
REPORTS
IN

INFORMATICS

ISSN 0333-3590

Counting Instances of Software
Components

Marc Bezem & Hoang Truong

REPORT NO 277 June 2004

Department of Informatics

UNIVERSITY OF BERGEN

Bergen, Norway

This report has URL http://www.ii.uib.no/publikasjoner/texrap/ps/2004-277.ps

Reports in Informatics from Department of Informatics, University of Bergen, Norway, is
available at http://www.ii.uib.no/publikasjoner/texrap/.

Requests for paper copies of this report can be sent to:

Department of Informatics, University of Bergen, Høyteknologisenteret,
P.O. Box 7800, N-5020 Bergen, Norway

Counting Instances of Software Components

Marc Bezem ∗ & Hoang Truong †

Department of Informatics
University of Bergen

N-5020 Bergen
Norway

11th June 2004

Abstract

Component software is software that has been assembled from various
pieces of standardized, reusable computer programs, so-called components.
Executing component software creates instances of these components. For
several reasons, for example, limited resources and/or application require-
ments, it can be important to have control over the number of such instances.
Clearly, design-time or compile-time control is to be preferred to run-time con-
trol in cases where this is possible. We give an abstract component language
and a type system which ensures that the number of simultaneously active
instances of any component never exceeds a (sharp) bound expressed in the
type. The language features instantiation and reuse of components, as well
as sequential composition, choice and scope. Alternatively one can view the
objects in the language as processes where the atomic actions are interpreted
as either creating new, or reusing old instances.

1 Introduction

Component software is built from various components, possibly developed by third-
parties [8], [10]. These third-party components may in turn use other components.
Upon execution instances of all these components are created. The process of
creating an instance of a component c does not only mean the allocation of memory
space for c’s code and data structures, the creation of instances of c’s subcomponents
(and so on), but possibly also the allocation of hardware resources. In many cases,
resources are limited and components are required to have only a certain number
of simultaneously active instances. For example, a serial output device can usually
stand only one instance of a driver-component, serialized ID generators should be
unique [5], [4]. Most servers can have only a certain number of clients.

When building component software it can easily happen that, unforseen by the de-
veloper, different instances of the same component are created. Creating more active
instances than allowed can lead to errors. There are several ways to meet this chal-
lenge, ranging from testing to dynamic instantiation schemes. Type systems have

∗Email: bezem@ii.uib.no
†Email: hoang@ii.uib.no

1

traditionally been used for compile-time error-checking, cf. [3]. In component soft-
ware, typing has been studied in relation to integrating components such as type-safe
composition [9] or type-safe evolution [7]. In this paper we explore the possibility
of a type system which allows one to detect statically, at development/composition
time, whether or not the number of simultaneously active instances of specific com-
ponents exceeds the allowed number.

For this purpose we have designed a component language where we have abstracted
away many aspects of components and have kept only those that are relevant to
instantiation.1 The main features we have retained are instantiation and reuse,
sequential composition, choice and scope. Reusing a component means here to use
an existing instance of the component if there is already one, and to create a new
instance only if there exists none. Though abstract, the strength of the primitives
for composition is considerable. Sequential composition is associative. Choice allows
us to model both conditionals and non-determinism (due to, e.g., user input). Scope
is a mechanism to deallocate instances but it can also be used to model method
calls.

This paper extends [2] in three main ways. First, we generalized the single-instance
property to counting instances of components. Second, we have an additional prim-
itive for reusing instead of always creating a new instance of a component. Third,
we added a choice primitive to the language, which brings the language closer to
practice.

The paper is organized as follows. Section 2 introduces the component language
with its operational semantics. In Section 3 we define types and the typing rela-
tion. Properties of the type system and the operational semantics are presented in
Section 4. Last, we outline a polynomial time type inference algorithm in Section
5. Technical proofs of Section 4 are delegated to the appendix.

2 A Component Language

2.1 Terms

We have two primitives (new and reu) for creating and (if possible) reusing an
instance of a component, and three primitives for composition (sequential composi-
tion denoted by juxtaposition, + for choice and {. . .} for scope. Together with the
empty expression ε these generate so-called component expressions. A declaration
c−≺ Exp states how the component c depends on subcomponents as expressed in
the component expression Exp. If c has no subcomponents then Exp is ε and we
call c a primitive component. Upon instantiation or reuse of c the expression Exp is
executed. A component program consist of declarations and ends with an expression
which sparks off the execution, see Section 2.2.

In the formal definition below, we use extended Backus-Naur Form with the fol-
lowing meta-symbols: infix | for choice and underlining for Kleene closure (zero or
more iterations).

Definition 1 (Syntax). Component programs, declarations and expressions are
defined by the following syntax:

1This should not be misunderstood as that other aspects are deemed uninteresting!

2

Prog ::= Decl ;Exp (Program)
Decl ::= Var−≺Exp , Var−≺Exp (Declarations)
Exp ::= ε (Empty Expression)

| newVar (New Instantiation)
| reuVar (Reuse Instantiation)
| (Exp + Exp) (Choice)
| {Exp} (Scope)
| Exp Exp (Sequential Composition)

We use a, b, . . . , z for component names from a set Var and A, . . . , E for expressions
Exp. The following example is a well-formed component program:

d−≺ε, e−≺ε, a−≺ new d, b−≺(reu d{ new a}+ new e new a) reu d; new b .

In this example, d and e are primitive components. Component a uses one instance
of component d. Component b has a choice expression before reuse of an instance
of d. The first expression of the choice expression is reu d{ new a}. We can view
{ new a} in this expression as function call f() (in traditional programming lan-
guages). Function f then has body new a, which means f() needs a new instance
of a to do its job. We abstract from the details of this job, the only relevant aspect
here is that it involves a new instance of a which will be deallocated upon exiting
f .

2.2 Operational Semantics

The operational semantics is modelled as a transition system where a state is a
pair Σ◦E, with Σ a non-empty stack of multisets over Var and E a component
expression. Elements of the stack are separated by : and the stack is separated
from the expression by ◦. Stacks are pushed and popped at the right end.

Multisets are denoted by [. . .], where sets are denoted, as usual, by {. . .}. M(x) is
the multiplicity of element x in multiset M . The operation ∪ is union of multisets:
(M ∪ N)(x) = max(M(x), N(x)) with M(x) = 0 if x /∈ M . The operation] is
additive union of multisets: (M] N)(x) = M(x) + N(x) and we write M + x for
M] [x]. When x ∈ M we write M − x for M − [x]. The additive union of all the
multisets in a stack Σ will also be denoted by Σ, that is, if Σ = M1 : . . . : Mn then
also Σ = M1] . . .]Mn.

Definition 2 (Transition rules). Σ can be empty in the rules below.

x−≺E ∈ Prog
Σ : M ◦ newx → Σ : (M + x)◦E OS-new

x−≺E ∈ Prog , x /∈ Σ ∪M

Σ : M ◦ reux → Σ : (M + x)◦E OS-reu1
x−≺E ∈ Prog , x ∈ Σ ∪M

Σ : M ◦ reux → Σ : M ◦E OS-reu2

Σ◦(A + B) → Σ◦A OS-choice1
Σ◦(A + B) → Σ◦B OS-choice2

Σ : []◦E → Σ : M ◦ε
Σ◦{E} → Σ◦ε OS-scope

Σ : M ◦E → Σ : M ′◦ε
Σ : M ◦EA → Σ : M ′◦A OS-seq

Σ◦E → Σ′◦E′ Σ′◦E′ → Σ′′◦E′′

Σ◦E → Σ′′◦E′′ OS-trans .

