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Abstract

In this report we introduce an algorithm to optimize the performance in the error floor
region of bit-interleaved turbo-coded modulation (BITCM) on the additive white Gaussian
noise (AWGN) channel. The key ingredient is an exact turbo code weight distribution algo-
rithm producing a list of all codewords in the underlying turbo code of weight less than a
given threshold. In BITCM, the information sequence is turbo-encoded, bit-interleaved, and
mapped to signal points in a signal constellation. Using the union bounding technique, we
show that a well-designed bit-interleaver is crucial to have a low error floor. Furthermore,
the error rate performance in the waterfall region depends on the bit-interleaver, since the
level of protection from channel noise on the bit-level depends on the bit-position and the
neighboring bit-values within the same symbol in the transmitted sequence. We observe a
trade-off between error rate performance in the waterfall and error floor regions as illustrated
by an extensive case study of a high-rate BITCM scheme. The reported case study shows that
it is possible to design bit-interleavers with our proposed algorithm with equal or better per-
formance in the waterfall region and superior performance in the error floor region compared
to randomly generated bit-interleavers. In particular, we were able to design BITCM schemes
with maximum-likelihood decoding frame error rates of 10−12 and 10−17 at 2.6 dB and 3.8
dB away from unconstrained channel capacity at spectral efficiencies of 3.10 and 6.20 b/s/Hz
using square 16 and 256-QAM signal constellations, respectively.

1 Introduction

Bit-interleaved coded modulation (BICM) is a bandwidth-efficient coding scheme based on serial
concatenation of a binary error-correcting code, bit-interleaving, and high-order modulation [1].
In more detail, the information sequence is encoded by the error-correcting code, after which the
encoded bits are interleaved and mapped to a signal constellation. The decoder first computes
log-likelihood ratio (LLR) values of the coded bits from the soft output of the channel. These LLR
values are then sent to a soft-input binary decoder. In particular, when employing state-of-the-art
codes, such as turbo codes [2] and low-density parity-check codes [3], BICM is a very powerful
technique.

In general, it is possible to design BICM schemes using any lattice-based two-dimensional signal
constellation. In [4], the problem of finding the most suitable signal sets for designing power-
efficient BICM schemes, on the AWGN channel, was addressed. In particular, for 22m (m ≥ 1)
signal points, the square 22m-QAM constellation with Gray labeling gives good performance.

∗This work was supported by Nera Research and the Norwegian Research Council (NFR) Grants 156712/220
and 146874/420. Parts of this work have been accepted for presentation at the 2004 IEEE International Conference
on Communications (ICC) and at the 2004 IEEE International Symposium on Information Theory (ISIT).
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In this work we consider square 22m-QAM constellations with distance-preserving labeling,
meaning that the signal points are labeled such that the squared Euclidean distance between any
two points is lower bounded by the Hamming distance of the corresponding signal point labels.
The distance-preserving property is satisfied for square 22m-QAM constellations when the signal
points are labeled independently with a Gray code in each direction. However, for standard
22m+1-CROSS constellations, a distance-preserving labeling does not exist [5]. The importance of
a distance-preserving labeling is discussed in Section 2.3.

The error floor of BITCM on the AWGN channel is our main interest in this work. Recently,
several algorithms have been introduced to compute the first few terms of the weight distribution
of both parallel and serial turbo codes. Both exact algorithms (e.g. [6, 7, 8, 9]) and approxi-
mate algorithms (e.g. [10]) have been introduced. For some channels, estimates of the minimum
Hamming distance and the corresponding multiplicity may be sufficient to get a rough estimate
of the performance in the error floor region. However, for BITCM an accurate list of low-weight
codewords is essential for estimating the error floor. Moreover, such a list in conjunction with a
well-designed bit-interleaver could lower the error floor substantially, as illustrated in the follow-
ing sections. We will present a greedy algorithm to construct a bit-interleaver from a given list
of low-weight codewords and compare the constructed bit-interleavers with randomly generated
bit-interleavers.

This report is organized as follows: In Section 2 we introduce the transmission model, discuss
constellation labeling, and give the union upper bound on the frame error rate (FER) under a
maximum-likelihood decoding assumption. Section 3 introduces a greedy bit-interleaver design
algorithm to lower the error floor. We further discuss the different levels of protection on the
bit-level from channel noise due to high-order modulation, and the impact of the bit-interleaver on
the performance in the waterfall region. An extensive case study of a high-rate BITCM scheme is
reported in Section 4. Conclusions and a discussion of future work are given in Section 5.

2 Preliminaries

2.1 Transmission scheme

We consider the transmission scheme depicted in Fig. 1 which follows the principle of BICM. The
transmission scheme contains a turbo code, a bit-interleaver, and a modulator that maps binary
sequences to sequences of signal points from a two-dimensional constellation with a distance-
preserving labeling. The receiver computes symbol-wise LLR values from the received signal se-
quence. These symbol-wise LLR values are converted to bit-wise LLR values, deinterleaved, and
sent to a binary turbo decoder. In this study we will focus on high-rate turbo codes composed of
high-rate non-punctured constituent convolutional codes. To reduce decoding complexity, the max-
imum a posteriori (MAP) decoding algorithm can be applied to the dual codes of the constituent
codes [11].

