &, written in the form P2]

y'(t) = fy(t)y, (2.1)
wherey(t) e Mandf : M — g.

Let® : g — G denote a smooth mapping from a Lie algebra into a Lie group suct®iliat= e, wheree
is the identity inG. Letd®; denote the right trivialized tangent @fat a pointZ € g, i.e.

0

— D(Z +507)=dPz(62)P(2).
0s|,_o



It follows easily thatd® ; is a linear map frong to itself. We assume thaib, = I, thusd® ; is invertible

for Z sufficiently close td. The map® defines a diffeomorphism between a neighbourhodd efg and

a neighbourhood of € G. Via the translations oir, we may extendb to an atlas of coordinate charts
covering the whole of7. Using the action of o7 on M, we may also viab obtain a coordinate atlas on

M. For numerical algorithms based on such coordinates, it is often essential that we can compf@te both
and the inverse tangent mdg@ " efficiently.

As an example, consider the class of numerical Lie group integrator2.fr {ntroduced and developed

in [22,12). Giveny, € M and atimestep € R. Given{a;;}; ;_, and{b;}]_,, the coefficients of an
s-stage Runge-Kutta method. We step from~ y(¢,,) t0 yn1+1 =~ y(t, + h) as:
Algorithm 1
for i=1,s,
Ui =375 ai ;K
K; = h- [(@(U:)ya)
K; = do; ! (K;)
end

Various coordinate map® have been proposed and studied in the literature. The exponential mapping is
used in 2] and the Cayley map ir2[Q)].

Owren and Marthinser2p] develop the theory ofoordinates of the second kin@iven a basigV;} for a
d-dimensional Lie algebrg, an elemeny = Zle z'V; maps to

(Z) = exp(z' Vi) -exp(2Va) - - exp(21V,).

Owren and Marthinsen introduce special classes of ‘nice’ bases, so-called Admissible Ordered Bases
(AOBs), and show that for such bases the ndg%) and d®, ' can be computed 9 (d*/?) opera-

tions,d = dim g. Using the representation theory of semisimple Lie algebras, they show that for certain
semisimple Lie algebras, AOBs can be obtained from Chevalley bases. In the cases where AOBs are found,
they report favourable numerical experiments indicating that the resulting numerical algorithms are between
two and six times faster than corresponding algorithms based on @$ifig = exp(Z). Unfortunately,

it is not known if AOBs can be found for all classical matrix Lie groups. In particular there are still open
problems with several of the real matrix groups, such as the real orthogonal gfdup R) with algebra
so(n,R), consisting of real skew symmetric matrices.

In this note we will introduce coordinates based on generalized polar decompositignsrad we will

show that this leads to fast computable coordinates for many Lie algebras, among these all the classical
matrix Lie algebras. Furthermore, the theory of generalized polar coordinates is considerably simpler than
the theory of second kind coordinates.

The basis for our approach is some results from the theory of symmetric spaces, as gign\ivie] will
now review some linear algebra and basic elements of the theory of symmetric spaces needed for the present
purpose.

2.2 Projections, involutions and 2-cyclic matrices

By a projection matrixon a vector spac® we mean a linear maf : V — V such thaflI> = II. Unless
explicitly stated we will not require projections to be orthogonal {iL&€.= II). By aninvolutive matrixwe



mean a linear mag : V — V such thatS? = I. These two concepts are naturally linked by the following
lemma, whose proof is trivial.

Lemma 2.1 To any projection matrixI there corresponds an involutive matisk= I — 2I1. Conversely,
to any involutiveS there corresponds two projection matriclg andIl defined by

_ 1
Iy = B (I-295) (2.2)

1
g = 5I+9). (2.3)

These satisfy the following relations

g +1IE = T (2.9)
I = IMilg =0 (2.5)
Sy = Iy (2.6)
suf o= 1. (2.7)

ThusV splits in the direct sum of two subspaces, theé eigenspaces af, whereH§ are projections
onto these. Note that i is involutive then alse- S is involutive, the latter corresponding to the opposite
identification of the+1 and —1 eigenspaces. Thus, at the moment there seems to be no fundamental
difference between these two subspaces. We will, however, later return to involutive automorphisms on Lie
algebras where the 1 and—1 eigenspaces play fundamentally different roles.
Definition 2.1 A matrix K : V — V is block diagonalwith respect to an involutio§ onV if

SKS =K, (2.8)
and a matrixP : V — V is 2-cyclicwith respect toS' if

SPS = —P. (2.9)

Any matrix M can be split in a sum of a 2-cyclie and a block diagonak,

M=P+K, (2.10)

where
_ %(M — SMS) (2.12)
K = %M4+SMS) (2.12)

To understand the structure of these matrices, it is convenient to represent linear ogeratdrs- V in
2 x 2 block partitioned form in the following manner. The matfix splits naturally in 4 parts:

M = (g +II5) M (g +I1) = g MITg + ITg MY + ITE MTTg + ITE MTIE . (2.13)

The partitioning of M with respect taS is defined by dividing) in an upper block corresponding to the
range ofll; and a lower block corresponding to the rangeﬂg‘f. Thus

M-~ M~—*
MZ(M* M**)’ (2.14)



where M =TI, MTI restricted to the appropriate subspaces. In partitioned fobracomes

-1 0
5= ( 0 I ) '
Thus, K consists of the diagonal blocks #8f, while P is the off diagonal blocks.

Efficient computation of analytic functions of 2-cyclic matrices will be crucial to our algorithms.

Theorem 2.2 Let SPS = —P, whereS? = I. Let® = P2II5. For an analytic function)(z) we have

B(P) = HO)] +1(B)P + Py (6) + Pun(©)P + 12(0)0, (2.15)
where

hie) = 3= W) - v(-VE) (2.16)

Gale) = o (B(VE)+ U(-VE) — 20(0)) (2.17)

and where we defin@® = IIg.

Proof. Involution of S impliesSP = —PS hencer;P = PII{. By induction it is now easy to verify that
for anyk > 0 we have

Pt = @Fp+ PO*, P2 =0+ POFP.
Lettingy(z) = Yoo, ciz’, we find from these formulae that
(o) o0 o0 (o)
w(P) =gl + Z a2k+1@kP + P Z Oégk_H@k + Z a2k+2@k+1 + P Z O(Qk-+2("‘)kp.
k=0 k=0 k=0 k=0
We define; (z) = > pe y aspr12® andis (z) = Y7o ) asrt22" and derive(2.16) and(2.17) by straight-

forward manipulation of the series faf(x). a

Note that if P is partitioned with respect t§ as

0 B
P:(A 0 >, (2.18)
then M
_ on- (B 0
G)_PHS_( 0 0). (2.19)
Thus

Vi(®) = ( e ey )

SinceBA is ap x p matrix,p = RankIIy), we are mainly interested in cases wherie small, and the
casep = 1 is particularly important.

Corollary 2.2.1 If p = 1 then© = 011, for a scalard, and
(P) = (0)I + 11 (0) P + 2(8) P2, (2.20)
wherey; andi, are given in 2.16-(2.17).



Proof. If © = 01 then
U1(O)P + Pi1(©) = 1 (0) (g P + PIIg) = 1 (0)P.