3

The meaning of these transition rules can be described as follows. Rule OS-new adds
an instance of the component x declared by x−≺E to the multiset on top of the stack
and starts executing E. Rule OS-reu1 does the same as OS-new as the component
to be reused doesn’t occur in the stack. OS-reu2 applies if component x does occur
already in the stack with the effect that E is executed without adding x to the top
of the stack. For the (inductive) scope rule, an empty multiset is pushed on the
stack after which the expression between the scope delimiters is executed. If this
execution terminates successfully, the scoped expression has been executed without
changing the original stack. The rules OS-choice1,2 and OS-seq and OS-trans are
self-explaining.

The example at the end of Section 2.1 can be used to illustrate the operational
semantics. A formal derivation tree could be built using the Definition 2 but here
we just show the main transitions. First, when executing new b, an instance of b is
added to the empty multiset on top of the stack and the execution continues using
the declaring expression for b:
[]◦ new b → [b]◦(reu d{ new a}+ new e new a) reu d (∗)
Now there are two options. If we chose rule OS-choice1 in (∗) we get:
[b]◦ reu d{ new a} reu d → [b, d]◦{ new a} reu d
Now we meet a scoped expression and have to execute the expression new a inside
the scope with an new empty multiset pushed on top of the stack, as a subsidiary
derivation:
[b, d] : []◦ new a → [b, d] : [a]◦ new d → [b, d] : [a, d]◦ε
Note the two instances of d here. By rules OS-scope and OS-reu2 we have:
[b, d]◦{ new a} reu d → [b, d]◦ reu d → [b, d]◦ε
If we chose rule OS-choice2 in (∗) we proceed as follows:
[b]◦ new e new a reu d → [b, e]◦ new a reu d → [b, e, a]◦ new d reu d →
[b, e, a, d]◦ reu d → [b, e, a, d]◦ε.
In this example there are two possible runs and the numbers of active instances of
each component are not the same during and at the end of the two runs. There are
two reu d’s in the above execution and only the first one creates an instance of d.
The maximum for d is 2, for the others 1.

3 Type System

3.1 Types

We partition the set of all components C = Var into classes C0, . . . ,Cn such
that each component in C0 can have an arbitrary number of active instances and
each component in Ci with i = 1..n can have at most i instances at a time. So
C = C0 ∪ · · · ∪Cn and Ci ∩Cj = ∅ for 0 ≤ i < j ≤ n. Note that Ci may be empty
for some i.

Definition 3 (Types). Types of component expressions are quadruples

X = 〈Xi, Xo, Xj , Xp〉
where Xi, Xo, Xj and Xp are finite multisets over C. We let U, V, . . . , Z range over
types.

Let us first explain informally why multisets, which multisets and why four. The
aim is to have a sharp upper bound of the number of simultaneously active in-
stances of any component during the execution of the expression (Xi). Multisets

4

are the right datastructure to collect and count such instances. In addition we want
compositionality of typing, that is, we want the types to be computable from types
of subexpressions. Since subexpressions may be scoped, it is necessary to have an
sharp upper bound of the number of instances that are still active after the execu-
tion of an expression (Xo). Pairs 〈Xi, Xo〉 sufficed for the purpose of the paper [2].
Here we consider also reusing instances of components and this depends on whether
there is already such an instance or not. More concretely, in a sequential compo-
sition EE′ the behaviour of reu ’s in E′ depends on the instances that are active
after the execution of E, which would violate compositionality. In order to save
compositionality, we have to add more two more multisets to the types, denoted by
Xj , Xp. These express the same bounds as Xi, Xo, but with respect to executing
the expression in a state where every component has already one active instance.
Finally, we have to explain the informal phrase ‘sharp upper bound’. Since we have
choice, there can be different runs of the same expression, with different numbers
of active instances. Now ‘upper bound’ means an upper bound with respect to all
possible runs and ‘sharp’ means that the upper bound is attained in at least one
such run.

Based on the above intuitions, the following typings are easy:
new d : 〈[d], [d], [d], [d]〉, { new d} : 〈[d], [], [d], []〉, reu d : 〈[d], [d], [], []〉,
reu d{ new d} : 〈[d, d], [d], [d], []〉, reu d{ new a} : 〈[a, d, d], [d], [a, d], []〉,
where d−≺ε and a−≺ new d like in the example program in Section 2.1.

The intuitions from the above paragraph will be indispensable for understanding
the typing rules later in this section, in particular the sequencing rule, but we have
to prepare with some preliminary definitions.

A basis or an environment is an list of declarations: x1−≺ A1, . . . , xn−≺ An with
distinct variables xi 6= xj for all i 6= j, as in [1]. Let Γ, ∆, . . . range over bases.
When Γ = x1−≺A1, . . . , xn−≺An, the set of variables x1, . . . , xn declared in Γ is the
domain of Γ and is denoted by Dom(Γ). A typing judgment is a triple of the form

Γ ` A : X

and it asserts that expression A has type X in the environment Γ. We write ` A : X
if there exists a Γ such that Γ ` A : X.

Notation: for types X and Y , let X ⊆ Y , X + Y and X ∪ Y denote multiset
inclusion, additive union and usual union, respectively, all component-wise. For
any expression E, let Var(E) denote the set of variables occurring in E.

3.1.1 Formal Typing Rules.

Having built up some intuition about types for component expressions in the pre-
vious section we can now give formal typing rules.

Definition 4 (Typing rules). Typing judgments Γ ` A : X are derived by the
following typing rules:

Axiom ` ε : 〈[], [], [], []〉 Weaken
Γ ` A : X Γ ` B : Y x /∈ Dom(Γ)

Γ, x−≺B ` A : X

New
Γ ` A : X x /∈ Dom(Γ)

Γ, x−≺A ` newx : 〈Xi + x, Xo + x, Xj + x, Xp + x〉

Reu
Γ ` A : X x /∈ Dom(Γ)

Γ, x−≺A ` reux : 〈Xi + x, Xo + x, Xj , Xp〉

5

Seq
Γ ` A : X Γ ` B : Y ∀k = 1..n.∀c ∈ Ck.(Xo] Y j)(c) ≤ k A, B 6= ε

Γ ` AB : 〈Xi ∪ (Xo] Y j) ∪ Y i, (Xo] Y p) ∪ Y o, Xj ∪ (Xp] Y j), Xp] Y p〉
Choice

Γ ` A : X Γ ` B : Y

Γ ` (A + B) : X ∪ Y
Scope

Γ ` A : X

Γ ` {A} : 〈Xi, [], Xj , []〉 .

Besides the intuition given in the beginning of this section, some further explanation
of these typing rules is in order. Rule Axiom requires no premise and is used to take-
off. Rules New and Reu allow us to type expressions newx and reux, respectively.
Weakening is used to expand bases so that we can combine typings in other rules.
The side condition x /∈ Dom(Γ) prevents ambiguity and circularity. Rules Choice
and Scope are easy to understand recalling the corresponding rules OS-choice and
OS-scope of the operational semantics.