2.2 Constellation labeling

Let b = (b0 · · · bM−1) ∈ {0, 1}M , for a positive integer M , denote the binary label of some signal
point s = ρ(b) in a two-dimensional signal constellation S of cardinality 2M , where ρ denotes the
bijective mapping ρ : {0, 1}M → S between signal points and their labels. We define the mapping
ϕ of b 6= (0 · · · 0) and a positive integer d, which gives the fraction of all pairs of distinct signal
points of binary label difference b which also correspond to a squared Euclidean distance of d. Let
w(b) be the Hamming weight of b. With a distance-preserving labeling, as briefly described in
Section 1, d ≥ w(b) when ϕ(b, d) 6= 0.

A 2m-PAM constellation, denoted by SPAM(m), of size 2m is the sequence

(

s(0)
m , s(1)

m , . . . , s(2m−1)
m

)

= (−2m + 1/2,−2m + 3/2, . . . ,−1/2, 1/2, . . . , 2m − 1/2) (1)
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Fig. 1. Block diagram of system model.

of rational numbers, for a positive integer m. Furthermore, a square 22m-QAM constellation,
denoted by SQAM(m), of size 22m is the sequence of complex numbers where the real and imaginary
parts are both taken from SPAM(m), for a positive integer m. A 2m-PSK constellation, denoted
by SPSK(m), of size 2m is the sequence

(

s(0)
m , s(1)

m , . . . , s(2m−1)
m

)

=

(

Am, Am exp

(√
−1π

2m−1

)

, . . . , Am exp

(√
−1 (2m − 1)π

2m−1

))

of complex numbers with Am = 1/(2 sin (π/2m)), for a positive integer m.

A binary Gray code gm = (g
(0)
m , . . . ,g

(2m−1)
m ), m ≥ 1, is a sequence of all distinct binary m-

tuples for which any two consecutive m-tuples differ in exactly one position. A well-known way
to recursively construct Gray codes is by “reflection” as described next. Define g1 = (0, 1). Let
m ≥ 1 and construct a Gray code gm+1 of length 2m+1 recursively from gm as follows

gm+1 = (g(0)
m 0, . . . ,g(2m−1)

m 0,g(2m−1)
m 1, . . . ,g(0)

m 1) (2)

where g
(i)
m 0 and g

(i)
m 1 denote the concatenation of the m-tuple g

(i)
m , 0 ≤ i ≤ 2m − 1, with 0 and 1,

respectively.

Example 1 The two sequences

(000, 001, 011, 111, 101, 100, 110, 010) and (000, 100, 110, 010, 011, 111, 101, 001)

are both Gray codes of which the latter is constructed recursively using the above procedure.

Consider a Gray code gm, m ≥ 1, of length 2m and the constellation labeling ρPAM (ρPSK)

of SPAM(m) (SPSK(m)) defined by g
(i)
m 7→ s

(i)
m for all i, 0 ≤ i ≤ 2m − 1. This type of labeling

of SPAM(m) (SPSK(m)) is called Gray labeling. In the case that the Gray code is constructed
recursively as described in (2) we use the term reflected Gray labeling.
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Table 1. The nonzero values of ϕPAM(b0b1b2, d) with the first and the second Gray code of Ex-
ample 1 when w(b0b1b2) = 1 are displayed in (a) and (b), respectively. Furthermore, the nonzero
values of ϕPSK(b0b1b2, d) with the second Gray code of Example 1 when w(b0b1b2) = 1 are displayed
in (c).

d
1 9 25 49

001 1/2 1/4 1/4 0
b 010 3/4 0 0 1/4

100 1/2 1/4 1/4 0
(a)

d
1 9 25 49

001 1/4 1/4 1/4 1/4
b 010 1/2 1/2 0 0

100 1 0 0 0
(b)

d

1 (1 +
√

2)2

001 1/2 1/2
b 010 1/2 1/2

100 1 0
(c)

Suppose two constellation labelings of SPAM(m), denoted by ρ
(1)
PAM and ρ

(2)
PAM, are given. Con-

sider the constellation labeling ρQAM of SQAM(m) defined by (b0 · · · b2m−1) 7→ a +
√
−1 b for all

(b0 · · · b2m−1) ∈ {0, 1}2m where ρ
(1)
PAM(b0 · · · bm−1) = a and ρ

(2)
PAM(bm · · · b2m−1) = b. This type of

labeling of SQAM(m) is called independent labeling. In the case that ρ
(1)
PAM = ρ

(2)
PAM = ρPAM and

ρPAM is a (reflected) Gray labeling, ρQAM is said to be a (reflected) Gray independent labeling of
SQAM(m).

Note that a (reflected) Gray independent labeling is a distance-preserving labeling, and that any
distance-preserving independent labeling is a Gray independent labeling. Consider an arbitrary
distance-preserving labeling ρ of SQAM(m). For m = 1 and 2, it is relatively easy to prove that
there exists a Gray independent labeling ρ̄ = ρ◦κπ where ◦ denotes composition of mappings, π is a
permutation of the indexes 0, . . . , 2m−1, and κπ is defined by (b0 · · · b2m−1) 7→ (bπ(0) · · · bπ(2m−1)).
Thus, due to the bit-interleaver, we can say without loss of generality that any distance-preserving
labeling is a Gray independent labeling for m = 1 and 2.

