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Generalized Polar Coordinates on Lie groups and Numerical
Integrators

S. Krogstad, H. Z. Munthe-Kaas, A. Zanna

Abstract

Motivated by recent developments in numerical Lie group integrators, we introduce a family of local
coordinates on Lie groups denotedgeneralized polar coordinates. Fast algorithms are derived for the
computation of the coordinate maps, their tangent maps and the inverse tangent maps. In particular
we discuss algorithms for all the classical matrix Lie groups and optimal complexity integrators forn-
spheres.

1 Introduction

Lie group methods for integration of differential equations has been an active area of research over the last
decade [7, 20, 24, 17, 22]. Consider the family of integrators based on local coordinates as presented in [12]
(see Algorithm1). These methods are expressed in terms of a local coordinate mapΦ from a Lie algebra to
a Lie group and the inverse tangent map ofΦ.

Analytic coordinate maps include the exponential map [22], the Cayley map, and more generally diagonal
Pad́e approximants to the exponential. It is well known that for certain groups (e.g. SL(n)), the only
analytic map from the algebra to the group is the exponential mapping [18]. Matrix splitting techniques
yield non-analytic coordinate maps. Among thesecoordinates of the second kind, studied by Owren and
Marthinsen [25], show excellent computational cost for certain groups. Unfortunately, it is not known how
this approach can be applied to e.g. the real orthogonal group.

In this paper an other family of coordinates based on matrix splittings is studied. By recursively applying
generalized polar decompositionsof the Lie algebra [27, 23], we obtain coordinates on all the classical
matrix groups, where both the coordinate maps and the (forward and inverse) tangent maps can be computed
efficiently.

Let us briefly review the generalized polar coordinates as defined in Section3. Consider a nested sequence
of Lie algebras

g = g0 ⊃ g1 ⊃ · · · ⊃ gk

derived from a sequence of linear mapsσi : gi → gi, i = 0, . . . , k − 1, such that the following relations
hold

σ2
i = I

σi([X,Y ]) = [σi(X), σi(Y )]

Range

(
1
2
(I + σi)

)
= gi+1.

An arbitrary elementZ ∈ g is decomposed as

Z = P0 + P1 + · · ·+ Pk−1 +Kk, (1.1)
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where the components are computed as follows. LetK0 = Z and fori = 0, . . . , k − 1 let

Ki+1 =
1
2
(I + σi)Ki ∈ gi+1

Pi = Ki −Ki+1 =
1
2
(I − σi)Ki.

The coordinate maps to be studied in this paper are of the form

Φ(Z) = exp(P0) · exp(P1) · · · exp(Pk−1) · exp(Kk). (1.2)

It is assumed that the computations in the last Lie algebragk can be done fast, either because of low
dimensionality or because it has a special structure (diagonal or block diagonal matrices). The computations
involving the matricesPi and the tangent maps are relying on the structure of 2-cyclic matrices to be
discussed in the sequel.

The paper is structured as follows. In Section2 we review basic results of linear algebra, matrix Lie theory
and numerical Lie group integrators. Section3 introduces the generalized polar coordinates, and develops
the theory of their tangent maps. In Section4 the classical matrix groups, symmetric spaces and spheres
are discussed in detail, and in Section5 we present numerical examples.

2 Preliminaries

2.1 Coordinates in Lie group integrators

In order to motivate the theory in the sequel, we will briefly review a class of numerical integrators intro-
duced in [21, 22]. We will present the theory in the concrete context of matrix Lie groups. The generaliza-
tion to general Lie groups is discussed in [16].

Let g denote amatrix Lie algebra, i.e. a family of square matrices closed under linear combinations and
matrix commutators,

[A,B] = AB −BA.

LetG denote theLie groupof g, defined as the set of matrices obtained by taking matrix exponentials ofg
and products of these exponentials. The Lie group is closed under matrix products and matrix inversions.
LetM denote a linear space and· : G×M→M anactionof G onM, defined as a map satisfying

g ·(h·y) = (gh)·y, for all g, h ∈ G, y ∈M.

The action induces a product· : g×M→ TM, whereTM denotes the tangents ofM, via

V ·y =
d
dt

∣∣∣∣
t=0

exp(tV )·y.

We consider differential equations evolving onM, written in the form [22]

y′(t) = f(y(t))·y, (2.1)

wherey(t) ∈M andf : M→ g.

Let Φ : g → G denote a smooth mapping from a Lie algebra into a Lie group such thatΦ(0) = e, wheree
is the identity inG. Let dΦZ denote the right trivialized tangent ofΦ at a pointZ ∈ g, i.e.

∂

∂s

∣∣∣∣
s=0

Φ(Z + sδZ) = dΦZ(δZ)Φ(Z).
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It follows easily thatdΦZ is a linear map fromg to itself. We assume thatdΦ0 = I, thusdΦZ is invertible
for Z sufficiently close to0. The mapΦ defines a diffeomorphism between a neighbourhood of0 ∈ g and
a neighbourhood ofe ∈ G. Via the translations onG, we may extendΦ to an atlas of coordinate charts
covering the whole ofG. Using the action of ofG onM, we may also viaΦ obtain a coordinate atlas on
M. For numerical algorithms based on such coordinates, it is often essential that we can compute bothΦ
and the inverse tangent mapdΦ−1

Z efficiently.

As an example, consider the class of numerical Lie group integrators for (2.1), introduced and developed
in [22, 12]. Given yn ∈ M and a timesteph ∈ R. Given{ai,j}s

i,j=1 and{bj}s
j=1, the coefficients of an

s-stage Runge-Kutta method. We step fromyn ≈ y(tn) to yn+1 ≈ y(tn + h) as:

Algorithm 1

for i = 1, s,
Ui =

∑s
j=1 ai,jK̃j

Ki = h · f(Φ(Ui)·yn)
K̃i = dΦ−1

Ui
(Ki)

end
yn+1 = Φ(

∑s
j=1 bjK̃j)·yn

Various coordinate mapsΦ have been proposed and studied in the literature. The exponential mapping is
used in [22] and the Cayley map in [20].

Owren and Marthinsen [25] develop the theory ofcoordinates of the second kind. Given a basis{Vi} for a
d-dimensional Lie algebrag, an elementZ =

∑d
i=1 z

iVi maps to

Φ(Z) = exp(z1V1)·exp(z2V2) · · · exp(zdVd).

Owren and Marthinsen introduce special classes of ‘nice’ bases, so-called Admissible Ordered Bases
(AOBs), and show that for such bases the mapΦ(Z) and dΦZ

−1 can be computed inO(d3/2) opera-
tions,d = dim g. Using the representation theory of semisimple Lie algebras, they show that for certain
semisimple Lie algebras, AOBs can be obtained from Chevalley bases. In the cases where AOBs are found,
they report favourable numerical experiments indicating that the resulting numerical algorithms are between
two and six times faster than corresponding algorithms based on usingΦ(Z) = exp(Z). Unfortunately,
it is not known if AOBs can be found for all classical matrix Lie groups. In particular there are still open
problems with several of the real matrix groups, such as the real orthogonal groupSO(n,R) with algebra
so(n,R), consisting of real skew symmetric matrices.

In this note we will introduce coordinates based on generalized polar decompositions ofg, and we will
show that this leads to fast computable coordinates for many Lie algebras, among these all the classical
matrix Lie algebras. Furthermore, the theory of generalized polar coordinates is considerably simpler than
the theory of second kind coordinates.

The basis for our approach is some results from the theory of symmetric spaces, as given in [23]. We will
now review some linear algebra and basic elements of the theory of symmetric spaces needed for the present
purpose.

2.2 Projections, involutions and 2-cyclic matrices

By a projection matrixon a vector spaceV we mean a linear mapΠ : V → V such thatΠ2 = Π. Unless
explicitly stated we will not require projections to be orthogonal (i.e.ΠT = Π). By aninvolutive matrixwe
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mean a linear mapS : V → V such thatS2 = I. These two concepts are naturally linked by the following
lemma, whose proof is trivial.

Lemma 2.1 To any projection matrixΠ there corresponds an involutive matrixS = I − 2Π. Conversely,
to any involutiveS there corresponds two projection matricesΠ−S andΠ+

S defined by

Π−S =
1
2

(I − S) (2.2)

Π+
S =

1
2

(I + S) . (2.3)

These satisfy the following relations

Π−S + Π+
S = I (2.4)

Π−S Π+
S = Π+

S Π−S = 0 (2.5)

SΠ−S = −Π−S (2.6)

SΠ+
S = Π+

S . (2.7)

ThusV splits in the direct sum of two subspaces, the±1 eigenspaces ofS, whereΠ±S are projections
onto these. Note that ifS is involutive then also−S is involutive, the latter corresponding to the opposite
identification of the+1 and−1 eigenspaces. Thus, at the moment there seems to be no fundamental
difference between these two subspaces. We will, however, later return to involutive automorphisms on Lie
algebras where the+1 and−1 eigenspaces play fundamentally different roles.