The most critical rule is Seq because sequencing two expressions can lead to increase
in instances of the composed expression. Let us start with the first and the third
component of type expression for AB. After expression A is executed, there are
at most Xo(x) instances of component x. Executing B can create at most Y i(x)
instances of x if x is not in system state which is Xo. Otherwise Y j(x) instances
of x will be created, meaning that there are at most ((Xo] Y j) ∪ Y i)(x) instances
of x after the execution of A and during the execution of B. So we require the
side condition Xo(x) + Y j(x) ≤ k for each x ∈ Ck. In addition, because during
executing A there are at most Xi(x) instances of x created, the first component of
type of AB is the maximum of Xi(x) and ((Xo]Y j)∪Y i)(x). After executing AB
it is easy to see that the surviving instances are total of those from A and B if we
start from state with no instance of any component.

By similar reasoning when we start with a stack containing at least one instance
of every component we can calculate the second and the last components in the
type expression for AB and the whole type expression of AB is 〈Xi ∪ (Xo] Y j) ∪
Y i, (Xo] Y p) ∪ Y o, Xj ∪ (Xp] Y j), Xp] Y p〉.
Using the example in Section 2.1 with assumption that C0 = {c, d}, C2 = {a, b},
C3 = {e}, we derive type for new b. Note that we omitted some side conditions
as they can be checked easily and we shortened the rule names. Rule Axiom is
simplified. Also Γ = d−≺ ε, a−≺ new d, e−≺ ε and Γ′ = Γ, b−≺ (reu d{ new a} +
new e new a) reu d in the following examples.

Wea

New
` ε : 〈[], [], [], []〉

d−≺ε ` reu d : 〈[d], [d], [], []〉 New
` ε : 〈[], [], [], []〉

d−≺ε ` new d : 〈[d], [d], [d], [d]〉
d−≺ε, a−≺ new d ` reu d : 〈[d], [d], [], []〉

Sco

New

New
` ε : 〈[], [], [], []〉

d−≺ε ` new d : 〈[d], [d], [d], [d]〉
d−≺ε, a−≺ new d ` new a : 〈[a, d], [a, d], [a, d], [a, d]〉
d−≺ε, a−≺ new d ` { new a} : 〈[a, d], [], [a, d], []〉

Sequencing the above two derivation we have:
d−≺ε, a−≺ new d ` reu d{ new a} : 〈[a, d, d], [d], [a, d], []〉.
We can weaken the above derivation to get:
Γ ` reu d{ new a} : 〈[a, d, d], [d], [a, d], []〉 We can also derive:

Seq

. . .

Γ ` new e : 〈[e], [e], [e], [e]〉
. . .

Γ ` new a : 〈[a, d], [a, d], [a, d], [a, d]〉
Γ ` new e new a : 〈[a, d, e], [a, d, e], [a, d, e], [a, d, e]〉

and we have: Γ′ ` new b : 〈[a, b, d, d, e], [a, b, d, e], [a, b, d, e], [a, b, d, e]〉.
In this example expression new b is typable. If d ∈ C1, the expression would not
be typable as the side condition when sequencing reu d and { new a} would not be
satisfied. Also, note that the above type derivation is not the only one but, as we
will see later, the type for any expression is unique.

6

4 Properties

We start by giving some definitions and then state some properties of our type
system. After that we will state some important properties relating types to states
in the operational semantics. Proofs are delegated to Appendix A to improve the
readability of this section.

Following [1] we fix some terminology on bases or environments.

Definition 5 (Bases). Let Γ = x1−≺A1, . . . , xn−≺An be a basis.

• Γ is called legal if Γ ` A : X for some expression A and type X.

• A declaration x−≺A is in Γ, notation x−≺A ∈ Γ, if x ≡ xi and A ≡ Ai for
some i.

• ∆ is part of Γ, notation ∆ ⊆ Γ, if ∆ = xi1−≺Ai1 , . . . , xik
−≺Aik

with 1 ≤ i1 <
. . . < ik ≤ n. Note that the order is preserved.

• ∆ is an initial segment of Γ, if ∆ = x1−≺A1, . . . , xj−≺Aj for some 1 ≤ j ≤ n.

In the sequel we assume that we are working with a well-typed program Prog and the
set C of all components of this program are partitioned into n classes C0,C1, . . . ,Cn

such that each component in Ci can have at most i instances for all 1 ≤ i ≤ n and
each components in C0 can have any number of active instances.

The following lemma collects a number of simple properties of a typing judgment.
It states that if Γ ` A : X, then the elements of each multiset of X and variables
of A is in domain of Γ. It also shows some relations among multisets of A and any
legal basis always has distinct declarations.

Lemma 1 (Legal typing). If Γ ` A : X, then

1. elements of Var(A), Xi, Xo, Xj and Xp are in Dom(Γ),

2. Γ ` ε : 〈[], [], [], []〉,
3. every variable in Dom(Γ) is declared only once in Γ,

4. ∀k = 1..n.∀c ∈ Ck. Xo(c) ≤ Xi(c) ≤ k, Xp(c) ≤ Xj(c) ≤ k,

5. ∀k = 1..n.∀c ∈ Ck. 0 ≤ Xi(c)−Xj(c), Xo(c)−Xp(c) ≤ 1.

The following lemma is important in that it allows us to find the last typing rule
applied to derive the type of an expression and hence it allows us to recursively
calculate the types of well-typed expressions. We will return to this issue in Section
5, Type Inference. This lemma is sometimes called the inversion lemma of the
typing relation [6]. Note that in the third clause the sequential decomposition in A
and B may not be unique.

Lemma 2 (Generation).

1. If Γ ` newx : X, then x ∈ Xp and there exists bases ∆, ∆′ and expression A
such that Γ = ∆, x−≺A, ∆′, and ∆ ` A : 〈Xi − x,Xo − x,Xj − x,Xp − x〉.

2. If Γ ` reux : X, then x ∈ Xo and there exists bases ∆, ∆′ and expression A
such that Γ = ∆, x−≺A, ∆′, and ∆ ` A : 〈Xi − x,Xo − x,Xj , Xp〉.

7

3. If Γ ` AB : Z with A,B 6= ε, then there exists X, Y such that Γ ` A : X,
Γ ` B : Y , Z = 〈Xi∪(Xo]Y j)∪Y i, (Xo]Y p)∪Y o, Xj∪(Xp]Y j), Xp]Y p〉.

4. If Γ ` (A + B) : Z, then there exists X, Y such that Γ ` A : X, Γ ` B : Y
and Z = X ∪ Y .

5. If Γ ` {A} : 〈Xi, [], Xj , []〉, then there exists multisets Xo and Xp such that
Γ ` A : 〈Xi, Xo, Xj , Xp〉.

The next lemma stresses the significance of the order of declarations in a legal
basis in our type system. The initial segment ∆ of a legal basis Γ is a legal basis
for the expression of the consecutive declaration after ∆. Besides, because of the
weakening rule, there can be many legal bases under which a well-typed expression
can be derived.

Lemma 3 (Legal monotonicity).