When we consider SQAM(m) in the rest of this work, we choose (reflected) Gray independent
labeling due to the distance-preserving property and the fact that an independent labeling reduces
the complexity of calculating bit-wise LLR values at the decoder. Furthermore, for SQAM(m) with
independent labeling, the union upper bound on the FER on the AWGN channel that will be
presented in Section 2.3 uses only on the mapping ϕ for the constituent labelings of SPAM(m),
and not the mapping ϕ for SQAM(m), i.e., sequences of symbols from SQAM can be regarded as
sequences of pairs of symbols from SPAM(m) × SPAM(m).

In the rest of this work, we use the notation ϕPAM(b0 · · · bm−1, d), ϕPSK(b0 · · · bm−1, d), and
ϕQAM(b0 · · · b2m−1, d) when it is important to highlight the underlying constellation.

Example 2 Consider two Gray labelings of SPAM(3) using the two Gray codes of Example 1.
The nonzero values of ϕPAM(b0b1b2, d) when w(b0b1b2) = 1 are tabulated in Tables 1(a) and (b),
respectively. As an example, we have also considered a Gray labeling of SPSK(3) using the second
Gray code from Example 1. The nonzero values of ϕPSK(b0b1b2, d) when w(b0b1b2) = 1 are tabulated
in Table 1(c). As a remark, note that we get a table with the same structure if we use the first
instead of the second Gray code from Example 1. As shown in Tables 1(a) and (b) all Gray codes
are not equal (which was also observed in [5] in the context of the edge profile).
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Lemma 1 For SPAM(m), m ≥ 1, with reflected Gray labeling it holds, for 0 ≤ x ≤ m − 1, that

ϕ
(
0x10m−1−x, d

)
=

{(
1
2

)x
if d = (2i + 1)2 for all i ∈ {0, 1, . . . , 2x − 1},

0 otherwise,
(3)

where 0x is a shorthand notation for a sequence of x zeros.

Proof: We prove the result by induction on m. For m = 1, (3) reduces to

ϕ (1, d) =

{

1 if d = 1,

0 otherwise,

which is obviously true. Assume that the result in Lemma 1 holds for some m = l, l ≥ 1. Consider
the case of m = l + 1. It follows from the induction hypotheses and the recursive construction of
Gray codes in (2) that (3) is also true for m = l+1 when 0 ≤ x ≤ l−1. It remains to prove that (3)
holds for m = l+1 and x = l. For m = l+1 and x = l, it follows from the recursive construction of
Gray codes in (2) that the pair of signal points (s1, s2) in which the index of s1 in SPAM(l + 1) is i
and the index of s2 in SPAM(l+1) is 2l+1−1−i for some i, 0 ≤ i ≤ 2l−1, has binary label difference
(0l1) and squared Euclidean distance (2(2l − 1 − i) + 1)2. In fact, this is the only pair of signal
points with binary label difference (0l1) and squared Euclidean distance (2(2l − 1 − i) + 1)2 for a
fixed i, 0 ≤ i ≤ 2l − 1. Furthermore, there does not exist pairs of signal points with binary label
difference (0l1) and squared Euclidean distance different from (2(2l − 1 − i) + 1)2, 0 ≤ i ≤ 2l − 1.
The result in (3) for m = l + 1 and x = l follows immediately. �

Example 3 Consider the square 16-QAM signal constellation with reflected Gray independent
labeling as depicted in Fig. 2. In this case, as an example,

ϕQAM(0001, 1) = 0.5, ϕQAM(0001, 9) = 0.5, ϕQAM(0101, 2) = 0.25,

ϕQAM(0101, 10) = 0.5, ϕQAM(1000, 1) = 1, and ϕQAM(1110, 5) = 1.

0000 1000 1100 0100

0010 1010 1110 0110

0011 1011 1111 0111

0001 1001 1101 0101

PSfrag replacements

dmin = 1

Fig. 2. Square 16-QAM signal constellation with reflected Gray independent labeling.

Consider sequences α = (α0, . . . , αl−1) and β = (β0, . . . , βl−1) of rational numbers of length l.
We say that α dominates β if and only if there exists an integer i, 0 ≤ i ≤ l−1, such that αj = βj

for all j, 0 ≤ j < i, and αi < βi. Furthermore, for a given constellation labeling ρ of SPAM(m)
order the nonzero values of ϕ(b0 · · · bm−1, 1) when w(b0 · · · bm−1) = 1 in an increasing fashion. The
resulting ordered sequence is denoted by ϕρ.