Similarly
Ppo(O)P +1h2(0)0 = 15(0) (PIIg P + 115 P?) = »(0) P°.

2.3 Computation of analytic matrix functions

Let A : V — V be a matrix with a (small) number of different eigenvalues. .., A\;. Lety(x) be an
analytic function. For later application, we will discuss some algorithms for computing

w = P(A)v (2.21)
for an arbitrary vectop € V.
2.3.1 Via eigenspace projections
In the following we assume that is non-defect (all Jordan blocks of size 1). Foe 1,....d, letI];

denote projection onto the eigenspace corresponding tbhen

u, = I

AHi = HlA = )\iHi-
Thus @.21) can be computed as
d
w = (A =Y p(\)Lv. (2.22)
1=1

The eigenspace projections can be expressed in terms of the left and right eigenvectars, dedy, ,
denote all the right and left eigenvectorsafwherei = 1,...,d andk = 1,...,Rank(Il;). These can be
chosen such that

Az, = ATk (2.23)
YA = Nyl (2.24)
Y = 6ij0ki (2.25)

In other words, ifx; ;, are the columns of the eigenvector matix theny;-fl are the rows of{ ~1. We
have

=) @iy (2.26)
k

We will return to other ways of representing these projections in the sequel.



2.3.2 Viathe minimal polynomial

AssumingA is nhon-defect, the-degree polynomial
q(z) = j_y (z — X))

is the minimal polynomial of4, i.e. the lowest degree monic polynomial for whighd) = 0. Letr(z) =
¥(x) mod ¢(x) be the division remainder, defined as the degreel polynomial such that

P(x) = q(a)s(x) +r(z),

wheres(x) does not have singularities ij. If ¢(z) is a polynomial, the remainde(z) can be computed
by polynomial division. In the general analytic caséy) can be found from polynomial interpolation in
thed points

T()\i):w()\i), fori=1,...,d.

Sinceq(A) = 0 we see thatv = (A)v = r(A)v can be computed by the work df— 1 matrix-vector
productsAwv.

In the general case, wheremight be defect, letn; denote the size of the largest Jordan block associated
with the eigenvalue\;. The minimal polynomial is now given as

g(a) = Tj_y (z — A;)™.

We obtainr(z) by Hermite interpolation. Ith; we letr(z) interpolatey:(x) and its derivatives up to order
m; — 1. The Newton form of-(x) is convenient to work with.

Let divided differences be defined as

YN = v(N) (2.27)
Pis- o Nigk] = Piras - Avi] =%l - A for distinct ), (2.28)
itk = A
VAN, A = ﬁw(’”ﬂ"l)(kj) for \; repeatedn; times. (2.29)
;=1

Thenr(z) is given as
r(x) = Ylai] + (@ — z)plrr,ze] + -+ (2 — 1) (@ — 22) - (T — Tm—1)P[T1, T2, -, 7], (2.30)
wherem = > | m; and
{z1,22, . s m} = {1, ;A Ay Aa, ooy Aay - Ag ) (A repeatedn; times).

Using this form, we obtain the following simple algorithm to compute ¢ (A)v = r(A)v usingm — 1
matrix vector products.

Algorithm 2 (Computing w = ¢(A)v)

w = Y[a1]v

for i=1,...,m—1
v = Av — x;v
’U)I:w+’(/)[1'1,...,xi+1’v
end



2.3.3 Via Schur decompositions

If Ais far away from a normal matrix, or if it is defect, the eigenspace projection approach is numerically
unstable. A better class of algorithms is based on transformittggan upper triangular matrix by the Schur
decomposition. Functions of upper triangular matrices can be computed by the algorithm of Pgrlattd

a general purpose algorithm including these steps is give].iv\fe return to this approach in Secti8r8.

2.4 Involutive automorphisms on Lie algebras

An involutive automorphisron a Lie algebrgg is an involutive map : g — g such that
o ([U,V]) = [o(U),a(V)]. (2.31)

Corresponding to the automorphisnon g there is an automorphism on the Lie grodpwhich plays an
important role in the theory of symmetric spaces. In this paper we will, however, not need this automor-
phism onG and we omit this from the discussion.

Note that ifo is an automorphism, theno is not an automorphism. Thus in this case we can clearly
distinguish between the1 and—1 eigenspaces of, they play a fundamentally different role in the theory.
Let ITE be projections or- eigenspaces af, given in @.2) - (2.3). Denote these spaces by

p = Rangé (I-0))={Peg|o(P)=-P)
e = Rangé%(IJra)):{Keg|a(K):K}.

The subspactis a Lie subalgebra af, while p forms aLie triple systemmeaning that it is closed under
double brackets
[Pl, [P27P3]] c p for all Pl,Pg,Pg (S p

More generally, the spacesandt satisfy the following odd-even parity rules under brackets (compare to
multiplication table of -1 and 1):

[ C ¢ (2.32)
p.¢] C p (2.33)
b,p] C ¢ (2.34)

The decomposition we have introduced is thus closely related to the so CGadlgan decompositign

see [L4]. However, the Cartan decomposition requisds be aCartan involution whose definition involves

a certain non-degeneracy of a bilinear form derived from the Cartan-Killing form. For the applications in
this paper the Cartan property @fs notneeded, thus we have considerable freedom in choosing a suitable
g.

Corresponding to the additive splittigg= p & € there exists a multiplicative splitting @f. Any element
g € G sufficiently close td can be written as a product

g = exp(P)exp(K), whereP € pandK € &.

The elementxp(P) € G belongs to a so callesymmetric spacevhile exp(K) belongs to a Lie subgroup
of G.

For example, ifG = GL(n) ando(Z) = —Z7, then the splittingg = p + € corresponds to writing a
general matrix as the sum of a symmetric and a skew matrix. The corresponding product spliting of
thepolar decompositionwhere a matrix is written as a product of a symmetric positive definite matrix and
an orthogonal matrix. In general, df is any involutive automorphism, we will refer to the decomposition
as ageneralized polar decompositipsee P3] for more details.



3 Generalized Polar Coordinates (GPC)

The coordinates we are studying in this paper are recursively defined as follows.

Definition 3.2 GPC denotes any coordinate map from a Lie algebra to a Lie group obtained by the follow-
ing recursion:

e The exponential magxp : g — G is GPC onG.

e Leto be an involutive automorphism grand letll} be defined byZ.2) - (2.3). Lett = RangéIl}) C
gandG° C G be the corresponding sub-algebra and subgroup.:l¢ — G is GPC onG” then a
map® : g — G defined as

d(Z)=exp (I, 2) @ (I} Z), (3.1)

is GPC onG.

The coordinates are completely determined by a sequence of involutive automorﬁhigrjg, giving
rise to a sequence of subalgebgas g, O g, D --- D g,, whereg,, ;, = RanggIl} ) ando; : g; — g,.
By unfolding the recursion, we obtain the equivalent form of the coordinate map givéri)n (1.2).

Note that we let the -1 eigenspace appear on the left and the +1 on the right)inThis is important if
we want to compute right trivialized tangents. If we instead want to work with left trivializations, we must
reverse the definition and let the +1 eigenspace appear on the left.