1. If Γ = ∆, x−≺E, ∆′ is legal, then ∆ ` E : X for some X.

2. If Γ ` E : X, Γ ⊆ Γ′ and Γ′ is legal, then Γ′ ` E : X.

The following lemma can be viewed as the inverse of the previous legal monotonicity
lemma. Under certain conditions we can contract a legal basis so that the expression
is still well-typed in the new basis.

Lemma 4 (Strengthening). If Γ, x−≺A ` B : Y and x /∈ Var(B), then Γ ` B : Y
and x /∈ Y i.

In our type system, when an expression has a type this type is unique. This property
is stated in the following proposition.

Proposition 1 (Uniqueness of types). If Γ ` A : X and Γ ` A : Y , then
Xi = Y i, Xo = Y o, Xj = Y j and Xp = Y p.

Now we state an important invariant of our operational semantics. During transition
the total of instances in the stack does not reduce and the type expression does not
increase. Moreover, relations between types and stacks of transitions in derivations
allow us to prove the safety property afterwards. Recall that the additive union of
all the multisets in a stack Σ will also be denoted by Σ.

Theorem 5 (Invariant of operational semantics). Let Γ ` C : Z. Then
we have for any derivation ∆ of a transition Θ◦C → Θ′ ◦C ′ and any transition
Σ◦A → Σ′◦B occurring in ∆ (including the last!) that Γ ` A : X and Γ ` B : Y
for types X,Y such that:

• Y ⊆ X, Σ ⊆ Σ′ and
Θ] Zi ⊇ Σ]Xj (1)

Θ] Zi ⊇ Σ′] Y j (2)

• for any c /∈ Σ:
Xi(c) ≥ (Σ′] Y j)(c) (3)

Xo(c) ≥ (Σ′] Y p)(c) (4)

• for any c ∈ Σ:
(Σ]Xj)(c) ≥ (Σ′] Y j)(c) (5)

(Σ]Xp)(c) ≥ (Σ′] Y p)(c) (6)

8

Note that in inequality (1) of Theorem 5 (and similarly in other inequalities (2)-
(6)) we have Xj , not Xi, in the right hand side. This is because, considering
[]◦ new d reu d → [d]◦ reu d with d−≺ ε, if the right hand side is Xi then Σ] Zi =
Zi = [d] ⊂ Σ′]Xj = [d]] [d].

As a special case of this theorem the following corollary allows us to safely execute
well-typed component programs. That is, during the execution of the programs the
number of active instances of any component never exceeds the allowed number.

Corollary 1 (Safety). Let Γ ` C : Z. Then for every transition []◦C → Θ′◦C ′
we have for any state Σ◦A occurring in the derivation of this transition (including
Θ′◦C ′!) that k ≥ Zi(c) ≥ Σ(c), where k is such that c ∈ Ck.

Proof. By Lemma 1 we have k ≥ Zi(c) for all k and c ∈ Ck. From Inequalities (1)
and (2) of Theorem 5 we have Zi(c) ≥ Σ(c) for all c.

5 Type Inference

So far we know that a well-typed program is safe to execute. Now given a well-
formed program, if we know the type of its starting expression, then we know
whether the program is safe to execute. The problem of finding a type/derivation
of an expression, given a set of declarations, is the type inference problem [3] or
typability problem [1]. Solving this problem relieves programmers from giving the
types explicitly and having them checked. Types inferred also give information
about component programs such as memory, resources they may use and hence
guide the design of the component system.

One may argue that we can test the safe instantiation of a component program by
executing all possible runs under our operational semantics. However, this process
could be exponential or even non-terminating (in the case of unforeseen circular
dependencies.)

Now let us see a solution for our type inference problem. Let Prog be the component
program and E be the expression we need to find the type of. A necessary (but
not sufficient) condition for type inference is that the declarations in Prog can be
reordered into a basis Γ such that for any declaration x−≺ A in Γ, the variables
occurring in A are already declared previously in Γ. In other words:

if Γ = ∆, x−≺A, ∆′ then Var(A) ⊆ Dom(∆) (7)

The existence of such a reordering can be detected in polynomial time by an analysis
of the dependency graph associated with the declarations in Prog . From now on
we assume that Γ is a basis consisting of all declarations in Prog and satisfying (7).
The considerations below are independent of which particular ordering is used as
long as it satisfies (7).

The basic idea behind the type inference algorithm is to exploit the fact that the
typing rules are syntax-directed, or, in other words, to use the Generation Lemma
2 reversely.

We can break down the problem of finding type for E by finding types of newx
and reux for all x ∈ Var(E). Why? First of all we can recursively break down
expression E into E1, . . . , Ep for some p such that Ei is one of the forms: newx,
reux, (Exp + Exp), {Exp} and E = E1 . . . Ep. By Definition 4 we can easily
calculate type of E if we know types of all Ei. Moreover, Var(Ei) ⊆ Var(E) so if

9

we know types of newx for all x ∈ Var(E) we can calculate types of Ei by doing
few multisets operations in Definition 4. The type inference problem for E now
becomes type inference problems of newx and reux for all x ∈ Var(E).

To find the type of newx or reux, we can look up the declaration of x in the basis
Γ. If no declaration of x can be found then no type can be inferred. Otherwise
Γ = ∆, x−≺A, ∆′ for some ∆,∆′ and A and clause 1 of the Generation Lemma allows
us to reduce the problem to inferring the type of A in ∆, together with the additional
task of checking if ∆′ legally extends ∆, x−≺A. Here some care has to be taken in
order to stay polynomial. A naive recursive algorithm could behave exponentially
by generating recursively duplicate instances of the same type inference problem.
Duplication can, however, be avoided by storing solved instances.

Observe that all instances are of the form: infer the type of A in ∆, where ∆ is an
initial segment of the basis of the original type inference problem and A is a sub-
expression of one of its constituents. There are polynomially many of such instances
and hence type inference can be done in polynomial time.

References

[1] H. Barendregt. Lambda Calculi with Types. In: Abramsky, Gabbay, Maibaum
(Eds.), Handbook of Logic in Computer Science, Vol. II. Oxford University
Press. 1992.

[2] M. Bezem and H. Truong. A Type System for the Safe Instantiation of Compo-
nents, In Proceedings of FOCLASA’03, Electronic Notes in Theoretical Com-
puter Science, September 2003.

[3] L. Cardelli. Type systems. In A. B. Tucker, editor, The Computer Science and
Engineering Handbook, chapter 103, pages 2208-2236. CRC Press, 1997.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns - Elements
of Reusable ObjectOriented Software, Addison-Wesley, Reading, Mass., ISBN
0201633612, 1994.

[5] E. Meijer and C. Szyperski. Overcoming Independent Extensibility Challenges,
Communications of the ACM, Vol. 45, No. 10, pp. 41–44, October 2002.

[6] B. Pierce. Types and Programming Languages. MIT Press, ISBN 0262162091,
February 2002.

[7] J. C. Seco, Adding Type Safety to Component Programming, In Proceedings
of The PhD Student’s Workshop in FMOODS’02, University of Twente, the
Netherlands, March 2002.

[8] C. Szyperski. Component Software: Beyond Object-Oriented Programming, 2nd
edition, Addison-Wesley, ISBN 0201745720, 2002.