Lemma 2 There exists a Gray labeling ρ̄ of SPAM(m), m ≥ 1, such that the ith component of ϕρ̄

is equal to (1/2)m−i−1, 0 ≤ i ≤ m− 1. Furthermore, there does not exist a different Gray labeling
ρ of SPAM(m) such that ϕρ dominates ϕρ̄.
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Proof: The existence of a Gray labeling ρ̄ with the property of having the ith component of
ϕρ̄ equal to (1/2)m−i−1, 0 ≤ i ≤ m − 1, follows directly from Lemma 1, i.e., ρ̄ is a reflected Gray
labeling. The second part of Lemma 2 is proved by contradiction. Assume that there exists a
Gray labeling ρ of SPAM(m) such that ϕρ dominates ϕρ̄. From the properties of a Gray code there

exists at least one integer j, 0 ≤ j ≤ 2m − 2, such that w(ρ−1(s
(j)
m ) ⊕ ρ−1(s

(j+1)
m )) = (0x10m−1−x)

for all integers x, 0 ≤ x ≤ m − 1, where ⊕ denotes modulo 2 addition. Since ϕρ dominates ϕρ̄,
we can find an integer x, 0 ≤ x ≤ m − 1, and a unique integer j, 0 ≤ j ≤ 2m − 2, such that

w(ρ−1(s
(j)
m ) ⊕ ρ−1(s

(j+1)
m )) = (0x10m−1−x), which imply 1) j = 2m−1 − 1, 2) that the leftmost

2m−1 points have to agree in the xth bit-position, and 3) that the rightmost 2m−1 points have

to agree in the xth bit-position. Applying the argumentation above on both s
(0)
m , . . . , s

(j)
m and

s
(j+1)
m , . . . , s

(2m−1)
m , and recursively on each new non-empty subset of consecutive signal points

encountered during the process result in a sequence ϕρ which is equal to ϕρ̄. Thus, ϕρ does not
dominate ϕρ̄ and a contradiction occurs. �

2.3 Bounding the error rate performance

Consider a signal constellation S of cardinality 2M , M ≥ 1, with some constellation labeling ρ.
Under a maximum-likelihood decoding assumption, the union bounding technique gives an accurate
estimate of the error rate performance in the high signal-to-noise ratio region. The contribution
from each signal sequence s = (s0, . . . , sn/M−1) (n being the code length) of Hamming weight w(s)
and support {i1, . . . , iw(s)} to the union bound on the FER on an AWGN channel is

∑

d1∈N:
ϕ(ρ−1(si1 ),d1)6=0

· · ·
∑

dw(s)∈N:

ϕ(ρ−1(siw(s)
),dw(s))6=0





w(s)
∏

j=1

ϕ(ρ−1(sij
), dj)



Q





√

d1 + · · · + dw(s)

2N0



 (4)

where N = {1, 2, . . .} is the natural numbers, N0/2 is the noise variance in each direction (real and
imaginary) of the complex additive white Gaussian noise, and Q(·) is the standard Q-function.
The bit energy Eb, needed when plotting the union bound as a function of Eb/N0, for SQAM(m), is
(22m−1)d2

min/(12mR) where R is the turbo code rate and dmin is the minimum Euclidean distance
between any two signal points in the signal constellation [12] (see Fig. 2). In our case we have
dmin = 1 from (1). The overall bound is obtained by summing the above expression over all signal
sequences.

In practice, the summation is truncated and only signal sequences s with w(ρ−1(s)) less than a
given threshold τ ≥ dfree (dfree being the free distance of the turbo code) are considered. Note that
when applied to a sequence s of symbols from a constellation S, ρ−1 is applied to each component
individually. When the summation is truncated, only terms in (4) with d1 + · · · + dw(s) ≤ τ are
needed. This reduces the number of terms in the summation significantly and allows an efficient
recursive computation of (4).

A distance-preserving labeling guarantees that the contribution of every signal sequence pair
(s, s′) with d2

E(s, s′) ≤ τ is taken into account in a truncated union bound when all signal sequences
s̃ with w(ρ−1(s̃)) ≤ τ are summed using (4). Here, dE(·, ·) denotes Euclidean distance. In partic-
ular, with a non-distance-preserving labeling there could exist signal sequences s̃, s, and s′ such
that s̃ corresponds to a binary turbo codeword of rather large Hamming weight > τ , d2

E(s, s′) ≤ τ ,
and ρ−1(s) ⊕ ρ−1(s′) = ρ−1(s̃). The contribution of the signal sequence pair (s, s′) will not be
taken into account in a truncated union bound, since by assumption we do not know binary turbo
codewords of weight > τ .

In the case of SQAM(m) with a Gray independent labeling ρ, we may look at the signal sequences
as sequences of length n/m of symbols from SPAM(m). The contribution from each signal sequence
s = (s0, . . . , sn/m−1) to the union bound on the FER on an AWGN channel is given by the
expression in (4). Note that in this case all variables are related to SPAM(m) and s as a sequence
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of symbols from SPAM(m). For instance, the mapping ϕ is computed for SPAM(m) with Gray
labeling.

3 Design of bit-interleaver

In this section we propose a greedy bit-interleaver design algorithm for improved performance in the
error floor region that uses a set L consisting of all codewords of weight less than a given threshold
τ obtained from the algorithm in [8]. We further discuss the different levels of protection on the
bit-level from channel noise due to high-order modulation, and the impact of the bit-interleaver on
the performance in the waterfall region.