Definition 2.1 A matrixK : V → V is block diagonalwith respect to an involutionS onV if

SKS = K, (2.8)

and a matrixP : V → V is 2-cyclicwith respect toS if

SPS = −P. (2.9)

Any matrixM can be split in a sum of a 2-cyclicP and a block diagonalK,

M = P +K, (2.10)

where

P =
1
2
(M − SMS) (2.11)

K =
1
2
(M + SMS). (2.12)

To understand the structure of these matrices, it is convenient to represent linear operatorsM : V → V in
2× 2 block partitioned form in the following manner. The matrixM splits naturally in 4 parts:

M =
(
Π−S + Π+

S

)
M
(
Π−S + Π+

S

)
= Π−SMΠ−S + Π−SMΠ+

S + Π+
SMΠ−S + Π+

SMΠ+
S . (2.13)

Thepartitioning of M with respect toS is defined by dividingV in an upper block corresponding to the
range ofΠ−S and a lower block corresponding to the range ofΠ+

S . Thus

M =
(
M−− M−+

M+− M++

)
, (2.14)
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whereM ij = Πi
SMΠj

S restricted to the appropriate subspaces. In partitioned formS becomes

S =
(
−I 0
0 I

)
.

Thus,K consists of the diagonal blocks ofM , whileP is the off diagonal blocks.

Efficient computation of analytic functions of 2-cyclic matrices will be crucial to our algorithms.

Theorem 2.2 LetSPS = −P , whereS2 = I. LetΘ = P 2Π−S . For an analytic functionψ(x) we have

ψ(P ) = ψ(0)I + ψ1(Θ)P + Pψ1(Θ) + Pψ2(Θ)P + ψ2(Θ)Θ, (2.15)

where

ψ1(x) =
1

2
√
x

(
ψ(
√
x)− ψ(−

√
x)
)

(2.16)

ψ2(x) =
1
2x
(
ψ(
√
x) + ψ(−

√
x)− 2ψ(0)

)
(2.17)

and where we defineΘ0 ≡ Π−S .

Proof. Involution ofS impliesSP = −PS henceΠ±SP = PΠ∓S . By induction it is now easy to verify that
for anyk ≥ 0 we have

P 2k+1 = ΘkP + PΘk, P 2k+2 = Θk+1 + PΘkP.

Lettingψ(x) =
∑∞

i=0 αix
i, we find from these formulae that

ψ(P ) = α0I +
∞∑

k=0

α2k+1ΘkP + P

∞∑
k=0

α2k+1Θk +
∞∑

k=0

α2k+2Θk+1 + P

∞∑
k=0

α2k+2ΘkP.

We defineψ1(x) =
∑∞

k=0 α2k+1x
k andψ2(x) =

∑∞
k=0 α2k+2x

k and derive(2.16) and(2.17) by straight-
forward manipulation of the series forψ(x). 2

Note that ifP is partitioned with respect toS as

P =
(

0 B
A 0

)
, (2.18)

then

Θ = P 2Π−S =
(
BA 0
0 0

)
. (2.19)

Thus

ψi(Θ) =
(
ψi(BA) 0

0 ψi(0)I

)
.

SinceBA is ap × p matrix, p = Rank(Π−S ), we are mainly interested in cases wherep is small, and the
casep = 1 is particularly important.

Corollary 2.2.1 If p = 1 thenΘ = θΠ−S , for a scalarθ, and

ψ(P ) = ψ(0)I + ψ1(θ)P + ψ2(θ)P 2, (2.20)

whereψ1 andψ2 are given in (2.16)-(2.17).
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Proof. If Θ = θΠ−S then

ψ1(Θ)P + Pψ1(Θ) = ψ1(θ)
(
Π−SP + PΠ−S

)
= ψ1(θ)P.

Similarly
Pψ2(Θ)P + ψ2(Θ)Θ = ψ2(θ)

(
PΠ−SP + Π−SP

2
)

= ψ2(θ)P 2.

2

2.3 Computation of analytic matrix functions

Let A : V → V be a matrix with a (small) number of different eigenvaluesλ1, . . . , λd. Let ψ(x) be an
analytic function. For later application, we will discuss some algorithms for computing

w = ψ(A)v (2.21)

for an arbitrary vectorv ∈ V.

2.3.1 Via eigenspace projections

In the following we assume thatA is non-defect (all Jordan blocks of size 1). Fori = 1, . . . , d, let Πi

denote projection onto the eigenspace corresponding toλi. Then

d∑
i=1

Πi = I

AΠi = ΠiA = λiΠi.

Thus (2.21) can be computed as

w = ψ(A)v =
d∑

i=1

ψ(λi)Πiv. (2.22)

The eigenspace projections can be expressed in terms of the left and right eigenvectors. Letxi,k andyi,k

denote all the right and left eigenvectors ofA, wherei = 1, . . . , d andk = 1, . . . ,Rank(Πi). These can be
chosen such that

Axi,k = λixi,k (2.23)

yT
i,kA = λiy

T
i,k (2.24)

yT
i,kxj,l = δi,jδk,l. (2.25)

In other words, ifxi,k are the columns of the eigenvector matrixX, thenyT
j,l are the rows ofX−1. We

have
Πi =

∑
k

xi,kyT
i,k. (2.26)

We will return to other ways of representing these projections in the sequel.
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2.3.2 Via the minimal polynomial

AssumingA is non-defect, thed-degree polynomial

q(x) = Πd
j=1(x− λj)

is the minimal polynomial ofA, i.e. the lowest degree monic polynomial for whichq(A) = 0. Let r(x) =
ψ(x) mod q(x) be the division remainder, defined as the degreed− 1 polynomial such that

ψ(x) = q(x)s(x) + r(x),

wheres(x) does not have singularities inλj . If ψ(x) is a polynomial, the remainderr(x) can be computed
by polynomial division. In the general analytic case,r(x) can be found from polynomial interpolation in
thed points

r(λi) = ψ(λi), for i = 1, . . . , d.

Sinceq(A) = 0 we see thatw = ψ(A)v = r(A)v can be computed by the work ofd − 1 matrix-vector
productsAv.

In the general case, whereA might be defect, letmj denote the size of the largest Jordan block associated
with the eigenvalueλj . The minimal polynomial is now given as

q(x) = Πd
j=1(x− λj)mj .

We obtainr(x) by Hermite interpolation. Inλj we letr(x) interpolateψ(x) and its derivatives up to order
mj − 1. The Newton form ofr(x) is convenient to work with.

Let divided differences be defined as

ψ[λi] = ψ(λi) (2.27)

ψ[λi, . . . , λi+k] =
ψ[λi+1, . . . , λi+k]− ψ[λi, . . . , λi+k−1]

λi+k − λi
for distinctλj (2.28)

ψ[λj , λj , . . . , λj ] =
1

(mj − 1)!
ψ(mj−1)(λj) for λj repeatedmj times. (2.29)

Thenr(x) is given as

r(x) = ψ[x1] + (x− x1)ψ[x1, x2] + · · ·+ (x− x1)(x− x2) · · · (x− xm−1)ψ[x1, x2, . . . , xm], (2.30)

wherem =
∑d

i=1mi and

{x1, x2, . . . , xm} = {λ1, . . . , λ1, λ2, . . . , λ2, . . . , λd, . . . , λd} (λi repeatedmi times).

Using this form, we obtain the following simple algorithm to computez = ψ(A)v = r(A)v usingm − 1
matrix vector products.

Algorithm 2 (Computing w = ψ(A)v)

w := ψ[x1]v
for i = 1, . . . ,m− 1

v := Av − xiv
w := w + ψ[x1, . . . , xi+1]v

end
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2.3.3 Via Schur decompositions

If A is far away from a normal matrix, or if it is defect, the eigenspace projection approach is numerically
unstable. A better class of algorithms is based on transformingA to an upper triangular matrix by the Schur
decomposition. Functions of upper triangular matrices can be computed by the algorithm of Parlett [13], and
a general purpose algorithm including these steps is given in [8]. We return to this approach in Section3.3.

2.4 Involutive automorphisms on Lie algebras

An involutive automorphismon a Lie algebrag is an involutive mapσ : g → g such that

σ ([U, V ]) = [σ(U), σ(V )]. (2.31)

Corresponding to the automorphismσ on g there is an automorphism on the Lie groupG, which plays an
important role in the theory of symmetric spaces. In this paper we will, however, not need this automor-
phism onG and we omit this from the discussion.

Note that ifσ is an automorphism, then−σ is not an automorphism. Thus in this case we can clearly
distinguish between the+1 and−1 eigenspaces ofσ, they play a fundamentally different role in the theory.
Let Π±σ be projections on± eigenspaces ofσ, given in (2.2) - (2.3). Denote these spaces by

p = Range(
1
2
(I − σ)) = {P ∈ g | σ(P ) = −P }

k = Range(
1
2
(I + σ)) = {K ∈ g | σ(K) = K }.