[9] M. Zenger, Type-Safe Prototype-Based Component Evolution, Proceedings of
the European Conference on Object-Oriented Programming, Malaga, Spain,
June 2002.

[10] M. Zenger, Programming Language Abstractions for Extensible Software Com-
ponents, PhD Thesis, No. 2930, EPFL, Switzerland, March 2004.

10

A Proofs

In the sequel we use X∗ for any of Xi, Xo, Xj and Xp.

Lemma 1 (Legal typing).

By simultaneous induction on derivation. Recall that Lemma 1 has 5 clauses.

• Base case Axiom ` ε : 〈[], [], [], []〉 is trivial as V ar(ε), Xi, Xo, Xj , Xp, Dom()
are empty.

• Case Weaken

Weaken
Γ′ ` A : X Γ′ ` B : Y x /∈ Dom(Γ′)

Γ′, x−≺B ` A : X

Clause 3 follows by the side condition. The remaining clauses follow by IH.

• Case New

New
Γ′ ` B : Y x /∈ Dom(Γ′)

Γ′, x−≺B ` newx : 〈Y i + x, Y o + x, Y j + x, Y p + x〉
with Γ = Γ′, x−≺B, X∗ = Y ∗+x. Assume the lemma is correct for the premise
of this rule, so elements of V ar(B), Y ∗ are in Dom(Γ′). Clause 1 holds easily
as the new element x in V ar(newx) and X∗ is in Dom(Γ) = Dom(Γ′, x−≺
B) = Dom(Γ′) ∪ x. Clause 2 Γ′, x−≺B ` ε : 〈[], [], [], []〉 follows by applying
Weaken :

Weaken
Γ′ ` ε : 〈[], [], [], []〉 Γ′ ` B : Y x /∈ Dom(Γ′)

Γ′, x−≺B ` ε : 〈[], [], [], []〉
Clause 3 follows by the side condition x /∈ Dom(Γ′). Clause 4 follows by IH.
The last clause 5 holds since x /∈ Y i and x /∈ Y j .

• Case Reu

Reu
Γ′ ` B : Y x /∈ Dom(Γ′)

Γ, x−≺B ` reux : 〈Y i + x, Y o + x, Y j , Y p〉
with Γ = Γ′, x−≺B, X = 〈Y i + x, Y o + x, Y j , Y p〉. The proof is analogous to
case New.

• Case Seq

Seq
Γ ` B : Y Γ ` C : Z ∀k = 1..n.∀c ∈ Ck.(Y o] Zj)(c) ≤ k B, C 6= ε

Γ ` BC : 〈Y i ∪ (Y o] Zj) ∪ Zi, (Y o] Zp) ∪ Zo, Y j ∪ (Y p] Zj), Y p] Zp〉
Clauses 1, 2 and 3 hold by IH. For clause 4 it is to see that: ((Y o] Zp) ∪

Zo)(c) ≤ (Y i ∪ (Y o] Zj) ∪ Zi)(c) ≤ k holds since Zp ⊆ Zj , Zo ⊆ Zi and
(Y o] Zj)(c) ≤ k from side condition, Y i, Zi ≤ k by IH. Similarly, (Y p]
Zp)(c) ≤ (Y j ∪ (Y p] Zj))(c) ≤ k holds since Zp ⊆ Zj , for all k and c ∈ Ck,
and (Y p] Zj)(c) ≤ (Y o] Zj)(c) ≤ k.

For clause 5, as Y i(c) ≥ Y j(c) and Zo(c) ≥ Zp(c) for all c, we get 0 ≤
Xi(c)−Xj(c) immediately. In addition,

Xi(c)−Xj(c) = max





Y i(c)− (Y j ∪ (Y p] Zj))(c),
(Y o] Zj)(c)− (Y j ∪ (Y p] Zj))(c),
Zi(c)− (Y j ∪ (Y p] Zj))(c)





each of the three cases is less then or equals 1 so Xi(c)−Xj(c) ≤ 1. Similarly,
it is easy to see that 0 ≤ Xo(c)−Xp(c) = (Y o]Zp)∪Zo)(c)−(Y p]Zp)(c) ≤ 1.

11

• Case Choice
Choice

Γ ` C : Z Γ ` B : Y

Γ ` (C + B) : Z ∪ Y

Analogous to case Seq. First three clauses are easy. Clause 4 holds because
max(Zo(c), Y o(c)) ≤ max(Zi(c), Y i(c)) ≤ k by IH.

• Case Scope:

Scope
Γ ` B : Y

Γ ` {B} : 〈Y i, [], Y j , []〉
All clauses hold by IH.

Lemma 2 (Generation).

By induction on derivation. Recall that the Generation Lemma has 5 clauses.

1. Γ ` newx : X can only be derived by rule New or Weaken . If it is derived by
rule New , then there is only one possibility:

New
∆ ` A : Y x /∈ Dom(∆)

∆, x−≺A ` newx : X

with X∗ = Y ∗ + x and Γ = ∆, x−≺A, so that ∆′ is empty.

If Γ ` newx : X is derived by rule Weaken :

Weaken
Γ′ ` newx : X Γ′ ` B : Y y /∈ Dom(Γ′)

Γ′, y−≺B ` newx : X

then Γ′ ` newx : X and by the IH applied to Γ′ ` newx : X we have
Γ′ = ∆1, x−≺A, ∆2 and ∆1 ` A : 〈Xi − x, Xo − x, Xj − x,Xp − x〉 for some
∆1, ∆2, and A. With ∆ = ∆1, ∆′ = ∆2, y−≺B we have all the conclusions.

2. Case Γ ` reux : X: analogous to clause 1.

3. Γ ` AB : Z with A,B 6= ε can only be derived by rule Seq or rule Weaken . If
Γ ` AB : Z is derived by rule Seq with two component expressions A and B
in the premise of the typing rule:

Seq
Γ ` A : X Γ ` B : Y ∀k = 1..n.∀c ∈ Ck.(Xo] Y j)(c) ≤ k A, B 6= ε

Γ ` AB : 〈Xi ∪ (Xo] Y j) ∪ Y i, (Xo] Y p) ∪ Y o, Xj ∪ (Xp] Y j), Xp] Y p〉
then the proof is immediate.

If Γ ` AB : Z is derived by rule Seq with two component expressions A1 6= A
and B1 6= B such that A1B1 = AB:

Seq

Γ ` A1 : X1 Γ ` B1 : Y1 A1, B1 6= ε

∀k = 1..n.∀c ∈ Ck.(Xo
1] Y j

1)(c) ≤ k

Γ ` A1B1 : 〈Xi
1 ∪ (Xo

1] Y j
1) ∪ Y i

1 , (Xo
1] Y p

1) ∪ Y o
1 , Xj

1 ∪ (Xp
1] Y j

1), Xp
1] Y p

1 〉

then there are two possibilities:

12

• A = A1A2: then B1 = A2B and we have Γ ` A2B : Y1.
By the IH applied to Γ ` A2B : Y1 we get Γ ` A2 : X2 and Γ ` B : Y
with X = 〈Xi

2∪(Xo
2]Y j)∪Y i, (Xo

2]Y p)∪Y o, Xj
2∪(Xp

2]Y j), Xp
2]Y p〉.