As atrivial example consider = C* (the multiplicative group of nonzero complex numbers)glet) = z
(complex conjugation) and leb(K) = exp(K). If Z = X +iY thenll; Z = X, I} Z = iY and
®(Z) = exp(X)exp(iY) = rexp(if), wherer = exp(X) andd = Y. This yields (classical) polar
coordinates ofC".

3.1 The coordinate map

To obtain efficient algorithms for computing the coordinate map, we assume tisad low rank inner
automorphismdefined as follows.

Definition 3.3 An automorphisnr : g — g of the form
0(Z)=SZS, whereS? =1 (3.2)

is called arinner automorphisnt. By therank of an inner automorphism we mean= Rank(Ily).

If o is given by 8.2 thenP =11 (Z) = %(Z — §Z8) is 2-cyclic with respect t&, i.e. SPS = —P.
Theorem2.2yields the following formula for computingxp(P).

Theorem 3.3 Let SPS = —P, whereS? = I. Let® = P?IIg, then

exp(P) = I +91(0)P + P1(0) + P11 (0)P + 15(0)0, (3.3)

1if Gis a matrix group, them induces the group automorphigths g — S¢S € G. Although it is not necessary thate G, it
must be an element of some larger group contaidif@s a subgroup, and on this larger group the automorphism is properly of inner
type. We stick to the name ‘inner’ also whénZ G.




where

smh(\f) sm(\/i) for 2 7& 0
Yi(z) = (3.4)
forz =0
9 sinh? (f/2) 51112(\/—758/2) for = 7& 0
Po(z) = {1 or 0 (3.5)
2

Proof. From (2.16) we find ¢ (z) = (exp(v/z) — exp(—+v/x))/(2/x) = sinh(y/x)//z. Similarly
from (2.17) 42(x) = (cosh(v/z) — 1)/, the equivalent forn(3.5) being numerically better for small
x. O

See notes after Theoreth?2 for a discussion of the structure 6f. Combined with the algorithms in
Section2.3for computingy; (©), we have practical algorithms to be investigated in the sequel.

For the rank 1 case we establish explicit formulae.

Corollary 3.3.1 LetSPS = —P, wherep = Rank(Ilg) = 1. Let the scalad be given adlg P? = 6115.
Then

I+ P+ 4P? if6=0
exp(P) = I+Smﬂ>P+2sm<F”>P2 ifR>0<0 (3.6)
I+*’“E}I)P+2MP2 if R > 6 > 0orif 8 is complex.

It should be noted that this is exactly the same formula as the Rodrigues formula fos skéwnatrices.
Indeed, let

0 —x3 X9
P= i = T3 0 —I
—X9 T 0

and letS = I — 2227 /2T 2, wherez is a vector such that”z = 0. ThenSPS = —P. One finds that
6 = —xTx, from which Rodrigues formula follows.

3.2 The tangent map

In this section we will develop the formulae for the computing tangent malp arid its inverse. Whereas
the theory of the previous section regarded elementsas matrices (linear operators RI”™" acting on
R™), we are now concerned wiil® , andd<I>§1 which belong to the space of all linear operators from
g to itself, denoted En@y). If g is represented as x n matrices, then En(g) could be represented as
n? xn? matrices. Inversion of such linear operators by Gaussian elimination would¢a$} operations,
but we are seeking algorithms of complexity at m@st:®). To achieve this, we can not rely on a matrix
representation of Erid), but rather work directly with operators (projections, involutions) as outlined in
Section2.2

The theory of this section relies on the odd-even splitting of the subspaegs® £ in (2.32 - (2.39.

We will develop several formulae for the tangent mapboénd its inverse. In the following, let be an
involutive automorphism op, and letP € p C g, i.e.0(P) = —P. Define the linear operatorad g — g
as

adp(Z) =[P, Z]. (3.7

10



Theorem 3.4 LetZ = P+ K =11, Z + 11} Z. The right trivialized tangent ob and its inverse are given
as

dby; = depr I, + Adexp(P)d(i)KHi
-1 ~
<eXp(”)Hg + exp(u)Hj) (H; + d@KH;) (3.8)
u

1+ (u—1)cosh(u)

(b _1
42z sinh(u)

(H; + déK‘lnj) ( I+ (1— u)nj) : (3.9)

whereu = adp.
Proof. The first form of(3.8) follows from
A, (02)®(Z) = % » exp(P + s0P)®(K + s0K)
dexp;((SP) exp(P)®(K) + exp(P)d® x (0K )P (K)
(d expp(8P) + exp(P)d® x (0K) exp(—P)) o(2).

Letu = adp. Usingdexpp = (exp(u) — 1)/u, Adexp(py = exp(adp), H;z = II; andIT}TI; = 0, we
obtain the second form ¢8.8). To verify (3.9), we observe fron{2.32)-(2.34) that if ¢)(x) is an analytic
function with odd and even part§z) = ¢°(z) + ¥°(z),

1 1
V() = § (la) — v(-2) , 5 (x) = § (V@) + V().
then
Iy, = Y, Tfgwll,; =¢°ull;
Iyl = ¢y, MIpu)] = (u)ll;].
Thus
- exp(u) — IH_ B sinh(u)H_
o U - U o
e exp(u) — 1H7 ~ cosh(u) — 11_[7
IO exp(u)II} = sinh(u)Il}
I} exp(u)I} = cosh(u)IL}.

Using these formulae, we find that

(1 + (u— 1) cosh(u) 1>+ (1— u)Hj) (eXp(“)_lH; + exp(u)Hj) =1I; + 10} = 1.

sinh u u

Sinced is acting only on the subalgebtave havell d®,I1} = 0 andIT} d®,I1F = d® kT from which
we get
s s _
(HU +ddg Hj) (HG + d@KHj) =10, + I} =1,

thus(3.9) is verified. a

Using the same odd-even parity argument as in the proof of The®iwe obtain the following result:

11



Corollary 3.4.1 The partitioning ofl®; andd®, " with respect tar is
simb(w) - ginh(u) I o0
db; = L = 3.10
A ( CObh(uu)71 COSh(U) ( 0 dq)K ) ( )

T 0 u .cosh(u) vy
-1 _ sinh(u)
d(PZ = ( 0 di);(l ) ( 1fcosh(u) 1 5 (311)

sinh(u)

whereu = adp and P = I Z restricted to the appropriate subspace.

For efficient computation of the tangent map, it is essential to develop fast algorithms for computing analytic
functions of agh. First we use the theory of 2-cyclic matrices to simpligy9).

Lemma 3.5 If o(P) = —P, thenadp is 2-cyclic with respect te, i.e.

O’ade’ = —a.dp. (312)

Proof. Let Z € g be arbitrary. We have
cadpo(Z) = o ([P,0(2)]) = [0(P),0*(Z)] = |[-P, Z] = —adp(Z).
a

Theorem 3.6 Let o be an arbitrary involutive automorphism. Lét = P + K whereP = II7 Z, let
u = ad, andQ = adbIT; . Then

AP, = (H; + d&)K_lﬂj) (I +u (1 (DI, =TI ) + b2 (QII) (3.13)
where

_tanh(vz/2) _ _tan(y/—x/2) for 0

bila) - { L v =t (3.14)
-1 orz=0
Ve VE

¢2($) — tanh(y/—z) 1= tan(y/z) 1 forz # 0 (315)
0 forx = 0.