The subspacek is a Lie subalgebra ofg, while p forms aLie triple system, meaning that it is closed under
double brackets

[P1, [P2, P3]] ∈ p for all P1, P2, P3 ∈ p.

More generally, the spacesp andk satisfy the following odd-even parity rules under brackets (compare to
multiplication table of -1 and 1):

[k, k] ⊆ k (2.32)

[p, k] ⊆ p (2.33)

[p, p] ⊆ k. (2.34)

The decomposition we have introduced is thus closely related to the so calledCartan decomposition,
see [14]. However, the Cartan decomposition requiresσ to be aCartan involution, whose definition involves
a certain non-degeneracy of a bilinear form derived from the Cartan-Killing form. For the applications in
this paper the Cartan property ofσ is not needed, thus we have considerable freedom in choosing a suitable
σ.

Corresponding to the additive splittingg = p ⊕ k there exists a multiplicative splitting ofG. Any element
g ∈ G sufficiently close toI can be written as a product

g = exp(P ) exp(K), whereP ∈ p andK ∈ k.

The elementexp(P ) ∈ G belongs to a so calledsymmetric space, while exp(K) belongs to a Lie subgroup
of G.

For example, ifG = GL(n) andσ(Z) = −ZT , then the splittingg = p + k corresponds to writing a
general matrix as the sum of a symmetric and a skew matrix. The corresponding product splitting ofG is
thepolar decomposition, where a matrix is written as a product of a symmetric positive definite matrix and
an orthogonal matrix. In general, ifσ is any involutive automorphism, we will refer to the decomposition
as ageneralized polar decomposition, see [23] for more details.
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3 Generalized Polar Coordinates (GPC)

The coordinates we are studying in this paper are recursively defined as follows.

Definition 3.2 GPC denotes any coordinate map from a Lie algebra to a Lie group obtained by the follow-
ing recursion:

• The exponential mapexp : g → G is GPC onG.

• Letσ be an involutive automorphism ong and letΠ±σ be defined by (2.2) - (2.3). Letk = Range(Π+
σ ) ⊂

g andGσ ⊂ G be the corresponding sub-algebra and subgroup. IfΦ̃ : k → Gσ is GPC onGσ then a
mapΦ : g → G defined as

Φ(Z) = exp
(
Π−σ Z

)
· Φ̃
(
Π+

σZ
)
, (3.1)

is GPC onG.

The coordinates are completely determined by a sequence of involutive automorphisms{σi}k−1
i=0 , giving

rise to a sequence of subalgebrasg = g0 ⊃ g1 ⊃ · · · ⊃ gk, wheregi+1 = Range(Π+
σi

) andσi : gi → gi.
By unfolding the recursion, we obtain the equivalent form of the coordinate map given in (1.1) - (1.2).

Note that we let the -1 eigenspace appear on the left and the +1 on the right in (3.1). This is important if
we want to compute right trivialized tangents. If we instead want to work with left trivializations, we must
reverse the definition and let the +1 eigenspace appear on the left.

As a trivial example considerG = C∗ (the multiplicative group of nonzero complex numbers), letσ(z) = z̄
(complex conjugation) and let̃Φ(K) = exp(K). If Z = X + iY thenΠ−σ Z = X, Π+

σZ = iY and
Φ(Z) = exp(X) exp(iY ) = r exp(iθ), wherer = exp(X) andθ = Y . This yields (classical) polar
coordinates onC∗.

3.1 The coordinate map

To obtain efficient algorithms for computing the coordinate map, we assume thatσ is a low rank inner
automorphism, defined as follows.

Definition 3.3 An automorphismσ : g → g of the form

σ(Z) = SZS , whereS2 = I (3.2)

is called aninner automorphism.1 By therank of an inner automorphism we meanp = Rank(Π−S ).

If σ is given by (3.2) thenP = Π−σ (Z) = 1
2 (Z − SZS) is 2-cyclic with respect toS, i.e.SPS = −P .

Theorem2.2yields the following formula for computingexp(P ).

Theorem 3.3 LetSPS = −P , whereS2 = I. LetΘ = P 2Π−S , then

exp(P ) = I + ψ1(Θ)P + Pψ1(Θ) + Pψ2(Θ)P + ψ2(Θ)Θ, (3.3)

1If G is a matrix group, thenσ induces the group automorphismG 3 g 7→ SgS ∈ G. Although it is not necessary thatS ∈ G, it
must be an element of some larger group containingG as a subgroup, and on this larger group the automorphism is properly of inner
type. We stick to the name ‘inner’ also whenS 6∈ G.
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where

ψ1(x) =

{
sinh(

√
x)√

x
= sin(

√
−x)√
−x

for x 6= 0

1 for x = 0
(3.4)

ψ2(x) =

{
2 sinh2(

√
x/2)

x = 2 sin2(
√
−x/2)

−x for x 6= 0
1
2 for x = 0

(3.5)

Proof. From (2.16) we find ψ1(x) = (exp(
√
x)− exp(−

√
x))/(2

√
x) = sinh(

√
x)/

√
x. Similarly

from (2.17) ψ2(x) = (cosh(
√
x) − 1)/x, the equivalent form(3.5) being numerically better for small

x. 2

See notes after Theorem2.2 for a discussion of the structure ofΘ. Combined with the algorithms in
Section2.3for computingψi(Θ), we have practical algorithms to be investigated in the sequel.

For the rank 1 case we establish explicit formulae.

Corollary 3.3.1 LetSPS = −P , wherep = Rank(Π−S ) = 1. Let the scalarθ be given asΠ−SP
2 = θΠ−S .

Then

exp(P ) =


I + P + 1

2P
2 if θ = 0

I + sin(
√
−θ)√
−θ

P + 2 sin2(
√
−θ/2)

−θ P 2 if R 3 θ < 0

I + sinh(
√

θ)√
θ

P + 2 sinh2(
√

θ/2)
θ P 2 if R 3 θ > 0 or if θ is complex.

(3.6)

It should be noted that this is exactly the same formula as the Rodrigues formula for skew3 × 3 matrices.
Indeed, let

P = x̂ =

 0 −x3 x2

x3 0 −x1

−x2 x1 0


and letS = I − 2zzT /zT z, wherez is a vector such thatzT x = 0. ThenSPS = −P . One finds that
θ = −xT x, from which Rodrigues formula follows.

3.2 The tangent map

In this section we will develop the formulae for the computing tangent map ofΦ and its inverse. Whereas
the theory of the previous section regarded elements ofg as matrices (linear operators inRn×n acting on
Rn), we are now concerned withdΦZ anddΦ−1

Z which belong to the space of all linear operators from
g to itself, denoted End(g). If g is represented asn×n matrices, then End(g) could be represented as
n2×n2 matrices. Inversion of such linear operators by Gaussian elimination would costO(n6) operations,
but we are seeking algorithms of complexity at mostO(n3). To achieve this, we can not rely on a matrix
representation of End(g), but rather work directly with operators (projections, involutions) as outlined in
Section2.2.

The theory of this section relies on the odd-even splitting of the subspacesg = p⊕ k in (2.32) - (2.34).

We will develop several formulae for the tangent map ofΦ and its inverse. In the following, letσ be an
involutive automorphism ong, and letP ∈ p ⊂ g, i.e.σ(P ) = −P . Define the linear operator adP : g → g
as

adP (Z) = [P,Z]. (3.7)
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Theorem 3.4 LetZ = P +K = Π−σ Z+Π+
σZ. The right trivialized tangent ofΦ and its inverse are given

as

dΦZ = d expp Π−σ + Adexp(P )dΦ̃KΠ+
σ

=
(

exp(u)− 1
u

Π−σ + exp(u)Π+
σ

)(
Π−σ + dΦ̃KΠ+

σ

)
(3.8)

dΦZ
−1 =

(
Π−σ + dΦ̃K

−1
Π+

σ

)(1 + (u− 1) cosh(u)
sinh(u)

Π−σ + (1− u)Π+
σ

)
, (3.9)

whereu = adP .

Proof. The first form of(3.8) follows from

dΦZ(δZ)Φ(Z) =
∂

∂s

∣∣∣∣
s=0

exp(P + sδP )Φ̃(K + sδK)

= d expP (δP ) exp(P )Φ̃(K) + exp(P )dΦ̃K(δK)Φ̃(K)

=
(
d expP (δP ) + exp(P )dΦ̃K(δK) exp(−P )

)
Φ(Z).

Let u = adP . Usingd expP = (exp(u) − 1)/u, Adexp(P ) = exp(adP ), Π−σ
2 = Π−σ andΠ+

σ Π−σ = 0, we
obtain the second form of(3.8). To verify (3.9), we observe from(2.32)-(2.34) that if ψ(x) is an analytic
function with odd and even partsψ(x) = ψo(x) + ψe(x),

ψo(x) =
1
2

(ψ(x)− ψ(−x)) , ψe(x) =
1
2

(ψ(x) + ψ(−x)) ,

then

Π−σ ψ(u)Π−σ = ψe(u)Π−σ , Π+
σ ψ(u)Π−σ = ψo(u)Π−σ

Π−σ ψ(u)Π+
σ = ψo(u)Π+

σ , Π+
σ ψ(u)Π+

σ = ψe(u)Π+
σ .