As the side condition ∀k = 1..n.∀c ∈ Ck.(Xo
1] Xj

2)(c) ≤ (Xo
1] (Xj

2 ∪
(Xp

2] Y j)))(c) = (Xo
1] Y j

1)(c) ≤ k holds, we can apply rule Seq to
Γ ` A1 : X1 and Γ ` A2 : X2 and get Γ ` A : X with X = 〈Xi

1 ∪ (Xo
1]

Xj
2)∪Xi

2, (X
o
1]Xp

2)∪Xo
2 , Xj

1∪(Xp
1]Xj

2), Xp
1]Xp

2 〉. We still need to show
that Z = 〈Xi∪(Xo]Y j)∪Y i, (Xo]Y p)∪Y o, Xj ∪(Xp]Y j), Xp]Y p〉,
that is we need to prove four equations:

Xi ∪ (Xo] Y j) ∪ Y i = Xi
1 ∪ (Xo

1] Y j
1) ∪ Y i

1 ,
(Xo] Y p) ∪ Y o = (Xo

1] Y p
1) ∪ Y o

1 ,

Xj ∪ (Xp] Y j) = Xj
1 ∪ (Xp

1] Y j
1),

Xp] Y p = Xp
1] Y p

1

We have:

Xi ∪ (Xo] Y j) ∪ Y i

= (Xi
1 ∪ (Xo

1]Xj
2) ∪Xi

2) ∪ (((Xo
1]Xp

2) ∪Xo
2)] Y j) ∪ Y i

= Xi
1 ∪Xi

2 ∪ Y i ∪ (Xo
1]Xj

2) ∪ (((Xo
1]Xp

2) ∪Xo
2)] Y j)

= Xi
1 ∪Xi

2 ∪ Y i ∪ (Xo
1]Xj

2) ∪ (Xo
1]Xp

2] Y j) ∪ (Xo
2] Y j)

= Xi
1 ∪Xi

2 ∪ Y i ∪ (Xo
1] (Xj

2 ∪ (Xp
2] Y j))) ∪ (Xo

2] Y j)
= Xi

1 ∪ (Xo
1] (Xj

2 ∪ (Xp
2] Y j))) ∪ (Xi

2 ∪ (Xo
2] Y j) ∪ Y i)

= Xi
1 ∪ (Xo

1] Y j
1) ∪ Y i

1

so the first equation holds. Similarly,

(Xo] Y p) ∪ Y o

= (((Xo
1]Xp

2) ∪Xo
2)] Y p) ∪ Y o

= (Xo
1]Xp

2] Y p) ∪ (Xo
2] Y p) ∪ Y o

= (Xo
1] (Xp

2] Y p)) ∪ ((Xo
2] Y p) ∪ Y o)

= (Xo
1] Y p

1) ∪ Y o
1

so the second equation holds.

Xj ∪ (Xp] Y j)
= (Xj

1 ∪ (Xp
1]Xj

2)) ∪ ((Xp
1]Xp

2)] Y j)
= Xj

1 ∪ (Xp
1]Xj

2) ∪ (Xp
1]Xp

2] Y j)
= Xj

1 ∪ (Xp
1] (Xj

2 ∪ (Xp
2] Y j)))

= Xj
1 ∪ (Xp

1] Y j
1)

so the third equation holds. The last equation follows easily:

Xp] Y p = (Xp
1]Xp

2)] Y p = Xp
1] (Xp

2] Y p) = Xp
1] Y p

1 .

• B = B0B1: then A1 = AB0. By analogous reasoning as in the previous
case we get the conclusions.

If Γ ` AB : Z is derived by rule Weaken :

Weaken
Γ′ ` AB : Z Γ′ ` C : V y /∈ Dom(Γ′)

Γ′, y−≺C ` AB : Z

with Γ = Γ′, y−≺C then by the IH applied to Γ′ ` AB : Z we have Γ′ ` A : X,
Γ′ ` B : Y , Z = 〈Xi∪(Xo]Y j)∪Y i, (Xo]Y p)∪Y o, Xj∪(Xp]Y j), Xp]Y p〉.
Now weakening Γ′ ` A : X and Γ′ ` B : Y to Γ = Γ′, y−≺C we have all the
conclusions.

13

4. Γ ` (A + B) : Z can only be derived by rule Choice or rule Weaken . If it is
derived by rule Choice , then there is only one possibility:

Choice
Γ ` A : X Γ ` B : Y

Γ ` (A + B) : X ∪ Y

with Z = X ∪ Y . The conclusions follows immediately.

If Γ ` (A + B) : Z is derived by rule Weaken :

Weaken
Γ′ ` (A + B) : Z Γ′ ` E : V x /∈ Dom(Γ′)

Γ′, x−≺E ` (A + B) : Z

then the proof is analogous to the proof of case Weaken in the previous clause.

5. Γ ` {A} : 〈Xi, [], Xj , []〉 can only be derived by rule Scope or rule Weaken .
The proof is analogous to the proof of the previous clause.

Lemma 3 (Legal monotonicity).

1. The only way to extend ∆ to ∆, x−≺A in a derivation is by applying the rule
New , Reu or Weaken .

New
Γ ` A : X x /∈ Dom(Γ)

Γ, x−≺A ` newx : 〈Xi + x,Xo + x〉

Reu
Γ ` A : X x /∈ Dom(Γ)

Γ, x−≺A ` reux : 〈Xi + x,Xo + x, Xj , Xp〉

Weaken
Γ ` A : X Γ ` B : Y x /∈ Dom(Γ)

Γ, x−≺A ` B : Y

Each of the rules has ∆ ` A : X as a premise.

2. By induction on derivation of Γ ` E : X. We prove that for all Γ′ legal such
that Γ ⊆ Γ′ we have Γ′ ` E : X.

• Base case Axiom, E = ε, then Γ′ ` ε : 〈[], [], [], []〉 since Γ′ is legal.

• Case New, E = newx

New
∆ ` B : Y x /∈ Dom(∆)

∆, x−≺B ` newx : X

with X = 〈Y i + x, Y o + x,Xi + x,Xo + x〉 and Γ = ∆, x−≺B. Because
Γ ⊆ Γ′ with Γ′ legal there exists ∆1, ∆2 such that ∆ ⊆ ∆1 and ∆1, x−≺
B, ∆2 = Γ′, with all initial segments of Γ′ are legal. By clause 1 we have
∆1 ` B : Y . As x occurs only once in Γ′ we have x /∈ Dom(∆1) and we
can apply rule New to get ∆1, x−≺B ` newx : X. Since Γ′ is legal we
can iterate rule Weaken to get Γ′ ` newx : X.

• Case Reu, E = newx: analogous to case New.

• Case Weaken

Weaken
∆ ` E : X ∆ ` B : Y x /∈ Dom(∆)

∆, x−≺B ` E : X

with Γ = ∆, x−≺B. Because Γ ⊆ Γ′ and Γ′ legal, we have ∆ ⊆ Γ′. By
the IH we get immediately Γ′ ` E : X.

14

• Case Seq, E = BC with B,C 6= ε: by Generation Lemma we have
Γ ` B : Y and Γ ` C : Z. By the IH we have Γ′ ` B : Y and Γ′ ` C : Z.
As the side condition for Γ ` BC : 〈Y i ∪ (Y o] Zj) ∪ Zi, (Y o] Zp) ∪
Zo, Y j ∪ (Y p] Zj), Y p] Zp〉 holds we can apply rule Seq we get the
conclusion.