Proof. Starting from 8.9), we use Lemma&.5with Theorem2.2. Sinceull;, = I}, andII} 1 = 0, all
terms of the formy; (Q) «II; vanish, and the result follows by a straightforward symbolic computation.
O

To employ the algorithms of Secti¢h3, we must understand the eigenspace structufe dfo use Algo-
rithm 2, we use the following result which is an immediate consequence of Theh@pelow. Note that
1; are the eigenvalues of the<p matrix BA in (2.19.

Corollary 3.6.1 Leto(P) = SPS = —P, whereRank(Ilg) = p. Let®© = P?IIg be nondefect of rank,
with d < p different non-zero eigenvaluég; }¢_,. Then(2 = aﬁH; is non-defect with + d+ d? different
eigenvalues given as

0, {ui};, {\//Ti_\/rLTj}Dj’ {\//71+\//Ta}zzg (3.16)

Thus, the minimal polynomial ¢? is the monicl + d + d2-degree polynomial with zeros in the points

(3.16.
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In the rank-1 case, we can obtain explicit formulae. If the seagziven by P?II5 = 6115 is nonzero, then
the minimal polynomial fof2 = ad,z,H; becomes

q(z) = z(x — 0)(x — 40).

From 3.13 we employ Algorithm2 symbolically to obtain:

Corollary 3.6.2 Leto be arank-1 involutive automorphism. Lét= P+ K whereP =117 Z, letu = ad,
and letd be the scalaiP*II; = 011, as in Corollary3.3.1 If § # 0 then

dd, ! = (H; + déK’IH;) (I +u((W1(0) + a(0)u)I; —1IF) — (v3(0)u” + a(O)u) I1;)

(3.17)
where
(0) = _8tanh(‘/§é\2/)§+tanh(\/§)
Pa(0) = Qtanh(\/é/ggg_tanh(\/g)
bs(0) = 15+\/§(tanh(\@ — 15 coth(v/0))
ba(0) = —3+0(— tan}i(Q\QC)Jchoth(\/é)).

It should be noted that? andu* act onp = Rangg(I1; ), yielding also a result ip. If g ¢ R™" then the
cost of computing the termg andu* is O(n). The main work is the computation of the singlecting on
p @ &, with a cost ofO(n?).

Now we return to the general rapkcase and the computation 9{<2) via eigenspace projections. LEt
and) be as in Lemma&.6.1 For our present purpose it is not important whether orndare distinct, so
we just assume th& is non-defect witlp eigenvalueg:; fori = 1,...,p. Let the corresponding left and
right eigenvectors be denoted andz;, normalized such that

y'Q = pyl
Qz; = Hilyg
yiz; = 6

The following is verified by straightforward computation.

Lemma 3.7 P has2p nonzero left and right eigenvectors given as

- %(xl:}:Pml/\/E) fori=1,...,p (3.18)
wl, = % (yI £yl P/ @) fori=1,....p, (3.19)
satisfying
Pvy, = £/ivg
wiz‘P = i\//TiwL
wiv, = & forjke{xl,... ,+p}.
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Lemma 3.8 If © = P2IIg non-defect and of rank p, thefis non-defect.

Proof. In Lemma3.7we found2p independent right eigenvectaws ;. Referring to the partitioned form of
Pin (2.18, we have thaB is ap x (n — p) matrix with linearly independent rows. Thus there are 2p

zero right eigenvectors d? of the form (0 xT)T, wherez € Ker(B). We have found: independent right

eigenvectors of. m]
Fori =1,...,d letthe eigenspace projectionsBfbe given as
My, = vywl, (3.20)
d
My = I-) (I+1;). (3.21)
=1

Now we are ready to formulate the main theorem describing the eigenspace strucfureNufte that
£ C ker(©2) andQ2(p) C p, thus we can restrict the discussion to the actiof o p.

Theorem 3.9 Let o be a rankp inner automorphism, and let(P) = —P. If © = P21l is non-defect
and of rankp, thenQ2 = ad’,I1 is non-defect with a complete list of eigenspace projectidns: p — p
expressed in terms of an arbitraly” € p as

o o(W) = MyWII, (3.22)
ILo(W) = (I +11_;) Wily 4+ oW (IL; + 11_;)  fori=1,...,p (3.23)
I, ;(W) = ILWIL+II_WI_; fori,j=1,...,pandi>j (3.24)
L, ;W) = ILWII_;+II_;WII; fori,j=1,...,pandi>j. (3.25)

Qllpo(W) = 0 (3.26)
UL (W) = wllio(W) (3.27)
QW) = (Vi — i) i (W) (3.28)
OO (W) = (Vi + /1) T 5 (W). (3.29)

Proof. ForII; ; we compute
adp(l_LWH]) = PHIWHJ — HZWH]P = (\//Tzf ‘/‘LLj)HiWHj.

Hence under the action of adhe two projectiongV — TI,WTI; andW ~ TI_;WTII_; correspond to the
same eigenvalu(e\/m -, /;Lj)Q. These can be combined into the single projection

I (W) = ILWIL, + T, W,

Now, sincePIly; = +,/u;ll; ando(P) = —P, we find thato(Ily;) = II4,. If W € p we have
o(W) = —W and hence

O'(Hi,j(W)) = O’(HiWHj + H_iWH_j) = H_i(—W)H_j + HL(—W)HJ = —Hi7j(W).
ThusW € p = 11, ;(W) € p. We conclude thalll  II; ;(W) = II; ; (W), which yields

QI (W) = (Vi — /13)° 1L (W),

14



The others follow by a similar computation. To check that we have a complete list of eigenspace projections,
we usezg’:_p II; = I to decomposéV as

(£0)(En)

each ternil; W1l is appearing exactly once i8.229-(3.25. |

The computation of these projections should be done with care in order to keep a favourable complexity. It
should be noted that fd#” € p then

I (W) = ILWIL, + ;W = 2IT; (ILWIL;).

If g consists of,xn matrices, then whef) j # 0 the computation ofI; ;(W) is O(np). The O-projections
I1, are typically high rank matrices, and their computation must be done indirectly. After having computed
I1; ; (W) andIl; _; (W) for non-zerai, j, we find the remaining projections as

W= W= I;(W) =) I (W)
Mpo(W) = (M +T1_,) W )
Hoﬁk(W) = W(Hk+H,k)
Hoo(W) = W= (Hxo(W)+Tox(W)).
k=1

The total complexity of computing; ()W becomesD(np?), which is a minor contribution to the total
cost as long as < /n.

3.3 A Schur approach

In attempt to overcome possible instabilities if the maffibecomes close to singular or defect, we will

in this section briefly discuss how the Schur decompositio®®afan be employed rather than the the
eigenvalue decomposition. We start by providing two lemmas concerning analytic functions of the operator
ad, and in SectioB.3.2we briefly discuss how these results apply to computif(@?) at low complexity.

3.3.1 Computing analytic functions ofad

Let X andY be arbitraryn x n matrices. The usual way of describifigady )Y is by the Taylor expansion
of 4. In the following lemma we give an alternative representation which will prove to be of help in the
following.