3.1 Greedy bit-interleaver design

For any codeword c = (c0, . . . , cn−1) ∈ L, let X(c) be the support of c, i.e., X(c) = {i : ci = 1},
and let X = X(L) = ∪c∈LX(c), i.e., the support of L. A subset H of X of minimum cardinality
such that |X(c) ∩ H | ≥ l(c), 0 ≤ l(c) ≤ |X(c)|, for all c ∈ L is called a minimum (generalized)
hitting set, and the values {l(c) : c ∈ L} constitute a prescribed hitting distribution. If we choose
l(c) = 1 for all c ∈ L, then the problem of finding a minimum hitting set is equivalent to finding a
minimum set cover [13] which is an NP-hard problem. In the following we choose l(c) = l′(w(c)),
i.e., the value depends only on the Hamming weight of c. For each position p ∈ X , let N(p) =
|{c ∈ L : p ∈ X(c)}|. A hitting set can be constructed by the greedy algorithm below. Note that
in general a minimum hitting set is not constructed.

Greedy Hitting Set(L, {l(c) : c ∈ L}):

/∗ Find a hitting set H with a target hitting distribution

{l(c) : c ∈ L}. ∗/
Compute X = X(L) and N(p) for all p ∈ X, and

start with an empty set H.

(∗) If |X(c) ∩ H | ≥ l(c) for all c ∈ L or X = ∅,
terminate the process.

Otherwise,

set pmax = argmaxp∈X N(p).
If ∃ c ∈ L : X(c) ∩ {pmax} 6= ∅ and |X(c) ∩ H | < l(c),

set H = H ∪ {pmax}.
Remove pmax from X.

Proceed from (∗).

Consider SQAM(m) with a reflected Gray independent labeling. We construct a bit-interleaver
randomly under the constraint that the first n/m positions in the hitting set H are mapped to
positions ≡ m − 1 modulo m. If n/m < |H | ≤ 2n/m, m ≥ 2, then the last |H | − n/m positions
in H are mapped to positions ≡ m − 2 modulo m. This principle is motivated by Lemmas 1 and
2 and equation (4). In more detail, the contribution to the multiplicity of the Q-function in (4)
is smallest (equal to (1/2)m−1) when the nonzero symbols {sij

} have labels with a single one in
position m−1. Note that in this case the nonzero symbols {sij

} are symbols from SPAM(m). This
bit-interleaver construction algorithm will be denoted by Greedy Interleaver Design (GID). When
the target hitting distribution is important we use the notation GID({l(c) : c ∈ L}).

In the context of turbo codes, a large fraction of the positions in the hitting set are parity
positions, since the low-weight codewords have low input weight, which will be mapped to positions
≡ m − 1 modulo m.

Consider a turbo codeword c of Hamming weight w(c) ≥ 1. We may look at the signal sequences
as sequences of length n/m of symbols from SPAM(m). Suppose x, 1 ≤ x ≤ w(c), 1-positions in
the codeword are mapped into a symbol s ∈ SPAM(m). From the properties of a Gray code, it
follows that ϕ

(
ρ−1(s), d

)
= 0 for all integers d ≤ x2

1 − 1. Since x2
1 ≥ x1 with equality if and only

7



if x1 = 1, it follows that the event of mapping the 1-positions from a given codeword into distinct
symbols constitutes a worst case scenario in terms of squared Euclidean distance. Thus, we do not
have to worry if more than a single 1-position in some low-weight codeword is mapped to a single
symbol. Note that this could happen if n/m < |H | ≤ 2n/m, m ≥ 2.

3.2 Level of protection from channel noise

For a given high-order modulation scheme with a specific labeling ρ between signal points and
binary labels, the level of protection (from channel noise) of a transmitted bit depends on both
its position (modulo M) in the transmitted binary sequence and its neighboring bits within the
same symbol. In this subsection we give a reliability measure for the LLR values on the bit-level,
as seen by the binary turbo decoder, at high signal-to-noise ratios to quantify the different levels
of protection.

Consider SQAM(m) with a reflected Gray independent labeling (see Fig. 2 for an example when

m = 2). Any symbol s̃ ∈ S = SQAM(m) with binary label (b̃0 · · · b̃2m−1) is transmitted across an
AWGN channel with noise variance N0/2 in each direction. The received value is r = s̃ + ε where
ε denotes additive white Gaussian noise. The LLR values on the bit-level are (0 ≤ i ≤ m − 1)

log

(

Pr(b̃i = 1|r)
Pr(b̃i = 0|r)

)

= log

(

Pr(r|b̃i = 1)

Pr(r|b̃i = 0)

)

+ log

(

Pr(b̃i = 1)

Pr(b̃i = 0)

)

=
(a)

log

(

Pr(r|b̃i = 1)

Pr(r|b̃i = 0)

)

= log





∑

∀ s∈S:
bi=1

Pr(r|s̃ = s)
∑

∀ s∈S:
bi=0

Pr(r|s̃ = s)



 = log





∑

∀<(s),s∈S:
bi=1

Pr(<(r)|<(s̃) = <(s))

∑

∀<(s),s∈S:
bi=0

Pr(<(r)|<(s̃) = <(s))





≈
(b)

− 1

N0

(

min
∀<(s),s∈S:bi=1

(<(r) −<(s))2 − min
∀<(s),s∈S:bi=0

(<(r) −<(s))2
)