• Case Choice, E = (B + C): analogous to the case Seq.

• Case Scope, E = {B}: analogous to the case Seq.

Lemma 4 (Strengthening).

By induction on derivation. Let Γ′ = Γ, x−≺A

• Case Axiom, B = ε: does not apply since the basis is not empty.

• Case New, B = newx: does not apply since V ar(B) = V ar(newx) = {x}.
• Case Reu, B = reux: does not apply since V ar(B) = V ar(reux) = {x}.
• Case Weaken,

Weaken
Γ ` A : X Γ ` B : Y x /∈ Dom(Γ)

Γ, x−≺A ` B : Y

We have Γ ` B : Y in the premise and x /∈ Y i by IH.

• Case Seq, B = B1B2:

Seq
Γ′ ` B1 : Y1 Γ′ ` B2 : Y2 ∀k = 1..n.∀c ∈ Ck.(Y o

1] Y j
2)(c) ≤ k B1, B2 6= ε

Γ′ ` B1B2 : 〈Y i
1 ∪ (Y o

1] Y j
2) ∪ Y i

2 , (Y o
1] Y p

2) ∪ Y o
2 , Y j

1 ∪ (Y p
1] Y j

2), Y p
1] Y p

2 〉

with Y = 〈Y i
1 ∪ (Y o

1] Y j
2) ∪ Y i

2 , (Y o
1] Y p

2) ∪ Y o
2 , Y j

1 ∪ (Y p
1] Y j

2), Y p
1] Y p

2 〉.
Since x /∈ V ar(B1B2) = V ar(B1) ∪ V ar(B2) we have x 6= V ar(B1) and
x /∈ V ar(B2). By IH we get Γ ` B1 : Y1 and x /∈ Y i

1 , Γ ` B2 : Y2 and x /∈ Y i
2 .

As the side condition does not change at all, we can apply rule Seq to get the
conclusion: Γ ` B1B2 : Y .

• Case Choice: B = (B1 + B2): analogous to the case Seq.

• Case Scope: B = {C}: analogous to the case Seq.

Proposition 1 (Uniqueness of types).

By induction on the derivation of Γ ` A : X.

• Base case Axiom we have A = ε and Γ is empty, so that only Axiom is
applicable. Hence, X = Y = 〈[], [], [], []〉.

15

• Case New: Let Γ = Γ′, x−≺B such that:

New
Γ′ ` B : U x /∈ Dom(Γ)

Γ′, x−≺B ` newx : X

with X∗ = U∗+x and Γ = Γ′, x−≺B. Assume this Proposition 1 holds for the
premise of this rule and let Γ ` newx : Y . By Generation Lemma 2, x ∈ Y ∗,
Γ = ∆1, x−≺C, ∆2 and ∆1 ` C : 〈Y i−x, Y o−x, Y j −x, Y p−x〉 for some ∆1,
∆2, C.

By Lemma 1, there is only one declaration of x in Γ. This means ∆1 = Γ′,
C = B and ∆2 is empty, so Γ′ ` B : 〈Y i − x, Y o − x, Y j − x, Y p − x〉. By IH
we have X∗ − x = Y ∗ − x, i.e. X = Y .

• Case Reu: analogous to case New.

• Case Weaken: Let Γ = Γ′, x−≺B such that:

Weaken
Γ′ ` A : X Γ′ ` B : Z x /∈ Dom(Γ′)

Γ′, x−≺B ` A : X

Assume this Proposition 1 holds for the two premises and let Γ ` A : Y . Since
Γ′ ` A : X and x /∈ Dom(Γ′) we have x /∈ V ar(A). By Lemma 4 applied to
Γ′, x−≺B ` A : Y we get Γ′ ` A : Y . By IH we have the conclusion X = Y .

• Case Seq: Let Γ ` B1B2 : X with B1, B2 6= ε such that:

Seq

Γ ` B1 : Y1 Γ ` B2 : Y2 B1, B2 6= ε

∀k = 1..n.∀c ∈ Ck.(Y o
1] Y j

2)(c) ≤ k

Γ ` B1B2 : 〈Y i
1 ∪ (Y o

1] Y j
2) ∪ Y i

2 , (Y o
1] Y p

2) ∪ Y o
2 , Y j

1 ∪ (Y p
1] Y j

2), Y p
1] Y p

2 〉
By Generation Lemma 2 applied to Γ ` B1B2 : Y we have Γ ` B1 : V1,

Γ ` B2 : V2, Y = 〈V i
1 ∪(V o

1]V j
2)∪V i

2 , (V o
1]V p

2)∪V o
2 , V j

1 ∪(V p
1]V j

2), V p
1]V p

2 〉.
By the IH, we have Y1 = V1 and Y2 = V2. Hence, X = Y = 〈Y i

1 ∪ (Y o
1]Y j

2)∪
Y i

2 , (Y o
1] Y p

2) ∪ Y o
2 , Y j

1 ∪ (Y p
1] Y j

2), Y p
1] Y p

2 〉.
• Case Choice: analogous to case Seq.

• Case Scope: analogous to case Seq.

Theorem 5 (Invariant of operational semantics).

By induction of the derivation of →. Recall that we have three cases with two sub
cases each.

• Base case OS-new:

x−≺B ∈ Prog
Ω : M ◦ newx → Ω : (M + x)◦B OS-new

with Σ = Ω : M , Σ′ = Ω : (M + x) and Σ′ = Σ + x ⊃ Σ.

From Γ ` newx : X we get, by Generation Lemma 2, Γ ` B : Y with Y =
〈Xi−x, Xo−x,Xj −x,Xp−x〉 ⊆ X. Inequality (1) is trivial. For Inequality
(2), we have: Σ′] Y j = (Σ + x)] (Xj − x) = Σ]Xj ⊆ Σ]Xi = Θ]Xi.

16

For c /∈ Σ: (Σ′]Y j)(c) = ((Σ+x)](Xj−x))(c) = (Σ]Xj)(c) = Xj(c) ⊆ Xi(c)
and we have (3). Analogously, for c /∈ Σ: (Σ′] Y p)(c) = ((Σ + x)] (Xp −
x))(c) = (Σ]Xp)(c) = Xp(c) ⊆ Xo(c) and we have (4).

For c ∈ Γ: (Σ′] Y j)(c) = ((Σ + x)] (Xj − x))(c) = (Σ]Xj)(c) and we have
(5). Similarly, we get (6).

• Base case OS-reu1:
x−≺B ∈ Prog , x /∈ Ω ∪M

Ω : M ◦ reux → Ω : (M + x)◦B OS-reu2

with Σ = Ω : M , Σ′ = Ω : (M + x) and Σ′ = Σ + x ⊃ Σ.

From Γ ` reux : X we get, by Generation Lemma 2, Γ ` B : Y with Y =
〈Xi−x,Xo−x,Xj , Xp〉 ⊆ X and we have Xj ⊆ (Xi−x) and Xp ⊆ (Xo−x)
by Lemma 1. Inequality (1) is trivial. For Inequality (2), as B well-typed
we have Xi − x ⊇ Xj by Lemma 1 and then Σ′] Y j = (Σ + x)] Xj ⊆
(Σ + x)] (Xi − x) = Σ]Xi = Θ]Xi.