Thus

Π−σ
exp(u)− 1

u
Π−σ =

sinh(u)
u

Π−σ

Π+
σ

exp(u)− 1
u

Π−σ =
cosh(u)− 1

u
Π−σ

Π−σ exp(u)Π+
σ = sinh(u)Π+

σ

Π+
σ exp(u)Π+

σ = cosh(u)Π+
σ .

Using these formulae, we find that(
1 + (u− 1) cosh(u)

sinhu
Π−σ + (1− u)Π+

σ

)(
exp(u)− 1

u
Π−σ + exp(u)Π+

σ

)
= Π−σ + Π+

σ = I.

SinceΦ̃ is acting only on the subalgebrak we haveΠ−σ dΦ̃kΠ+
σ = 0 andΠ+

σ dΦ̃kΠ+
σ = dΦ̃KΠ+

σ from which
we get (

Π−σ + dΦ̃K
−1

Π+
σ

)(
Π−σ + dΦ̃KΠ+

σ

)
= Π−σ + Π+

σ = I,

thus(3.9) is verified. 2

Using the same odd-even parity argument as in the proof of Theorem3.4we obtain the following result:

11



Corollary 3.4.1 The partitioning ofdΦZ anddΦZ
−1 with respect toσ is

dΦZ =

(
sinh(u)

u sinh(u)
cosh(u)−1

u cosh(u)

)(
I 0
0 dΦ̃K

)
(3.10)

dΦZ
−1 =

(
I 0
0 dΦ̃

−1

K

)(
u cosh(u)
sinh(u) −u

1−cosh(u)
sinh(u) 1

)
, (3.11)

whereu = adP andP = Π−σ Z restricted to the appropriate subspace.

For efficient computation of the tangent map, it is essential to develop fast algorithms for computing analytic
functions of adP . First we use the theory of 2-cyclic matrices to simplify (3.9).

Lemma 3.5 If σ(P ) = −P , thenadP is 2-cyclic with respect toσ, i.e.

σadPσ = −adP . (3.12)

Proof. LetZ ∈ g be arbitrary. We have

σadPσ(Z) = σ ([P, σ(Z)]) =
[
σ(P ), σ2(Z)

]
= [−P,Z] = −adP (Z).

2

Theorem 3.6 Let σ be an arbitrary involutive automorphism. LetZ = P + K whereP = Π−σ Z, let
u = adp andΩ = ad2P Π−σ . Then

dΦZ
−1 =

(
Π−σ + dΦ̃K

−1
Π+

σ

) (
I + u

(
ψ1(Ω)Π−σ −Π+

σ

)
+ ψ2(Ω)Π−σ

)
, (3.13)

where

ψ1(x) =

{
− tanh(

√
x/2)√

x
= − tan(

√
−x/2)√
−x

for x 6= 0

− 1
2 for x = 0

(3.14)

ψ2(x) =

{ √
−x

tanh(
√
−x)

− 1 =
√

x
tan(

√
x)
− 1 for x 6= 0

0 for x = 0.
(3.15)

Proof. Starting from (3.9), we use Lemma3.5with Theorem2.2. SinceuΠ−σ = Π+
σ u, andΠ+

σ Π−σ = 0, all
terms of the formψi (Ω)uΠ−σ vanish, and the result follows by a straightforward symbolic computation.

2

To employ the algorithms of Section2.3, we must understand the eigenspace structure ofΩ. To use Algo-
rithm 2, we use the following result which is an immediate consequence of Theorem3.9below. Note that
µi are the eigenvalues of thep×p matrixBA in (2.19).

Corollary 3.6.1 Letσ(P ) = SPS = −P , whereRank(Π−S ) = p. LetΘ = P 2Π−S be nondefect of rankp,
with d ≤ p different non-zero eigenvalues{µi}d

i=1. ThenΩ = ad2pΠ
−
σ is non-defect with1+d+d2 different

eigenvalues given as

0, {µi}i ,
{√

µi −
√
µj

}
i>j

,
{√

µi +
√
µj

}
i≥j

. (3.16)

Thus, the minimal polynomial ofΩ is the monic1 + d + d2-degree polynomial with zeros in the points
( 3.16).

12



In the rank-1 case, we can obtain explicit formulae. If the scalarθ given byP 2Π−S = θΠ−S is nonzero, then
the minimal polynomial forΩ = ad2pΠ

−
σ becomes

q(x) = x(x− θ)(x− 4θ).

From (3.13) we employ Algorithm2 symbolically to obtain:

Corollary 3.6.2 Letσ be a rank-1 involutive automorphism. LetZ = P+K whereP = Π−σ Z, letu = adp

and letθ be the scalarP 2Π−S = θΠ−S , as in Corollary3.3.1. If θ 6= 0 then

dΦZ
−1 =

(
Π−σ + dΦ̃K

−1
Π+

σ

) (
I + u

(
(ψ1(θ) + ψ2(θ)u2)Π−σ −Π+

σ

)
−
(
ψ3(θ)u2 + ψ4(θ)u4

)
Π−σ
)

(3.17)
where

ψ1(θ) =
−8 tanh(

√
θ/2) + tanh(

√
θ)

6
√
θ

ψ2(θ) =
2 tanh(

√
θ/2)− tanh(

√
θ)

6θ
3
2

ψ3(θ) =
15 +

√
θ(tanh(

√
θ)− 15 coth(

√
θ))

12θ

ψ4(θ) =
−3 +

√
θ(− tanh(

√
θ) + 3 coth(

√
θ))

12θ2
.

It should be noted thatu2 andu4 act onp = Range(Π−σ ), yielding also a result inp. If g ⊂ Rn×n then the
cost of computing the termsu2 andu4 isO(n). The main work is the computation of the singleu acting on
p⊕ k, with a cost ofO(n2).

Now we return to the general rankp case and the computation ofψ(Ω) via eigenspace projections. LetP
andΩ be as in Lemma3.6.1. For our present purpose it is not important whether or notµi are distinct, so
we just assume thatΘ is non-defect withp eigenvaluesµi for i = 1, . . . , p. Let the corresponding left and
right eigenvectors be denotedyT

i andxi, normalized such that

yT
i Ω = µiy

T
i

Ωxi = µixi

yT
i xj = δi,j .

The following is verified by straightforward computation.

Lemma 3.7 P has2p nonzero left and right eigenvectors given as

v±i =
1√
2

(xi ± Pxi/
√
µi) for i = 1, . . . , p (3.18)

wT
±i =

1√
2

(
yT

i ± yT
i P/

√
µi

)
for i = 1, . . . , p, (3.19)

satisfying

Pv±i = ±√µiv±i

wT
±iP = ±√µiw

T
±i

wT
j vk = δj,k for j, k ∈ {±1, . . . ,±p} .
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Lemma 3.8 If Θ = P 2Π−S non-defect and of rank p, thenP is non-defect.

Proof. In Lemma3.7we found2p independent right eigenvectorsv±i. Referring to the partitioned form of
P in (2.18), we have thatB is ap× (n− p) matrix with linearly independent rows. Thus there aren− 2p
zero right eigenvectors ofP of the form

(
0 xT

)T
, wherex ∈ Ker(B). We have foundn independent right

eigenvectors ofP . 2

For i = 1, . . . , d let the eigenspace projections ofP be given as

Π±i = v±iw
T
±i (3.20)

Π0 = I −
d∑

i=1

(Πi + Π−i) . (3.21)

Now we are ready to formulate the main theorem describing the eigenspace structure ofΩ. Note that
k ⊂ ker(Ω) andΩ(p) ⊂ p, thus we can restrict the discussion to the action ofΩ onp.

Theorem 3.9 Let σ be a rankp inner automorphism, and letσ(P ) = −P . If Θ = P 2Π−S is non-defect
and of rankp, thenΩ = ad2P Π−σ is non-defect with a complete list of eigenspace projectionsΠi,j : p → p
expressed in terms of an arbitraryW ∈ p as

Π0,0(W ) = Π0WΠ0 (3.22)

Πi,0(W ) = (Πi + Π−i)WΠ0 + Π0W (Πi + Π−i) for i = 1, . . . , p (3.23)

Πi,j(W ) = ΠiWΠj + Π−iWΠ−j for i, j = 1, . . . , p andi > j (3.24)

Πi,−j(W ) = ΠiWΠ−j + Π−iWΠj for i, j = 1, . . . , p andi ≥ j . (3.25)

The corresponding eigenvalues are given via

ΩΠ0,0(W ) = 0 (3.26)

ΩΠi,0(W ) = µiΠi,0(W ) (3.27)

ΩΠi,j(W ) = (
√
µi −

√
µj)2Πi,j(W ) (3.28)

ΩΠi,−j(W ) = (
√
µi +

√
µj)2Πi,−j(W ). (3.29)

Proof. ForΠi,j we compute

adP (ΠiWΠj) = PΠiWΠj −ΠiWΠjP = (
√
µi −

√
µj)ΠiWΠj .