≈
(c)

2b̃i − 1

N0

(

d̃2
i (s̃) + 2d̃i(s̃)<(ε)

)

∼ N
(

(2b̃i − 1)d̃2
i (s̃)

N0
,
2d̃2

i (s̃)

N0

)

(5)

where <(·) denotes the real part of its argument, N (·, ·) is a Gaussian distribution where the first
and second arguments are the mean and variance, respectively, and where

d̃i(s̃) = min
∀<(s),s∈S:bi 6=b̃i

dE(<(s),<(s̃)). (6)

In (5), the equality in (a) follows from the linearity of the underlying code and the assumption of
no a priori information, the approximation in (b) is the standard “max-log” approximation

log(ea1 + ea2 + · · · + eaj ) ≈ max(a1, a2, . . . , aj), ∀j > 1,

and the approximation in (c) is a high Eb/N0 approximation. For m ≤ i ≤ 2m − 1, (5) and (6)
are valid with =(·) (the imaginary part) instead of <(·). In general, <(s̃) and =(s̃) take on values
from the ordered set (1)

{
−2m−1 + 1/2,−2m−1 + 3/2, . . . ,−1/2, 1/2, . . . , 2m−1 − 1/2

}
(7)

of cardinality 2m. The corresponding values of d̃i(s̃), for 0 ≤ i ≤ m − 1, are contained in the
ordered set 




2i, 2i − 1, . . . , 1, 1, 2, . . . , 2i

︸ ︷︷ ︸

2i+1

, . . . , 2i, 2i − 1, . . . , 1, 1, 2, . . . , 2i

︸ ︷︷ ︸

2i+1






. (8)

Note that for m ≤ i ≤ 2m − 1, d̃i(s̃) = d̃i−m(s̃).
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As argued above the LLR values on the bit-level, at high Eb/N0, are approximately Gaussian
random variables with mean and variance dependent on the sent symbol s̃. A signal-to-noise
ratio for the LLR random variable can be defined as the ratio of the square of the mean over the
variance [14], which, at position i, is

[

(2b̃i − 1)d̃2
i (s̃)/N0

]2

2d̃2
i (s̃)/N0

=
d̃2

i (s̃)

2N0
. (9)

This signal-to-noise ratio gives a measure for the quality of the LLR values on the bit-level as seen
by the binary turbo decoder. For the underlying turbo code, linearity implies that all symbols
have the same probability of being sent, and using (8) and the fact that d̃i(s̃) = d̃i−m(s̃) for
m ≤ i ≤ 2m− 1, the average signal-to-noise ratio, at position i, becomes

1

2r+1N0

2r

∑

j=1

j2 =
(2r + 1)(2r+1 + 1)

12N0
(10)

where i = q · m + r, q ∈ {0, 1} and r ∈ {0, . . . , m − 1}, which shows that transmitted bits in
positions ≡ 0 modulo m (r = 0) have the lowest level of protection, while the transmitted bits in
positions ≡ m − 1 modulo m (r = m − 1) have the highest level of protection.

The iterative turbo decoding algorithm iterates on extrinsic values of information bits only.
Consequently, information bits should have the highest level of protection if performance in the
waterfall region is the primary concern.

3.3 Discussion

A bit-interleaver construction algorithm giving any bit-interleaver with equal probability will be
denoted by RND. RND with the additional constraint of mapping parity positions in a random
fashion to the least protected positions, i.e., to positions ≡ 0 modulo m will be denoted by RND-
PC.

For improved performance in the error floor region we use GID({l(c) : c ∈ L}). For turbo codes
in general, a large fraction of their 1-positions in low-weight codewords are parity positions, since
the input weight is low. Consequently, a bit-interleaver from GID({l(c) : c ∈ L}) will map a larger
fraction of parity positions to positions ≡ m − 1 modulo m (see Section 3.1), which are the most
reliable positions (see Section 3.2), compared to a bit-interleaver from RND. This will degrade the
performance in the waterfall region as discussed in Section 3.2.

To compensate we could impose a restriction upper bounding the number of parity positions
in the hitting set when using Greedy Hitting Set. GID({l(c) : c ∈ L}) with an upper bound of δ
on the number of parity positions in the hitting set and with the additional constraint of mapping
the parity positions in the complement of the hitting set in a random fashion to the least protected
positions will be denoted by GID-PC({l(c) : c ∈ L}; δ). As we will show in a case study in the
next section, such a restriction will give bit-interleavers with at least as good performance in the
waterfall region and significant performance improvement in the error floor region compared to the
empirical average bit-interleaver from RND.

4 Case study

We have looked at a rate R = 7/9 parallel turbo code with non-punctured rate 7/8, constraint
length ν = 4 constituent convolutional codes with free distance dfree = 4 defined by the (canonical
[15]) parity check matrix

H(D) =
(
17 23 25 27 33 35 37 31

)
. (11)

The entries in the matrix in (11) are given in octal notation in the sense that 23 = 010011 =
1 + D + D4. We choose the last polynomial which is irreducible and primitive as the parity

9



Table 2. The initial part of the IOWEF of the example turbo code. As an example there are 42
codewords of weight 16 with input weight 4.