Lemma 3.10 Lett be an analytic function. Then the following identity holds

Y(ady)Y = Z k' W X)YX*, (3.30)
k=0

wherey*) denotes thé-th derivative ofi.
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Proof. Since ad is a linear operator it suffices to prove the identity/far) = 2™ for n € N. We have

adyY = i (~DF(1) X Fy X* (3.31)

= Yl G (e XY X* (3.32)

= T, (e x Y X* (3.33)

which yields the desired result. m]

Note that this lemma can be seen as a general form of the well known propegty Ad” = exp(ady)Y.
This is seen by setting = exp in the lemma.

Suppose we have a Schur decomposifior= Q7'Q”. Then it follows that

P(ady)Y = Q (v(adr)(QTYQ)) Q.

Thus we need to investigate the operator &at T upper triangular acting on some general ma#ixThe
following lemma can be seen as an analog of Parlett’s algorithm {§e &nd can be utilized to compute

¥(adr)A

Lemma3.11LetT = (t;;) ben x n upper triangular with distinct eigenvalues, and ldtbe n x n
arbitrary with columnsa,, as, - - - , a,. Lety be an analytic function. Then each columaj of ¢)(adrA)
can be obtained recursively as:

aI = ¢(T — t171[)a1 (334)
aj = YT -t I)(a;— (a1 az---a;_1)x)+ (a] a3 ---a;j_;)x (3.35)

wherex solves the triangular system

t11 — iy t1,2 e t1,i-1 t1,4
too —tig - to i1 to;
xr =
ti—1,i-1 —tig ti—1

Proof. Observe that the operator ad is invariant under shifts, thus we have @y, _,, , ;). Together with
Lemma3.10it is therefor clear that for each= 1,2, - - - , n, there exist some matri¥/ such that

¢(adr)A f: (_1)k¢(k)((T — 4iil))A(T — t;,:1)

= k!
= (T —t;;I)A— M(T —t; ;I). (3.36)
In fact, equation3.36) contains all the information we need to prove the lemma.iFer, the first column
of (T'—t1 1) is zero, and thus we obtait = (T — t1 11)a;. Assuming we knovei, as, - ,af_; we
may (sincel” has distinct eigenvalues) solve equati8r8) for the firsti — 1 columns of M. Denote these
by mi,mo,--- ,m;_1. Then columni in the same equation gives

1—1
a; =T —t;;a; — Z ty iy,
k=1

which is seen to be equal t8.85). ]
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Like in Parlett’s algorithm also the above algorithm breaks down if the mattias repeated eigenvalues,
and a block form of lemma3&.11is needed. The approach is to reorder and cluster the equal (or sufficiently
close) eigenvalues @f in blocks (see 13, 8] for details)

Tii Tie - Tim
T2,2 o TZ,m

T = _ g (3.37)
Tm,m

such thatA(T; ;) = A\; andA(T;;) N A(T;;) = 0, i # j. Supposel; ; is a block of sizem x m with
all diagonal values equal . Then(7;; — AI) is nilpotent, i.e.(7;; — A\I)™ = 0, which implies that
(T — AI)™ is zero in the place df; ;. By (3.10 it is clear that there exists some matfix such that

m—1
Y(adr)A =) (_kll)kw) (T — M A(T — XI)¥ — M(T — A\I)™. (3.38)
k=0 ’

As in the proof of Lemm&B.11 one can now solve for the columns &f corresponding to th&nown
columns ofy(adr) A, and since thd; ;-block of (T — AI)™ vanishes, the next columns ofy(adr) A
follows by substitution. (If thel; ;-block of (T" — AI)! vanishes foi < m, then only the first terms need
to be considered)

It should be noted the method of Lemr@d. 1in general has a complexity of ordet, and that the block
version demands knowledge of the derivativegafp to order equal to the size of the largest block minus
one (or even higher if the eigenvalues in a block are only close and not equal). However for our purposes
we will typically havep small (2 > p) and thus at mostp nonzero eigenvalues and a big zero block. We
comment on this in the next subsection.

3.3.2 Using the Schur decomposition aP

Let P ¢ p be then x n matrix represented in the wag.08 with A and BT blocks of sizgn —p) x p. We
wish to find an orthogonal matri@ and an upper triangular matrik such thatP = QTQ”. Exploiting
the special structure d?, this can be obtained as follows:

Step 1:Find Householder matrica@g), Af}, I Ag) such tha@f, = @Sf) e @9@;}) transformsA
to upper triangular. By setting
I, 0

the matrixP is transformed ta® = Q% PQy which has its lowefn — 2p) x n-block equal to zero.

Step 2:Find a Schur decomposition of the upper @Bftx 2p block of P, i.e.
?(1 :2p,1:2p) = @f@T

The Schur vectors aP are now equal to the columns of the matrix

_ Q 0
Q_QH<O In2p)7

and the upper triangular matrik = Q7 PQ is equal to zero in its lowefn — 2p) x n-block. Note that
whenn > p, the operation count of the above procedure is of orger(We do of course not form the
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Householder matrices explicitly). To apply Lemi®d 1efficiently we need fast ways to compute functions
of T shifted by various values, i#(T — AI). Denote

(T DT
T ( Lo ) .
By using the commutativity property(T' — A\I)T = T (T — AI) we obtain
= [T =MD eA(T)DT
(T — N = ( 0 Y, ) , (3.39)

wheregy (z) = (¢¥(z—X) —(=X))/x. Thus the problem reduces to computing function®uof 2p upper
triangular matrices. In a recent pap8}, the authors describe a several stage general purpose algorithm for
computing matrix functions including a strategy for the reordering and clustering of eigenvalues which was
mentioned in the previous subsection. In this way the arithmetical complexity of compt(tihg AI) is

of ordernp?, and since\ takes at mos2p + 1 different values the overall cost of computiggQ)W for
someW ¢ p is of ordernp® which again is a minor contribution to the total cost whep> p.

4 GPCs for matrix groups and symmetric spaces

For the classical matrix groups we can obtain GPCs with the computational compitxity by recur-
sively applying the splitting3.1). For symmetric spaces our techniques may yield algorithms with optimal
complexity, e.gO(n) for problems om-spheres. We illustrate this by some examples.

In Definition 3.2 and the following discussion, we assumed the existence of a nested family of algebras
g 29, D - D g, andautomorphisms; : g, — g,. For matrix algebrag C gl(n) it may be convenient

to defines; on g rather than org,, in which case we must make sure that} define a nested sequence of

Lie algebras.

Lemma 4.12 Letg C gl(n) be a Lie algebra of. x n matrices. LetS; € gl(n), ¢ =1, ..., k be involutive
matrices such that;(Z) = S;ZS; are involutive automorphisms qnand{Sl-}f=1 commute

SiSj = S]Sl fori,j € {I,JC} (4.2)
Then the projectionsl = %(I + 0;) define a nested sequence of Lie algebras
g6 020

whereg, = I TIf  ---IIf (g) such thato;|g are automorophisms ogy.