Hence under the action of ad2
P the two projectionsW 7→ ΠiWΠj andW 7→ Π−iWΠ−j correspond to the

same eigenvalue
(√
µi −

√
µj

)2
. These can be combined into the single projection

Πi,j(W ) = ΠiWΠj + Π−iWΠ−j .

Now, sincePΠ±i = ±√µiΠ±i andσ(P ) = −P , we find thatσ(Π±i) = Π∓i. If W ∈ p we have
σ(W ) = −W and hence

σ(Πi,j(W )) = σ(ΠiWΠj + Π−iWΠ−j) = Π−i(−W )Π−j + Πi(−W )Πj = −Πi,j(W ).

ThusW ∈ p ⇒ Πi,j(W ) ∈ p. We conclude thatΠ−σ Πi,j(W ) = Πi,j(W ), which yields

ΩΠi,j(W ) = (
√
µi −

√
µj)2Πi,j(W ).
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The others follow by a similar computation. To check that we have a complete list of eigenspace projections,
we use

∑p
j=−p Πj = I to decomposeW as

W =

 p∑
j=−p

Πj

W

 p∑
k=−p

Πk

 ,

each termΠjWΠk is appearing exactly once in (3.22)-(3.25). 2

The computation of these projections should be done with care in order to keep a favourable complexity. It
should be noted that forW ∈ p then

Πi,j(W ) = ΠiWΠj + Π−iWΠ−j = 2Π−σ (ΠiWΠj).

If g consists ofn×n matrices, then wheni, j 6= 0 the computation ofΠi,j(W ) isO(np). The 0-projections
Π0 are typically high rank matrices, and their computation must be done indirectly. After having computed
Πi,j(W ) andΠi,−j(W ) for non-zeroi, j, we find the remaining projections as

W̃ = W −
∑
i>j

Πi,j(W )−
∑
i≥j

Πi,−j(W )

Πk,0(W ) = (Πk + Π−k) W̃

Π0,k(W ) = W̃ (Πk + Π−k)

Π0,0(W ) = W̃ −
p∑

k=1

(Πk,0(W ) + Π0,k(W )) .

The total complexity of computingψi(Ω)W becomesO(np3), which is a minor contribution to the total
cost as long asp <

√
n.

3.3 A Schur approach

In attempt to overcome possible instabilities if the matrixP becomes close to singular or defect, we will
in this section briefly discuss how the Schur decomposition ofP can be employed rather than the the
eigenvalue decomposition. We start by providing two lemmas concerning analytic functions of the operator
ad, and in Section3.3.2we briefly discuss how these results apply to computingψi(Ω) at low complexity.

3.3.1 Computing analytic functions ofad

LetX andY be arbitraryn×nmatrices. The usual way of describingψ(adX)Y is by the Taylor expansion
of ψ. In the following lemma we give an alternative representation which will prove to be of help in the
following.

Lemma 3.10 Letψ be an analytic function. Then the following identity holds

ψ(adX)Y =
∞∑

k=0

(−1)k

k!
ψ(k)(X)Y Xk, (3.30)

whereψ(k) denotes thek-th derivative ofψ.
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Proof. Since ad is a linear operator it suffices to prove the identity forψ(x) = xn for n ∈ N. We have

adn
XY =

∑n
k=0(−1)k

(
n
k

)
Xn−kY Xk (3.31)

=
∑n

k=0
(−1)k

k! ( dk

dXkX
n)Y Xk (3.32)

=
∑∞

k=0
(−1)k

k! ( dk

dXkX
n)Y Xk (3.33)

which yields the desired result. 2

Note that this lemma can be seen as a general form of the well known property Adexp(X)Y = exp(adX)Y .
This is seen by settingψ = exp in the lemma.

Suppose we have a Schur decompositionX = QTQT . Then it follows that

ψ(adX)Y = Q
(
ψ(adT )(QTY Q)

)
QT .

Thus we need to investigate the operator adT for T upper triangular acting on some general matrixA. The
following lemma can be seen as an analog of Parlett’s algorithm (see [13]), and can be utilized to compute
ψ(adT )A

Lemma 3.11 Let T = (tij) be n × n upper triangular with distinct eigenvalues, and letA be n × n
arbitrary with columnsa1,a2, · · · ,an. Letψ be an analytic function. Then each columna∗i of ψ(adTA)
can be obtained recursively as:

a∗1 = ψ(T − t1,1I)a1 (3.34)

a∗i = ψ(T − ti,iI)(ai − (a1 a2 · · ·ai−1)x) + (a∗1 a∗2 · · ·a∗i−1)x (3.35)

wherex solves the triangular system
t1,1 − ti,i t1,2 · · · t1,i−1

t2,2 − ti,i · · · t2,i−1

...
...

ti−1,i−1 − ti,i

x =


t1,i

t2,i

...
ti−1,i

 .

Proof. Observe that the operator ad is invariant under shifts, thus we have adT = ad(T−ti,iI). Together with
Lemma3.10it is therefor clear that for eachi = 1, 2, · · · , n, there exist some matrixM such that

ψ(adT )A =
∞∑

k=0

(−1)k

k!
ψ(k)((T − ti,iI))A(T − ti,iI)

= ψ(T − ti,iI)A−M(T − ti,iI). (3.36)

In fact, equation (3.36) contains all the information we need to prove the lemma. Fori = 1, the first column
of (T − t1,1I) is zero, and thus we obtaina∗1 = ψ(T − t1,1I)a1. Assuming we knowa∗1,a

∗
2, · · · ,a∗i−1 we

may (sinceT has distinct eigenvalues) solve equation (3.36) for the firsti− 1 columns ofM . Denote these
by m1,m2, · · · ,mi−1. Then columni in the same equation gives

a∗i = ψ(T − ti,iI)ai −
i−1∑
k=1

tk,imk,

which is seen to be equal to (3.35). 2
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Like in Parlett’s algorithm also the above algorithm breaks down if the matrixT has repeated eigenvalues,
and a block form of lemma3.11is needed. The approach is to reorder and cluster the equal (or sufficiently
close) eigenvalues ofT in blocks (see [13, 8] for details)

T =


T1,1 T1,2 · · · T1,m

T2,2 · · · T2,m

...
...

Tm,m

 , (3.37)

such thatΛ(Ti,i) = λi andΛ(Ti,i) ∩ Λ(Tj,j) = ∅, i 6= j. SupposeTi,i is a block of sizem × m with
all diagonal values equal toλ. Then(Ti,i − λI) is nilpotent, i.e.(Ti,i − λI)m = 0 , which implies that
(T − λI)m is zero in the place ofTi,i. By (3.10) it is clear that there exists some matrixM such that

ψ(adT )A =
m−1∑
k=0

(−1)k

k!
ψ(k)(T − λI)A(T − λI)k −M(T − λI)m. (3.38)

As in the proof of Lemma3.11 one can now solve for the columns ofM corresponding to theknown
columns ofψ(adT )A, and since theTi,i-block of (T − λI)m vanishes, the nextm columns ofψ(adT )A
follows by substitution. (If theTi,i-block of (T − λI)l vanishes forl < m, then only the firstl terms need
to be considered)

It should be noted the method of Lemma3.11in general has a complexity of ordern4, and that the block
version demands knowledge of the derivatives ofψ up to order equal to the size of the largest block minus
one (or even higher if the eigenvalues in a block are only close and not equal). However for our purposes
we will typically havep small (n � p) and thus at most2p nonzero eigenvalues and a big zero block. We
comment on this in the next subsection.

3.3.2 Using the Schur decomposition ofP

LetP ∈ p be then×n matrix represented in the way (2.18) with A andBT blocks of size(n− p)× p. We
wish to find an orthogonal matrixQ and an upper triangular matrixT such thatP = QTQT . Exploiting
the special structure ofP , this can be obtained as follows:

Step 1:Find Householder matriceŝQ(1)
H , Q̂

(2)
H , · · · , Q̂(p)

H such thatQ̂T
H = Q̂

(p)
H · · · Q̂(2)

H Q̂
(1)
H transformsA

to upper triangular. By setting

QH =
(
Ip 0
0 Q̂H

)
,

the matrixP is transformed tõP = QT
HPQH which has its lower(n− 2p)× n-block equal to zero.

Step 2:Find a Schur decomposition of the upper left2p× 2p block of P̃ , i.e.

P̃ (1 : 2p, 1 : 2p) = Q̂T̂ Q̂T .