For c /∈ Σ:(Σ′] Y j)(c) = ((Σ + x)]Xj)(c) ⊆ ((Σ + x)] (Xi− x))(c) = Xi(c)
and we have (3). Analogously, for c /∈ Σ:(Σ′] Y p)(c) = ((Σ + x)]Xp)(c) ⊆
((Σ + x)] (Xo − x))(c) = Xo(c) and we have (4).

Inequalities (5) and (6) are hold trivially as c ∈ Σ implies c 6= x.

• Base case OS-reu2:
x−≺B ∈ Prog , x ∈ Σ

Σ◦ reux → Σ◦B OS-reu1

with Σ′ = Σ.

From Γ ` reux : X we get, by Generation Lemma 2, Γ ` B : Y with
Y = 〈Xi − x,Xo − x,Xj , Xp〉 ⊆ X. Inequality (1) is trivial. For Inequality
(2), as B well-typed we have Xi − x ⊇ Xj by Lemma 1 and then Σ′] Y j =
Σ]Xj ⊆ Σ] (Xi − x) ⊆ Σ]Xi = Θ]Xi.

For c /∈ Σ: (Σ′] Y j)(c) = (Σ] Xj)(c) = Xj(c) ⊆ Xi(c) and we have (3).
Analogously, for c /∈ Σ:(Σ′] Y p)(c) = (Σ]Xp)(c) = Xp(c) ⊆ Xo(c) and we
have (4).

For c ∈ Γ: (Σ′]Y j)(c) = (Σ]Xj)(c) = (Σ]Xj)(c) and we have (5). Similarly,
we get (6).

• Base case OS-choice1:

Σ◦(B + C) → Σ◦B OS-choice1

We have A = (B + C) and Σ′ = Σ. By Generation Lemma 2 applied to
Γ ` (B + C) : X we have Γ ` B : Y , Γ ` C : Z with Y ⊆ Y ∪ Z = X. Hence
all inequalities (1-6) hold immediately.

• Base case OS-choice2: symmetric to case OS-choice1.

• Induction case OS-scope:

Θ : []◦E → Θ : M ◦ε
Θ◦{E} → Θ◦ε OS-scope

with C = {E}, Θ = Θ′,Σ = Θ : [],Σ′ = Θ : M .

For Inequalities (1) and (2) we only need to prove three inequalities: Θ]Zi ⊇
(Θ] [])] Zj , Θ] Zi ⊇ Θ′] [] and Θ] Zi ⊇ Θ′] []. The first one holds by
Lemma 1. The second one holds from IH. The third one is trivial.

Item 2 and 3 are trivial.

17

• Induction case OS-seq:

Ω : M ◦E → Ω : M ′◦ε
Ω : M ◦EC ′ → Ω : M ′◦C ′ OS-seq

with Θ = Ω : M , Θ′ = Ω : M ′ and C = EC ′. Assume the theorem is correct
for the premise of this rule we have Γ ` E : U , Θ ⊆ Θ′, for x /∈ Θ: U i ⊇ Θ′

and Uo ⊇ Θ′, and for x ∈ Θ: Θ] U j ⊇ Θ′ and Θ] Up ⊇ Θ′. In addition
Γ ` EC ′ : Z well-typed so we assume Γ ` C ′ : Z ′.
For item 1, the first two conclusions hold trivially. Suppose Σ◦A → Σ′ ◦B
in ∆ excluding the last transition, we have, by IH, Θ] U i ⊇ Σ]Xj . Hence
Θ] Zi = Θ] (U i ∪ (Uo] Z ′j) ∪ Z ′i) ⊇ Θ] U i ⊇ Σ] Xj . We still need to
prove the case Σ′ = Θ′ and B = C ′ i.e. Θ] Zi ⊇ Θ′] Z ′j . This inequality
holds easily when c /∈ Θ, by IH, we have Uo(c) ≥ Θ′(c). If c ∈ Θ, we have
(Θ]Up)(c) ≥ Θ′(c) by IH, so (Θ]Zi)(c) ≥ (Θ]Zj)(c) ≥ (Θ](Up]Z ′j))(c) ≥
(Θ′] Z ′j)(c).
For item 2, we have to prove that for c /∈ Θ: (U i∪ (Uo]Z ′j)∪Z ′i) ⊇ Θ′]Z ′j

and (Uo] Z ′p) ∪ Z ′o ⊇ Θ′] Z ′p. Both inequalities follow from IH: Uo ⊇ Θ′.
For item 3, we have to prove that for c ∈ Θ: Θ] (U j ∪ (Up]Z ′j)) ⊇ Θ′]Z ′j

and Θ] (Up] Z ′p) ⊇ Θ′] Z ′p. Both inequalities follow from IH: for x ∈ Θ:
Θ] Up ⊇ Θ′.

• Induction case OS-trans:
Θ◦C → Ω◦E Ω◦E → Θ′◦C ′

Θ◦C → Θ′◦C ′ OS-trans

Assume the theorem is correct for the premise of this rule we have Γ ` C : Z,
Γ ` C ′ : Z ′, Γ ` E : U , Z ⊇ U ⊇ Z ′, Θ ⊆ Ω ⊆ Θ′, and for any Σ◦A such that
Γ ` A : X, in derivation ∆ of Θ◦C → Ω◦E:

Θ] Zi ⊇ Σ]Xj

for any Σ′◦A′ such that Γ ` A′ : X ′, in derivation ∆′ of Ω◦E → Θ′◦C ′:
Ω] U i ⊇ Σ′]X ′j

for c /∈ Θ:
Zi ⊇ Ω] U j and Zo ⊇ Ω] Up

for c ∈ Θ:
Θ] Zj ⊇ Ω] U j and Θ] Zp ⊇ Ω] Up

for c /∈ Ω:
U i ⊇ Θ′] Z ′j and Uo ⊇ Θ′] Z ′p

for c ∈ Ω:
Ω] U j ⊇ Θ′] Z ′j and Ω] Up ⊇ Θ′] Z ′p

For item 1, the first two conclusions by transitivity. The inequalities (1) and
(2) hold easily for any Σ◦A in ∆. We still need to prove the two inequalities
for any Σ′◦A′ in ∆′. If c /∈ Ω, then c /∈ Θ and Xi(c) ≥ U i(c) ≥ (Σ′]X ′j)(c).
If c ∈ Ω, then (Θ] Zi)(c) ≥ (Ω] U j)(c) ≥ (Σ′]X ′j)(c).
For item 2, we only have to prove that for c /∈ Θ: Zi ⊇ Θ′] Z ′j and Zo ⊇
Θ′]Z ′p. If c ∈ Ω the both inequalities follow by transitivity and IH. If c /∈ Ω
then because Z ⊇ U we can apply transitivity to get both inequalities.
For item 3, we only have to prove that for c ∈ Θ: Θ] Zj ⊇ Θ′] Z ′j and
Θ] Zp ⊇ Θ′] Z ′p. As Θ ⊆ Ω we have c ∈ Ω and both inequalities follow by
transitivity.

18