Ti—1""0;—2

Proof. If {S;}, commute, then alsfll,, }, commute. Hencél, I, II,, = II,,II,,, and we conclude that
g, C g,_,- The rest of the lemma is obvious. a
Important examples of such nested sequences are
S;=1— Qeie?,
which defines automorphisms for the Lie algebgés:) andso(n), and
S; =1 —2(e;el + e¢+melT+m),

which yields automorphisms on the symplectic algeip@m).
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4.1 Low rank GPC for matrix Lie groups

In this section we give explicit formulae for the tangent maps of some low rank generalized polar coordinate
maps, and comment on their arithmetical complexity. For details on the implementation of the coordinate
map we refer tog7]. The simplest approach is to use rank- 1 splittings, in particular the one resulting from
the inner automorphisms (M) = S; M S; with S; = I — 2e;el’. We thus obtain a splitting of < g:

Z=Pi+P+ -+ P11+ Ky_1,
where forKy := Zandfori = 1,--- ,n — 1 we have
P =1, (K;1) and K; =1} (K 1).
We thus use the map
®(Z) = exp(P1) exp(P2) - - - exp(Fp—1) exp(H—1). (4.2)

Note however that this approach does not work for every Lie group, i.e. one needs to make sure that the
summandsP; and K; both lie in the Lie algebra, such that the coordinate nbdg) resides in the Lie

group. As we shall see in the sequel, the symplectic group requires a rank two splitting in order for the
coordinate map to reside in the Lie group.

For simplicity we consider the first step in the recursive splitting above. ZLQ € g, and denote their
splittingsZ = P+ K andZ = P + K, and further

5 (0 d"

P (C g ) . (4.3)

(0 "
P-(a %)
Then by Theorers.4, for the coordinate map(Z) = exp(P)®(K), its inverse tangent applied #, splits

as follows:

p—part : (I+a(ad))P —adpk (4.4)
£ —part d@}l (K + adp (1 (adb) P)), (4.5)

where; and. are given in 8.14-(3.15. Using the e|genspace projections of Theorg@@for 2 =
adb. 1T, we obtain the following expression fgr, (ad,) P:

. T
wa)P=( 0% ) (4.6)
where
z = Pi(0)c+ (—26:(40)(b"c— d"a) — ¢:(0)b" c)a 4.7)
y = i(0)d+ (20:(40)(b" c — d"a) — ¢;(0)d" a)b. (4.8)

Hered = b’ a and¢;, i = 1,2 are the functions; () = (1;(x) — 1;(0))/z. (¢:(0) = ¥/(0) is defined
sincev; is analytic.) Letting[x,y] = fad2(¢, a, b, ¢, d) denote the function giving the vectorsandy
above, we get the following algorithm for the tangent map (inTiMAB syntax).

Algorithm 3

% In: nxn matices Z and Z
% Out: Z overwritten as o' Z
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for k=1:n-1

=Z(k+1:nk); b:=Zk,k+1:n)7;
:2(k+1;n,k); d:=Z(kk+1:n)7;

y,] :=fad2 (¢n,a,b,c, d) [x2, Y5 :=fad2 (¢2,a,b,c.d);
(k-i—l n, k) —c—i-:vg—aZ(k kY +Z(k+1:nk+1: i n)a;
(kk+1: n):—dT+y2 v'Z (k:+1 nk+1:n)+ Z(k k)b";
(,

(

OQ

F

k)= Z(k,k)+ b2, —yTa
k+1:nk+1:n) *Z(l{:+1:n,k+1:n)+ay1Tfa:1bT;

N\ N> Ny Ny

end

4.1.1 The general linear group and the special linear group

Recall that the general linear groG{i(n) consists of the: x n matrices with nonzero determinant, and that
the special linear grou§L(n) consists of the matrices with determinant equal to one. Their corresponding
Lie algebragl(n) andsl(n) consist of thex x n matrices and the x n matrices with zero trace respectively.
For both Lie algebras it is easy to see that for a rank one spliting P+ K with S as above, botf¥ and K

lie in the Lie algebra, and thus also the coordinate map resides in the Lie group. By studying Algdrithm
one sees that at stage we perform two matrix vector products, two outer products of vectors and two
matrix additions which amounts to a complexitySgf. — k)2. Moreover the operation count of order- &

can with a small effort at least be reduced o Summing fromk = 1 to n, the overall cost of computing

the tangent map i§n3 + L1n? + O(n).

4.1.2 The orthogonal group

For the orthogonal grou@(n), and its corresponding Lie algebsa(n), the formulas above simplifies
considerably. Le? and P be the matrices4(3), but withb andd replaced with—a and—c respectively.

Theny;(adb) P have the form:
5 0 —z¥
vi(adh) P = ( z 0 ) (4.9)

with
x =;(0)c+ ¢ (0 )(a c)a. (4.10)

Also the overall algorithm simplifies. By exploiting the skew symmetry of the output matrix, one sees that
at stagek one needs one matrix vector product, one vector outer product, and two half matrix additions,
i.e. 4(n — k)? operations. Thén — k) coefficient can be reduced & and summing up we achieve the
computational cos{n® + 2n? + O(n).

4.1.3 Upper triangular group

We also include the upper triangular group in this discussion, all though the formulas turn out rather trivial.
By setting the vectora andc in the matrices4.3) equal to zero, it is clear that ad® = 0, and thus
Y;(adp)P = P. At stepk in the algorithm there is only one triangular matrix vector product which may
be carried out ifn — k)? operations. The rest of the computation requires aBput- k) operations, and
overall we end up with cos§n® + $n? + O(n).
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4.1.4 The symplectic group

Recall that the symplectic grou®(2m) are the matriceX satisfying the property

T_ (0 I
xXJxT =, J_<_I Nk

Its Lie algebrasp(2m) is characterized by the matricés which obeysZ.J + JZT = 0. Note that a
rank-1 splitting of the matrixz will not fulfill this property, i.e. forZ = P + K we will in general have

PJ — JP # 0. Instead consider the involutivé = I — 2eje{ — 2e,,11€l, ;. Itis easily seen that the
splitting Z = P + K according toS has the desired property, and that by applying suitable permutation
matriceslI (exchanging row/column 2 and + 1), the matrix P has the form

0 BT
P_H<A 0)11,

where A and B are (2m — 2) x 2 matrices. Note that because of the symmetrie® jrthe matrixB is
completely determined byl. Furthermore one sees thRt” A is just a scalar times th2 x 2 identity
matrix, i.e. BT A = 01, and thusy(adp) P is given

Y(ad)P =11 ( )0( Yé)T ) 11, (4.11)

where
X = ;(0)C + A(—2¢;(40)(BTC — DT A) — ¢;(0)BTC) (4.12)
Y = ;(0)D + B(2¢;(40)(BTC — DT A) — ¢;(0)DT A). (4.13)

Omitting the details we can also in this case exploit the symmetry of the matrices involved, and obtain the
same computational cost for the tangent map as for the orthogonal gro@ﬁ.&. O(n?) for n = 2m.

Summarizing we obtain the following table for the leading term of the computational complexity for the
maps¥ anddlllgl applied to the most common real matrix Lie algebras.

Coordinatemap
Tangentma :
vector | matrix
sl(n), gl(n) %nS 3n? 2n3
o(n) an’ 3n? 2n3
tu(n) in? - in?
sp(n) 3n’ - 2n3

4.2 Symmetric spaces

Symmetric spaces is an important class of manifolds of whidpheres constitute the most well known
example. Also the space of all symmetric matrices as well as the Grassman manifolds are examples of
symmetric spaces.