The Schur vectors ofP are now equal to the columns of the matrix

Q = QH

(
Q̂ 0
0 In−2p

)
,

and the upper triangular matrixT = QTPQ is equal to zero in its lower(n − 2p) × n-block. Note that
whenn � p, the operation count of the above procedure is of ordernp2 (We do of course not form the
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Householder matrices explicitly). To apply Lemma3.11efficiently we need fast ways to compute functions
of T shifted by various values, i.eψ(T − λI). Denote

T =
(
T̂ DT

0 0

)
.

By using the commutativity propertyψ(T − λI)T = Tψ(T − λI) we obtain

ψ(T − λI) =
(
ψ(T̂ − λI) φλ(T̂ )DT

0 ψ(−λ)I

)
, (3.39)

whereφλ(x) = (ψ(x−λ)−ψ(−λ))/x. Thus the problem reduces to computing functions of2p×2p upper
triangular matrices. In a recent paper [8], the authors describe a several stage general purpose algorithm for
computing matrix functions including a strategy for the reordering and clustering of eigenvalues which was
mentioned in the previous subsection. In this way the arithmetical complexity of computingψ(T − λI) is
of ordernp2, and sinceλ takes at most2p + 1 different values the overall cost of computingψ(Ω)W for
someW ∈ p is of ordernp3 which again is a minor contribution to the total cost whenn� p.

4 GPCs for matrix groups and symmetric spaces

For the classical matrix groups we can obtain GPCs with the computational complexityO(n3) by recur-
sively applying the splitting (3.1). For symmetric spaces our techniques may yield algorithms with optimal
complexity, e.g.O(n) for problems onn-spheres. We illustrate this by some examples.

In Definition 3.2 and the following discussion, we assumed the existence of a nested family of algebras
g ⊃ g1 ⊃ · · · ⊃ gk and automorphismsσi : gi → gi. For matrix algebrasg ⊂ gl(n) it may be convenient
to defineσi ong rather than ongi, in which case we must make sure that{σi} define a nested sequence of
Lie algebras.

Lemma 4.12 Letg ⊂ gl(n) be a Lie algebra ofn×n matrices. LetSi ∈ gl(n), i = 1, . . . , k be involutive
matrices such thatσi(Z) = SiZSi are involutive automorphisms ong and{Si}k

i=1 commute

SiSj = SjSi for i, j ∈ {1, . . . , k}. (4.1)

Then the projectionsΠ+
σi

= 1
2 (I + σi) define a nested sequence of Lie algebras

g ⊃ g1 ⊃ · · · ⊃ gk

wheregi = Π+
σi−1

Π+
σi−2

· · ·Π+
σ1

(g) such thatσi|g
i

are automorophisms ongi.

Proof. If {Si}i commute, then also{Πσi}i commute. HenceΠσiΠσj Πσi = Πσj Πσi , and we conclude that
gi ⊂ gi−1. The rest of the lemma is obvious. 2

Important examples of such nested sequences are

Si = I − 2eie
T
i ,

which defines automorphisms for the Lie algebrasgl(n) andso(n), and

Si = I − 2(eie
T
i + ei+me

T
i+m),

which yields automorphisms on the symplectic algebrasp(2m).
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4.1 Low rank GPC for matrix Lie groups

In this section we give explicit formulae for the tangent maps of some low rank generalized polar coordinate
maps, and comment on their arithmetical complexity. For details on the implementation of the coordinate
map we refer to [27]. The simplest approach is to use rank-1 splittings, in particular the one resulting from
the inner automorphismsσi(M) = SiMSi with Si = I − 2eie

T
i . We thus obtain a splitting ofZ ∈ g:

Z = P1 + P2 + · · ·+ Pn−1 +Kn−1,

where forK0 := Z and fori = 1, · · · , n− 1 we have

Pi = Π−σi
(Ki−1) and Ki = Π+

σi
(Ki−1).

We thus use the map

Φ(Z) = exp(P1) exp(P2) · · · exp(Pn−1) exp(Kn−1). (4.2)

Note however that this approach does not work for every Lie group, i.e. one needs to make sure that the
summandsPi andKi both lie in the Lie algebra, such that the coordinate mapΦ(Z) resides in the Lie
group. As we shall see in the sequel, the symplectic group requires a rank two splitting in order for the
coordinate map to reside in the Lie group.

For simplicity we consider the first step in the recursive splitting above. LetZ, Ẑ ∈ g, and denote their
splittingsZ = P +K andẐ = P̂ + K̂, and further

P =
(

0 bT

a 0

)
P̂ =

(
0 dT

c 0

)
. (4.3)

Then by Theorem3.4, for the coordinate mapΦ(Z) = exp(P )Φ̃(K), its inverse tangent applied tôZ, splits
as follows:

p− part : (I + ψ2(ad2P ))P̂ − adP K̂ (4.4)

k− part : dΦ̃−1
K (K̂ + adP (ψ1(ad2P )P̂ )), (4.5)

whereψ1 andψ2 are given in (3.14)-(3.15). Using the eigenspace projections of Theorem3.9 for Ω =
ad2P Π−σ , we obtain the following expression forψi(ad2P )P̂ :

ψi(ad2P )P̂ =
(

0 yT

x 0

)
(4.6)

where

x = ψi(θ)c + (−2φi(4θ)(bT c− dT a)− φi(θ)bT c)a (4.7)

y = ψi(θ)d + (2φi(4θ)(bT c− dT a)− φi(θ)dT a)b. (4.8)

Hereθ = bT a andφi, i = 1, 2 are the functionsφi(x) = (ψi(x) − ψi(0))/x. (φi(0) = ψ′i(0) is defined
sinceψi is analytic.) Letting[x,y] = fad2(ψ,a, b, c,d) denote the function giving the vectorsx andy
above, we get the following algorithm for the tangent map (in MATLAB syntax).

Algorithm 3

% In: n× n matrices Z and Ẑ

% Out: Ẑ overwritten as dΦ−1
Z Ẑ
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for k = 1 : n− 1
a := Z(k + 1 : n, k); b := Z(k, k + 1 : n)T ;

c := Ẑ(k + 1 : n, k); d := Ẑ(k, k + 1 : n)T ;
[x1,y1] :=fad2 (ψ1,a, b, c,d); [x2,y2] :=fad2 (ψ2,a, b, c,d);
Ẑ(k + 1 : n, k) := c + x2 − aẐ(k, k) + Ẑ(k + 1 : n, k + 1 : n)a;

Ẑ(k, k + 1 : n) := dT + yT
2 − bT Ẑ(k + 1 : n, k + 1 : n) + Ẑ(k, k)bT ;

Ẑ(k, k) := Ẑ(k, k) + bT x1 − yT
1 a;

Ẑ(k + 1 : n, k + 1 : n) := Ẑ(k + 1 : n, k + 1 : n) + ayT
1 − x1b

T ;
end

4.1.1 The general linear group and the special linear group

Recall that the general linear groupGL(n) consists of then×nmatrices with nonzero determinant, and that
the special linear groupSL(n) consists of the matrices with determinant equal to one. Their corresponding
Lie algebrasgl(n) andsl(n) consist of then×nmatrices and then×nmatrices with zero trace respectively.
For both Lie algebras it is easy to see that for a rank one splittingZ = P+K with S as above, bothP andK
lie in the Lie algebra, and thus also the coordinate map resides in the Lie group. By studying Algorithm3
one sees that at stagek, we perform two matrix vector products, two outer products of vectors and two
matrix additions which amounts to a complexity of8(n−k)2. Moreover the operation count of ordern−k
can with a small effort at least be reduced to19. Summing fromk = 1 to n, the overall cost of computing
the tangent map is83n

3 + 11
2 n

2 +O(n).

4.1.2 The orthogonal group

For the orthogonal groupO(n), and its corresponding Lie algebraso(n), the formulas above simplifies
considerably. LetP andP̂ be the matrices (4.3), but withb andd replaced with−a and−c respectively.
Thenψi(ad2P )P̂ have the form:

ψi(ad2P )P̂ =
(

0 −xT

x 0

)
(4.9)

with
x = ψi(θ)c + φi(θ)(aT c)a. (4.10)

Also the overall algorithm simplifies. By exploiting the skew symmetry of the output matrix, one sees that
at stagek one needs one matrix vector product, one vector outer product, and two half matrix additions,
i.e. 4(n − k)2 operations. The(n − k) coefficient can be reduced to8, and summing up we achieve the
computational cost43n

3 + 2n2 +O(n).

4.1.3 Upper triangular group

We also include the upper triangular group in this discussion, all though the formulas turn out rather trivial.
By setting the vectorsa andc in the matrices (4.3) equal to zero, it is clear that adP P̂ = 0, and thus
ψi(adP )P̂ = P̂ . At stepk in the algorithm there is only one triangular matrix vector product which may
be carried out in(n− k)2 operations. The rest of the computation requires about3(n− k) operations, and
overall we end up with cost13n

3 + 1
2n

2 +O(n).

20



4.1.4 The symplectic group

Recall that the symplectic groupSP(2m) are the matricesX satisfying the property

XJXT = J, J =
(

0 I
−I 0

)
.