Input weight
1 2 3 4 5 6 7 8 9

13 - - 4 2 - - - - -
14 - - 7 6 - - - - -
15 1 1 21 22 - - - - -
16 1 5 26 42 15 1 - - -
17 - 15 55 75 36 19 2 1 -
18 - 27 58 168 115 55 6 1 -O

u
tp

u
t

w
ei

g
h
t

19 1 24 93 283 287 126 32 9 1

polynomial making the constituent encoders recursive. The information bits from the second
constituent encoder are punctured to obtain the overall rate of 7/9, and both constituent encoders
are terminated. The UMTS termination scheme [16] is used, i.e., both parity and information
bits from both encoders are transmitted for the termination sections. The information block size
is 4004, which results in codewords of length 5164. The turbo code interleaver is a high spread
interleaver [17] with additional constraints [18, 19], and a maximum of 20 iterations are used in the
iterative turbo decoding algorithm. The initial part of the code’s input-output weight enumerating
function (IOWEF), computed by the algorithm in [8], is tabulated in Table 2.

The bit-interleavers are generated according to either RND or RND-PC, or GID({l(c) : c ∈ L})
or GID-PC({l(c) : c ∈ L}; δ) with L composed of all codewords of weight ≤ 17. Both 16-QAM
(m = 2) and 256-QAM (m = 4) signal sets with reflected Gray independent labeling are considered.
In the following let FERUB,≤τ (Eb/N0) denote the truncated union bound on the FER calculated
using (4) and all codewords of weight ≤ τ at a target signal-to-noise ratio Eb/N0. We use the
notation (x13, x14, x15, x16, x17) with GID and GID-PC for a given target hitting distribution where
the value of xi (0 ≤ xi ≤ i), 13 ≤ i ≤ 17, indicates that at least xi 1-positions in every codeword
of weight i are used in the design.

In Fig. 5 the probability density functions (pdfs) of log(FERUB,≤x(Eb/N0 = 7.0 dB)), x = 17
and 19, are estimated from a large number of bit-interleavers generated independently according
to the indicated algorithms for m = 2. In particular, the estimated pdf with the algorithm
GID(13, 14, 15, 16, 17) is displayed. We observe that there is a very high probability that the
truncated union bound on the FER at Eb/N0 = 7.0 dB is at a probability of 10−13. Note that
codewords of weight 18 and 19 are taken into account through (4), but not in the design of the
bit-interleavers. The narrow shape of the pdf indicates that the computation using (4) has actually
converged. The narrow shape of the pdf is a direct consequence of the fact that almost every parity
position is contained in the hitting set. Additional codewords of weight 18, 19, 20, · · · will have a
large parity weight and thus some of the positions will map to positions with a high protection level,
and their influence on the union bound through (4) is limited. As discussed in Section 3.3 these bit-
interleavers will probably display a performance worse than the empirical average bit-interleaver
from RND in the waterfall region, and indeed this is the case as illustrated in Fig. 6.

Furthermore, the pdf of log(FERUB,≤17(Eb/N0 = 7.0 dB)) is estimated from a large number
of bit-interleavers generated independently according to RND and RND-PC. The constraint of
mapping all parity positions to positions with the lowest protection level will raise the error floor
compared to the empirical average bit-interleaver from RND, but the performance will improve
in the waterfall region as illustrated in Fig. 6. The pdf of log(FERUB,≤19(Eb/N0 = 7.0 dB)),
estimated from bit-interleavers generated independently according to GID-PC(13, 14, 15, 5, 4; 644),
is also displayed in Fig. 5. In this context note that the total number of parity positions (not
counting termination bits) is 1144. Note that the pdf has its probability mass at a significantly
lower level than the estimated pdf of log(FERUB,≤17(Eb/N0 = 7.0 dB)) of bit-interleavers from
RND. The performance in the waterfall region is identical as illustrated in Fig. 6.
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Figs. 3 and 4 contain the same information as Fig. 5 but with m = 4. In more detail, in Fig. 3
the pdf of log(FERUB,≤19(Eb/N0 = 14.5 dB)) is estimated from a large number of bit-interleavers
generated independently according to GID(13, 14, 15, 16, 17) and GID(13, 14, 15, 12, 11). Note that
there is a very high probability that the truncated union bound on the FER at Eb/N0 = 14.5
dB is at a probability of 10−17 when using the most greedy algorithm, i.e., GID(13, 14, 15, 16, 17).
Again, as for the case of m = 2, codewords of weight 18 and 19 are taken into account through
(4), but not in the design of the bit-interleavers. As noted above the narrow shape of the pdf
indicates that the computation using (4) has actually converged. The estimated pdf when using
GID(13, 14, 15, 12, 11) illustrates the effect of being less greedy.

In Fig. 4 the pdf of log(FERUB,≤17(Eb/N0 = 14.5 dB)) is estimated from a large number of
bit-interleavers generated independently according to RND and RND-PC. We observe that the
constraint of mapping all parity positions to positions with the lowest protection level will raise
the error floor substantially compared to the empirical average bit-interleaver from RND, but the
performance will improve in the waterfall region as illustrated in Fig. 7. Furthermore, the pdf of
log(FERUB,≤19(Eb/N0 = 14.5 dB)) estimated from bit-interleavers generated independently ac-
cording to GID-PC(13,14,15,5,4;644) is also displayed in Fig. 4. From Figs. 4 and 7 we observe
that the empirical average bit-interleaver from GID-PC(13,14,15,5,4;644) gives slightly better per-
formance in the waterfall region and superior performance in the error floor region compared to
the empirical average bit-interleaver from RND.