Definition 4.4 A symmetric space is a Riemannian manifaliwith the property that for any poipte M
there exists an isometiy, of M for which p is an isolated fix point.
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Let G be the Lie group of all isometries g1 andg its Lie algebra. Given a point € M, we define an
inner involutive automorphism ogvia
op(Z) = SpZS).

Consider a timestep with Algorithrh based on the GPC obtained frary,. Every movement oo\ is
computed as
D(Z)-yn = exp(P) exp(K) -yn,

where
Z=Pp + K7 O-yn (P) = Syn PSyﬂ = _P7 Uyn (K) = Syn Ksyn =K.

Important computational savings arise from the following result:

Lemma4.13 Let K € g be such thav,, (K) = K. Then

exp(K) “Yn = Yn-

Proof. SinceS,,, is involutive we find
Sy, (exp(K)-yn) = Sy, exp(K)Sy, Sy, -Yn = exp(Sy, K5y, ) yn = exp(K) -yn,

henceexp(K) -y, is a fixpoint ofs,, . Assume thatxp(K)-y, # y,. Sinceexp(K) = exp(K/j)’, we
find thatexp(K/j)-y» are fixpoints ofS,,, arbitrarily close toy,,. This contradicts the assumption that
is isolated, and we conclude that
eXp(K)'yn = Yn-
a

In fact, o,,, yields a splittingg = p @ € wherep is thecanonical horizontal bundland¢ is thenormal
bundleat y,,. Symmetric spaces differ from homogeneous manifolds by the fact that symmetric spaces
possess a canonical projection onto the horizontal bundle, givﬂgpny: %(I —0y,)-

In the rest of this section we concentrate on the important exam@pharical integratorsfor equations
evolving on the unit ball in a Hilbert space. Given a Hilbert spaceith an inner productz, y). Lety”
denote the dual with respect to the given inner product|aip= (y, y)%. Given a differential equation

y'(t) = Ay, ly0)] =1, (4.14)

wherey(t) € H andA(y) is a skew linear operator df, (u, A(y)-v) = —(A(y)-u, v). By differentiation
we find that<: ||y (¢)|| = 0, hence the equation evolves on the unit spisere {y € H | |jy|| = 1}.

S is a symmetric space where the isomefyy is given as

Sy, = 2ynyn — 1. (4.15)
As an example of4.14), take’H asR" with the standard inner product, let(y) € R™" be a skew-
symmetric matrix andi(y)-v be standard matrix-vector product. Our numerical integrator discussed below
is based solely on computing the tangent vettor A(y)-v rather than formingd (y) explicitly. For many

computations this can be computed®n) flops, yielding algorithms with optimal complexit9(n) per
step.

Other interesting examples are PDEs where ERenorm of the solution is preserved, e.g. Suatinger
equations and the KdV equation. For example, tike: L%([0, 27]) as the space dfr periodic functions
with the standard integrdl? inner product. Letd(y) be the (skew symmetric) differential operator

1
Aly) = =3 W0 + Oay) — a2,
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such that .
A(y)v = _g (yvz + (yv)x) — Uz
Inserted in 4.14) this yields the KdV
Yt = —YYz — Yzaa-

If A(y) is discretized with finite differences, then computatiomgf)-v costsO(n) flops and with spectral
discretizationg)(n log(n)) flops.

We return to the development of spherical integrators of the form Algorithbased on the GPC derived
from the canonical horizontal projectionat,

(I)(Z)'yn = exp(H;yn Z) Yn. (4.16)

Note that in Algorithml we only need to compute the horizonpatomponents ot/;, K; and K;. This
subspace is characterized by:

Lemma 4.14 Let Z be a skew operator. Then

P=1; Z=uvyl -y’ wherev = Z-y,,. (4.17)

Tyn

Proof. Check that ifP is given by @.17) then

<U7 yn> =0
Pyn = Zyn
o—yn (P) = _P7
henceP is the horizontal component df. |

Hencep is identified with the subspace &f consisting of all vectors € H orthogonal tay,,. This result
might not come as a big surprise, but is crucial for the complexity of computations!

The computation of motions on the sphéfés simplified by the following result:

Lemma4.15 Let Z, P, y, andv be as above. Then

_ sin(||v
Proof. Check thatPy,, = v and P%y,, = —||v||?y,. The result follows from 3.6), wheref = —||v|2.
O
The computation of inverse tangent maps is simplified by the following result:
Lemma 4.16 For an arbitrary Z € glet P =TI, Z = vy, —y,v". Then
t —
; do,' =II; +ar1(|“|’”|)|2”1’|aoﬁgng ~ 1L adp. (4.19)
Yn Yn v Yn Yn
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Proof. Applying II; ~on (3.17) yields

M, do, =T, —T, u—TL (3(0)u®+a(0)u?),

oy Oyn Oyn
whereu = adp and® = —||v||>. For operators of the form4(17 a direct computation shows that
I, ut = o11,, u2, and the result follows by trigonometric manipulation. m|

To complete the computation of the inverse tangent, we need the following result, which follows from direct
computation, using skew symmetry and the fact fiiat adp, = adpll; -

Lemma 4.17 Let P andv be as above antd” an arbitrary skew operator. Then

I, [P,W]= wyg —ypw?, w = (W-v,yn)yn — W-v (4.20)

Tyn

and
I, [P [P,W]]=qyl —ynd™,  q=—0,0)W -y, + (v, W-y,)v. (4.21)

Tyn

We conclude with a count of the cost for the coordinate map and the inverse tangent in the case of the
n-sphere:
®(P)-y, : bdnflops
I, d®,*(W) : 10nflops + 2 eval. of W y.

Tyn

5 Numerical experiments

5.1 Finding a solution of the Schur-Horn majorization problem

As an application, we consider an inverse eigenvalue problem with prescribed entries along the main diag-
onal [6] which arises in conjunction with the Schur-Horn theorem in linear algebra. Before presenting the
theorem, we recall that a vectarc R" is said tomajorizeX € R" if, assuming the ordering

ajy Sa’jzg"'gajnﬂ
Am,1 S)\ngg)\mn;

the following relationship holds:

k

k
> Am, <> a;,,  fork=12,...n, (5.1)
=1

1=1
and with equality fork = n [15].

Theorem 5.18 (Schur-Horn, [L5]) An Hermitian matrixH with eigenvalues\ and diagonal elements
exists if and only ih majorizes\. Moreover, ifa majorizes\ the matrixd can be chosen to be symmetric.