Its Lie algebrasp(2m) is characterized by the matricesZ which obeysZJ + JZT = 0. Note that a
rank-1 splitting of the matrixZ will not fulfill this property, i.e. forZ = P + K we will in general have
PJ − JP 6= 0. Instead consider the involutiveS = I − 2e1eT

1 − 2em+1e
T
m+1. It is easily seen that the

splittingZ = P + K according toS has the desired property, and that by applying suitable permutation
matricesΠ (exchanging row/column 2 andm+ 1), the matrix P has the form

P = Π
(

0 BT

A 0

)
Π,

whereA andB are(2m − 2) × 2 matrices. Note that because of the symmetries inP , the matrixB is
completely determined byA. Furthermore one sees thatBTA is just a scalar times the2 × 2 identity
matrix, i.e.BTA = θI, and thusψ(adP )P̂ is given

ψ(ad2P )P̂ = Π
(

0 Y T

X 0

)
Π, (4.11)

where

X = ψi(θ)C +A(−2φi(4θ)(BTC −DTA)− φi(θ)BTC) (4.12)

Y = ψi(θ)D +B(2φi(4θ)(BTC −DTA)− φi(θ)DTA). (4.13)

Omitting the details we can also in this case exploit the symmetry of the matrices involved, and obtain the
same computational cost for the tangent map as for the orthogonal group, i.e.4

3n
3 +O(n2) for n = 2m.

Summarizing we obtain the following table for the leading term of the computational complexity for the
mapsΨ anddΨ−1

Z applied to the most common real matrix Lie algebras.

Coordinatemap
Tangentmap

vector matrix

sl(n), gl(n) 8
3n

3 3n2 2n3

o(n) 4
3n

3 3n2 2n3

tu(n) 1
3n

3 - 1
2n

3

sp(n) 4
3n

3 - 2n3

4.2 Symmetric spaces

Symmetric spaces is an important class of manifolds of whichn-spheres constitute the most well known
example. Also the space of all symmetric matrices as well as the Grassman manifolds are examples of
symmetric spaces.

Definition 4.4 A symmetric space is a Riemannian manifoldMwith the property that for any pointp ∈M
there exists an isometrySp of M for whichp is an isolated fix point.
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LetG be the Lie group of all isometries ofM andg its Lie algebra. Given a pointp ∈ M, we define an
inner involutive automorphism ong via

σp(Z) = SpZSp.

Consider a timestep with Algorithm1 based on the GPC obtained fromσyn
. Every movement onM is

computed as
Φ(Z)·yn = exp(P ) exp(K)·yn,

where
Z = P +K, σyn

(P ) = Syn
PSyn

= −P, σyn
(K) = Syn

KSyn
= K.

Important computational savings arise from the following result:

Lemma 4.13 LetK ∈ g be such thatσyn
(K) = K. Then

exp(K)·yn = yn.

Proof. SinceSyn is involutive we find

Syn(exp(K)·yn) = Syn exp(K)SynSyn ·yn = exp(SynKSyn)·yn = exp(K)·yn,

henceexp(K)·yn is a fixpoint ofσyn
. Assume thatexp(K)·yn 6= yn. Sinceexp(K) = exp(K/j)j , we

find thatexp(K/j)·yn are fixpoints ofSyn
arbitrarily close toyn. This contradicts the assumption thatyn

is isolated, and we conclude that
exp(K)·yn = yn.

2

In fact, σyn yields a splittingg = p ⊕ k wherep is thecanonical horizontal bundleandk is thenormal
bundleat yn. Symmetric spaces differ from homogeneous manifolds by the fact that symmetric spaces
possess a canonical projection onto the horizontal bundle, given byΠ−σyn

= 1
2 (I − σyn).

In the rest of this section we concentrate on the important example ofspherical integrators, for equations
evolving on the unit ball in a Hilbert space. Given a Hilbert spaceH with an inner product〈x, y〉. Let yT

denote the dual with respect to the given inner product and||y|| = 〈y, y〉 1
2 . Given a differential equation

y′(t) = A(y)·y, ||y(0)|| = 1, (4.14)

wherey(t) ∈ H andA(y) is a skew linear operator onH, 〈u,A(y)·v〉 = −〈A(y)·u, v〉. By differentiation
we find that d

dt ||y(t)|| = 0, hence the equation evolves on the unit sphereS = { y ∈ H | ||y|| = 1 }.

S is a symmetric space where the isometrySyn
is given as

Syn
= 2yny

T
n − I. (4.15)

As an example of (4.14), takeH asRn with the standard inner product, letA(y) ∈ Rn×n be a skew-
symmetric matrix andA(y)·v be standard matrix-vector product. Our numerical integrator discussed below
is based solely on computing the tangent vectort = A(y)·v rather than formingA(y) explicitly. For many
computations this can be computed inO(n) flops, yielding algorithms with optimal complexityO(n) per
step.

Other interesting examples are PDEs where theL2 norm of the solution is preserved, e.g. Schrödinger
equations and the KdV equation. For example, takeH = L2([0, 2π]) as the space of2π periodic functions
with the standard integralL2 inner product. LetA(y) be the (skew symmetric) differential operator

A(y) = −1
3

(y∂x + ∂xy·)− ∂3
x,
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such that

A(y)·v = −1
3

(yvx + (yv)x)− vxxx.

Inserted in (4.14) this yields the KdV
yt = −yyx − yxxx.

If A(y) is discretized with finite differences, then computation ofA(y)·v costsO(n) flops and with spectral
discretizationsO(n log(n)) flops.

We return to the development of spherical integrators of the form Algorithm1, based on the GPC derived
from the canonical horizontal projection atyn,

Φ(Z)·yn = exp(Π−σyn
Z)·yn. (4.16)

Note that in Algorithm1 we only need to compute the horizontalp-components ofUi, Ki andK̃i. This
subspace is characterized by:

Lemma 4.14 LetZ be a skew operator. Then

P = Π−σyn
Z = vyT

n − ynv
T , wherev = Z ·yn. (4.17)

Proof. Check that ifP is given by (4.17) then

〈v, yn〉 = 0
Pyn = Zyn

σyn(P ) = −P,

henceP is the horizontal component ofZ. 2

Hencep is identified with the subspace ofH consisting of all vectorsv ∈ H orthogonal toyn. This result
might not come as a big surprise, but is crucial for the complexity of computations!

The computation of motions on the sphereS is simplified by the following result:

Lemma 4.15 LetZ, P , yn andv be as above. Then

Φ(Z)·yn = exp(Π−σyn
Z)·yn = cos(||v||)yn +

sin(||v||)
||v||

v. (4.18)

Proof. Check thatPyn = v andP 2yn = −||v||2yn. The result follows from (3.6), whereθ = −||v||2.
2

The computation of inverse tangent maps is simplified by the following result:

Lemma 4.16 For an arbitraryZ ∈ g let P = Π−σyn
Z = vyT

n − ynv
T . Then

Π−σyn
dΦ−1

Z = Π−σyn
+

tan(||v||)− ||v||
||v||2

ad2P Π−σyn
−Π−σyn

adP . (4.19)
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Proof. Applying Π−σyn
on (3.17) yields

Π−σyn
dΦ−1

Z = Π−σyn
−Π−σyn

u−Π−σyn

(
ψ3(θ)u2 + ψ4(θ)u4

)
,

whereu = adP and θ = −||v||2. For operators of the form (4.17) a direct computation shows that
Π−σyn

u4 = θΠ−σyn
u2, and the result follows by trigonometric manipulation. 2

To complete the computation of the inverse tangent, we need the following result, which follows from direct
computation, using skew symmetry and the fact thatΠ−σyn

ad2P = ad2P Π−σyn
:

Lemma 4.17 LetP andv be as above andW an arbitrary skew operator. Then

Π−σyn
[P,W ] = wyT

n − ynw
T , w = 〈W ·v, yn〉yn −W ·v (4.20)

and
Π−σyn

[P, [P,W ]] = qyT
n − ynq

T , q = −〈v, v〉W ·yn + 〈v,W ·yn〉v. (4.21)

We conclude with a count of the cost for the coordinate map and the inverse tangent in the case of the
n-sphere:

Φ(P )·yn : 5n flops

Π−σyn
dΦ−1

Z (W ) : 10n flops + 2 eval. ofW ·y.

5 Numerical experiments

5.1 Finding a solution of the Schur-Horn majorization problem

As an application, we consider an inverse eigenvalue problem with prescribed entries along the main diag-
onal [6] which arises in conjunction with the Schur-Horn theorem in linear algebra. Before presenting the
theorem, we recall that a vectora ∈ Rn is said tomajorizeλ ∈ Rn if, assuming the ordering

aj1 ≤ aj2 ≤ · · · ≤ ajn
,

λm1 ≤ λm2 ≤ · · · ≤ λmn
,

the following relationship holds:

k∑
i=1

λmi
≤

k∑
i=1

aji
, for k = 1, 2, . . . , n, (5.1)

and with equality fork = n [15].