Figs. 6 and 7 show simulation results and truncated union bounds, calculated from (4) using
all codewords of the underlying turbo code of weight ≤ 19, on the FER of BITCM using several
different bit-interleavers generated according to the algorithms in the legends for m = 2 and 4,
respectively. The tag BAD in the legend of Fig. 7 corresponds to a BITCM scheme with a very
high error floor. Note that the truncated union bound is in excellent agreement with the simulation
results.

The unconstrained Eb/N0 channel capacity in dB is 10 log[(2η − 1)/η] where η is the spectral
efficiency. In our case study η = 3.10 and 6.20 b/s/Hz for m = 2 and 4, respectively. If the error
floor is the primary concern, we observe from Figs. 6 and 7 that maximum-likelihood decoding
frame error rates of 10−12 and 10−17 at 2.6 dB and 3.8 dB away from unconstrained channel
capacity at spectral efficiencies of 3.10 and 6.20 b/s/Hz using square 16 and 256-QAM signal
constellations are achievable, respectively.

5 Conclusion and future work

In this work we have introduced a greedy algorithm to lower the error floor of BITCM in AWGN
through a detailed design of the bit-interleaver. The input to the algorithm is an accurate list
of low-weight codewords computed from an exact weight distribution algorithm. For high-order
modulation, the level of protection from channel noise is dependent on the bit-position in the
transmitted sequence and the neighboring bit-values within the same symbol. For improved per-
formance in the waterfall region, the information bits should have the highest level of protection,
since the iterative turbo decoding algorithm iterates on extrinsic values of information bits only.

An extensive case study of a high-rate BITCM scheme using square QAM signal constellations
shows that there is a trade-off between performance in the waterfall and the error floor regions,
since a low error floor requires that the parity bits should have the highest level of protection. The
reported case study shows that it is possible to design bit-interleavers with our proposed algorithm
with equal or better performance in the waterfall region and superior performance in the error
floor region compared to randomly generated bit-interleavers. Moreover, if the error floor is the
primary concern, we were able to design BITCM schemes with maximum-likelihood decoding frame
error rates of 10−12 and 10−17 at 2.6 dB and 3.8 dB away from unconstrained channel capacity at
spectral efficiencies of 3.10 and 6.20 b/s/Hz using square 16 and 256-QAM signal constellations,
respectively.

The bit-interleaver design algorithm described in Section 3.1 is a one-dimensional approach.
As future work we would like to investigate a higher-dimensional approach as indicated below. Let
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Fig. 3. Estimated probability density functions with m = 4 of log(FERUB,≤19(Eb/N0 = 14.5 dB))
from 100000 bit-interleavers generated independently according to GID(13, 14, 15, 16, 17) and
GID(13, 14, 15, 12, 11) with L composed of all codewords of weight ≤ 17.

X(i) = X(i)(L), 1 ≤ i ≤ dfree (dfree being the free distance of the underlying turbo code), be the
set of distinct i-tuples of 1-positions of all the codewords in L. For any codeword c ∈ L, the set
of i-tuples of 1-positions in the codeword is a subset of X (i) denoted by X(i)(c). A subset H(i)

of X(i) of minimum cardinality such that |X(i)(c) ∩ H(i)| ≥ l(i)(c), 0 ≤ l(i)(c) ≤ |X(i)(c)|, for all
c ∈ L is called a minimum i-dimensional (generalized) hitting set, and the values {l(i)(c) : c ∈ L}
constitute a prescribed i-dimensional hitting distribution. For each i-tuple (p1 · · · pi) ∈ X(i), let
N (i)(p1 · · · pi) = |{c ∈ L : (p1, . . . , pi) ∈ X(i)(c)}|. A slightly modified Greedy Hitting Set is then
used with parameters L and {l(i)(c) : c ∈ L}.

We note that the extension to PSK constellations is straightforward. However, extensions to
more energy-efficient signal constellations, e.g., 22m+1-CROSS constellations with m ≥ 1 are not
straightforward, and this is a topic of future research. The fact that a distance-preserving labeling
does not exist for such constellations causes some immediate difficulties.

As a final remark we note that the general approach described here is applicable to other
turbo-like BICM schemes and channels, e.g., serial concatenated convolutional codes and flat-
fading channels.
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Fig. 6. Simulation results and truncated union bounds calculated from (4) using all codewords
of weight ≤ 19 on the FER of BITCM with different bit-interleavers generated according to the
algorithms in the legends with m = 2. The spectral efficiency is 3.10 b/s/Hz.
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Fig. 7. Simulation results and truncated union bounds, calculated from (4) using all codewords
of weight ≤ 19, on the FER of BITCM with different bit-interleavers generated according to the
algorithms in the legends with m = 4. The spectral efficiency is 6.20 b/s/Hz.
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