Given A anda majoirizing A, we wish to find such a symmetric matriiX. One possibility is to construct

an isospectral flow (a matrix flow which leaves the eigenvalues of the initial matrix unchanged) which
converges to a target symmetric matfik similar to diagA) and witha as diagonal elements. Setting

A = diag(A), on the isospectral manifoldy = {X : X = UAUT,UUT = I} of symmetric matrices
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Figure 1: Convergence of,, for five randomly chosen initial daty, a € R?® (left), and histogram for the
same example repeated 1000 times (right).

with eigenvalues\ the problem can be reformulated as an optimization problem: find a mitrixat
minimizes the quadratic function

O(X) = (11 = aj,)* + -+ (Tan — a5,)%. (5.2)
Following [26], we considek as a function o/ and notice that
o(U) =tr[(X — A)diag X — A)],
where, for convenience, we have set diag(a). By direct computation,
Vo = 2[X,diag X — A)|U,

(here the square bracket denotes the usual matrix commutator, which leads to the double-bracket isospectral
flow

X' =2[[X,diag X — A)], X]. (5.3)
It is not a good idea to solvs.3) numerically directly, since it is well known that standard ODE methods
cannot preserve isospectralis] [ Instead, assuming th&f,, € M, is known, in each intervdt,,, t,,11]
one solves for the matrii/, obeying the Lie-group differential equation

U' =2[X,diag X — AU,  Ult,) =1, (5.4)

in tandem with the transformatioN = U(¢)X,U(t)T. As long as the solution of5.4) is orthogonal
(or skew-Hermitian, in the complex setting), the numerical approximaligrhas eigenvalued and it
converges to a solutioA minimizing (5.2).

In the numerical experiments we chos@anda from randon®5 x 25 symmetric matrices with distribution
N(0,1) obtained from the MTLAB functionrandn . The initial valueXy, is set toX, = Q7 AQ whereQ

is a randomly chosen orthogonal matrix. Since we are interested in convergence to a fixed ot thig

local error is not of concern, and thus a first order method works as well as a higher order method. We have
used the Lie-Euler method with constant stepsize 0.015. We use the GPC coordinate m&p3) and also

the matrix exponential for comparisons. Running the two methods on{\set;, i = 1,2,--- 1000,

we found that the difference in rate of convergence for using the GPC map and the exponential map was
negligible. In Figure5.1 on the right the histogram plot for the 1000 trials are presented. Among the
trials there were two cases outside the region of the plot, with a maximum numbgd d@érations until
convergence. In this particular case with x 25 matrices the evaluation of the exponential map applied

to a matrix requires more than six times the number of operations required for the GPC map, and thus
considerable savings are obtained.
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5.2 Computing all Lyapunov exponents for a ring of oscillators

As a numerical example where the tangent map is needed, we consider computing all Lyapunov exponents
of the following system

i = —a(-1)§—-wy
P = —diin — B[V (1 —3p) = V' (x2 — 21)] + 0y
Lz == *dzl'z *ﬂ[vl (xifxi_l)fv’ (xi-&-l —xl)] s i:2,~~~ , M.

It describes a ring of damped oscillators with amplitudes with periodic boundary conditions,, 1 =

x1. The ring is forced externally by(¢), the periodic space coordinate of the limit cycle of a van der Pol
oscillator. The parameters, 3,w, o andd; are chosen as inl] to obtain several positive exponents, i.e
a=1 =1 w=182andoc = 4. The damping parameters are setlto= 0.0125 for 7 odd, and

d; = 0.0075 for i even. The potential functiol is givenV (x) = x2/2 + z*/4. The experiment is done

with n = 5. The Lyapunov exponents give the rates of exponential divergence or convergence of initial
nearby orbits, and can be found by considering the systemf(x) linearized about a trajectory(t):

Y =AY, Y(0)=Yy, (5.5)

whereA(t) = df (x(t)). The Lyapunov exponents are now given as the logarithms of the eigenvalues of the
Oseledeanatrix .
Ag = lim Y)Y (1))=. (5.6)

A technique usingontinuous QR-factorizatiofi0, 9] attempts to calculate the orthonormal faofg(t) in
the QR-decomposition df (¢). It can be shown thap(¢) obeys the (Lie group) differential equation

Q=QH(.Q), H(t,Q)=tril(Q"AQ) — t1il(Q"AQ)". (5.7)

Heretril(M) denotes the function setting the upper triangular pat/ab zero. Since the columns f(¢)

are drawn towards the direction of the largest Lyapunov exponents it is crucial that the numerical solution
stays orthonormal, and using standard methods the numerical solution will typically blow up after some
time. Thus itis a good idea to use methods which conserves the orthogonality automaticallyQGiuen

can be shown that the Lyapunov exponents can be obtained from the diagonal elements of the limit matrix

Jim % /0 Q(n) T A(T)Q(7)dr. (5.8)

In numerical computations it is necessary to truncate the above expression at some firiitettrobtain
approximations to the exponents. We have used the trapezoidal rule to approximate the Higgral (

Since the tangent vectors iB.7) are represented by an element in the Lie algebra multiplied from the
left rather than the right, we usdeft version of the coordinate map and the correspontéftgrivialized
tangent map. Lettingd be the map4.2), we define forZ € so(n)

*(Z)=d(-2)!

(5.9)
= exp(Pp_1) - exp(Pr).
The left trivialized tangeni®?, of the map®* is then given by the relation
®*(2)ddy(0Z) = 9 ®*(Z + s62)

0s|,_,

-9 O(—Z —562)7" (5.10)

 0s|,_, '

= —®(-2) MdP_4(—02)(-2)d(-2Z)! (5.11)

— '(2)db_4(52),
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Figure 2: Lyapunov exponents for a ring of 5 damped oscillators.

where in step%.10-(5.11) we have used the relatioff (M 1) = —M~*(LM)M~1. Thus the left
trivialized tangent of the mag* is simply given asi®;, = d®_. Also by noting that atl, = adp, we
see thatifI)*Z*1 is given by the formula in Theore®6 with just a single sign change in front of This is
similar to the left trivialized tangent of the exponential map gived asp_ .

We use the classical fourth order Runge-Kutta method both for the computation of the trajectory and as the
underlying method for the Lie group integrator for solvirig®) with step sizes = 0.005 andh = 0.01
respectively. A randomly chosety, is used as initial value, and the system is integrated ftom 0 to

t = 4000. For our choice of damping parametéssthe sum of the exponents should add up to

n

2n
d e =divf(z) =) _d;.
k=1

j=1

In the numerical computations the error of the sum is of otder®. Moreover it is shown in]1] that for
constant/, the exponents are distributed symmetrically aroutald In our case one can also show that the
exponents come in paifs\;, —\; — ¢;) i = 1,--- ,n, where each; satisfiesdnin < ¢; < dmax- This
property is clearly seen in Figute2.

We also performed the experiment using the matrix exponential and its left trivialized tangent giving similar
qualitative results. However the cost of the overall algorithm increased dramatically. fligasg in
MATLAB, the overall cost when using the GPC-map wa$ x 10'° while for the exponential map.70 x

10%°. For comparison we also implemented the Cayley map (5@ fnd obtained the flop cout45 x

1019,

In this example we computed all exponents of our system. There has been a lot of work concerning com-
puting the few largest Lyapunov exponents of dynamical systéis This is possible by considering a

more complicated form of the equatidb. () on the Stiefel manifold. In]9] the GPC approach is adapted

to equations on the Stiefel manifold in such a manner that favorable complexity is achieved.

6 Concluding remarks

We have presented a general theory of splitting methods for obtaining coordinates on Lie groups, where
both the coordinate maps and the tangent maps can be computed efficiently. Compared to the second kind
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coordinates of Owren and Marthinsetb] the advantage of the present framework is the generality of cases
to which the theory can be applied.
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