Theorem 5.18 (Schur-Horn, [15]) An Hermitian matrixH with eigenvaluesλ and diagonal elementsa
exists if and only ifa majorizesλ. Moreover, ifa majorizesλ the matrixH can be chosen to be symmetric.

Givenλ anda majoirizingλ, we wish to find such a symmetric matrixH. One possibility is to construct
an isospectral flow (a matrix flow which leaves the eigenvalues of the initial matrix unchanged) which
converges to a target symmetric matrixH, similar to diag(λ) and witha as diagonal elements. Setting
Λ = diag(λ), on the isospectral manifoldMλ = {X : X = UΛUT , UUT = I} of symmetric matrices
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Figure 1: Convergence ofXn for five randomly chosen initial dataλ,a ∈ R25 (left), and histogram for the
same example repeated 1000 times (right).

with eigenvaluesλ the problem can be reformulated as an optimization problem: find a matrixH that
minimizes the quadratic function

φ(X) = (x1,1 − aj1)
2 + · · ·+ (xn,n − ajn

)2. (5.2)

Following [26], we considerφ as a function ofU and notice that

φ(U) = tr[(X −A)diag(X −A)],

where, for convenience, we have setA = diag(a). By direct computation,

∇φU = 2[X,diag(X −A)]U,

(here the square bracket denotes the usual matrix commutator, which leads to the double-bracket isospectral
flow

X ′ = 2[[X,diag(X −A)], X]. (5.3)

It is not a good idea to solve(5.3) numerically directly, since it is well known that standard ODE methods
cannot preserve isospectrality [2]. Instead, assuming thatXn ∈ Mλ is known, in each interval[tn, tn+1]
one solves for the matrixU , obeying the Lie-group differential equation

U ′ = 2[X,diag(X −A)]U, U(tn) = I, (5.4)

in tandem with the transformationX = U(t)XnU(t)T . As long as the solution of(5.4) is orthogonal
(or skew-Hermitian, in the complex setting), the numerical approximationXn has eigenvaluesλ and it
converges to a solutionH minimizing (5.2).

In the numerical experiments we choseλ anda from random25× 25 symmetric matrices with distribution
N (0, 1) obtained from the MATLAB functionrandn . The initial valueX0, is set toX0 = QT ΛQ whereQ
is a randomly chosen orthogonal matrix. Since we are interested in convergence to a fixed point of (5.4), the
local error is not of concern, and thus a first order method works as well as a higher order method. We have
used the Lie-Euler method with constant stepsizeh = 0.015. We use the GPC coordinate map (4.2) and also
the matrix exponential for comparisons. Running the two methods on a set{λ,a}i, i = 1, 2, · · · , 1000,
we found that the difference in rate of convergence for using the GPC map and the exponential map was
negligible. In Figure5.1 on the right the histogram plot for the 1000 trials are presented. Among the
trials there were two cases outside the region of the plot, with a maximum number of550 iterations until
convergence. In this particular case with25 × 25 matrices the evaluation of the exponential map applied
to a matrix requires more than six times the number of operations required for the GPC map, and thus
considerable savings are obtained.
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5.2 Computing all Lyapunov exponents for a ring of oscillators

As a numerical example where the tangent map is needed, we consider computing all Lyapunov exponents
of the following system

ÿ = −α
(
y2 − 1

)
ẏ − ω2y

ẍ1 = −diẋ1 − β [V ′ (x1 − xn)− V ′ (x2 − x1)] + σy

ẍi = −diẋi − β [V ′ (xi − xi−1)− V ′ (xi+1 − xi)] , i = 2, · · · , n.

It describes a ring ofn damped oscillators with amplitudesxi with periodic boundary conditionsxn+1 =
x1. The ring is forced externally byy(t), the periodic space coordinate of the limit cycle of a van der Pol
oscillator. The parametersα, β, ω, σ anddi are chosen as in [1] to obtain several positive exponents, i.e
α = 1, β = 1, ω = 1.82 andσ = 4. The damping parameters are set todi = 0.0125 for i odd, and
di = 0.0075 for i even. The potential functionV is givenV (x) = x2/2 + x4/4. The experiment is done
with n = 5. The Lyapunov exponents give the rates of exponential divergence or convergence of initial
nearby orbits, and can be found by considering the systemẋ = f(x) linearized about a trajectoryx(t):

Ẏ = A(t)Y, Y (0) = Y0, (5.5)

whereA(t) = df(x(t)). The Lyapunov exponents are now given as the logarithms of the eigenvalues of the
Oseledec-matrix

Λx = lim
t→∞

(Y (t)TY (t))
1
2t . (5.6)

A technique usingcontinuous QR-factorization[10, 9] attempts to calculate the orthonormal factorQ(t) in
the QR-decomposition ofY (t). It can be shown thatQ(t) obeys the (Lie group) differential equation

Q̇ = QH(t, Q), H(t, Q) = tril(QTAQ)− tril(QTAQ)T . (5.7)

Heretril(M) denotes the function setting the upper triangular part ofM to zero. Since the columns ofQ(t)
are drawn towards the direction of the largest Lyapunov exponents it is crucial that the numerical solution
stays orthonormal, and using standard methods the numerical solution will typically blow up after some
time. Thus it is a good idea to use methods which conserves the orthogonality automatically. GivenQ(t), it
can be shown that the Lyapunov exponents can be obtained from the diagonal elements of the limit matrix

lim
t→∞

1
t

∫ t

0

Q(τ)TA(τ)Q(τ)dτ. (5.8)

In numerical computations it is necessary to truncate the above expression at some finite timeT , to obtain
approximations to the exponents. We have used the trapezoidal rule to approximate the integral (5.8).

Since the tangent vectors in (5.7) are represented by an element in the Lie algebra multiplied from the
left rather than the right, we use aleft version of the coordinate map and the correspondingleft trivialized
tangent map. LettingΦ be the map (4.2), we define forZ ∈ so(n)

Φ∗(Z) = Φ(−Z)−1

= exp(Pn−1) · · · exp(P1).
(5.9)

The left trivialized tangentdΦ∗Z of the mapΦ∗ is then given by the relation

Φ∗(Z)dΦ∗Z(δZ) =
∂

∂s

∣∣∣∣
s=0

Φ∗(Z + sδZ)

=
∂

∂s

∣∣∣∣
s=0

Φ(−Z − sδZ)−1 (5.10)

= −Φ(−Z)−1dΦ−Z(−δZ)Φ(−Z)Φ(−Z)−1 (5.11)

= Φ∗(Z)dΦ−Z(δZ),
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Figure 2: Lyapunov exponents for a ring of 5 damped oscillators.

where in step (5.10)-(5.11) we have used the relationddt (M
−1) = −M−1( d

dtM)M−1. Thus the left
trivialized tangent of the mapΦ∗ is simply given asdΦ∗Z = dΦ−Z . Also by noting that ad2−P = ad2P , we
see thatdΦ∗Z

−1 is given by the formula in Theorem3.6with just a single sign change in front ofu. This is
similar to the left trivialized tangent of the exponential map given asd exp−Z .

We use the classical fourth order Runge-Kutta method both for the computation of the trajectory and as the
underlying method for the Lie group integrator for solving (5.7) with step sizesh = 0.005 andh = 0.01
respectively. A randomly chosenx0 is used as initial value, and the system is integrated fromt = 0 to
t = 4000. For our choice of damping parametersdi, the sum of the exponents should add up to

2n∑
k=1

λk = divf(x) =
n∑

j=1

dj .

In the numerical computations the error of the sum is of order10−8. Moreover it is shown in [11] that for
constantd, the exponents are distributed symmetrically around−d. In our case one can also show that the
exponents come in pairs(λi,−λi − ci) i = 1, · · · , n, where eachci satisfiesdmin ≤ ci ≤ dmax. This
property is clearly seen in Figure5.2.

We also performed the experiment using the matrix exponential and its left trivialized tangent giving similar
qualitative results. However the cost of the overall algorithm increased dramatically. Usingflops in
MATLAB , the overall cost when using the GPC-map was1.60× 1010 while for the exponential map5.70×
1010. For comparison we also implemented the Cayley map (see [16]), and obtained the flop count2.45×
1010.

In this example we computed all exponents of our system. There has been a lot of work concerning com-
puting the few largest Lyapunov exponents of dynamical systems [10]. This is possible by considering a
more complicated form of the equation (5.7) on the Stiefel manifold. In [19] the GPC approach is adapted
to equations on the Stiefel manifold in such a manner that favorable complexity is achieved.

6 Concluding remarks

We have presented a general theory of splitting methods for obtaining coordinates on Lie groups, where
both the coordinate maps and the tangent maps can be computed efficiently. Compared to the second kind
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coordinates of Owren and Marthinsen [25] the advantage of the present framework is the generality of cases
to which the theory can be applied.
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