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1 Introduction

The problem of information exchange among agents who see the world subjectively arises in many
contexts, ranging from computer science [1] to linguistics [7] to financial accounting [2]. One aspect
of this problem is the choice of whether to use a standardized terminology among all agents or to
use different languages for different audiences; this has been of particular interest in international
accounting contexts [3, 16].

We use topological spaces to model reporting under subjective information. The points in a
topological space represent what an agent in principle could wish to communicate—i.e., the world
as the agent subjectively and privately understands it. Because different agents see the world
differently, an agent will not have a distinct way of conveying everything he has in mind, and
some terms in any language the agent uses may have multiple meanings. Typically, an agent is
only capable of giving an approximate description of what he wants to convey. We thus think
of an agent as not being able to communicate specific points, but only open neighborhoods in a
topological space.

There is some evidence that this idea is what standard-setting bodies have in mind in financial
reporting contexts. For example, the Financial Accounting Standars Board, in [4], specifies that
reported information should be “understandable” to those with a general familiarity with how
businesses operate. FASB notes explicitly, “understandability of information is related to the
characteristics of the decision maker as well as the characteristics of the information,” and defines
understandability as “the quality of information that enables users to perceive its significance.”
In the same document, FASB reports that reported information is subject to a “materiality”
threshold. That is, reported information is approximate in nature, and should be changed only
when such changes make a meaningful difference. Topologically, this says that reports differ
immaterially if they are within some neighborhood of each other. The International Accounting
Standards Board, which sets standards in the European Union, adopts similar definitions in [6].

Our approach follows the spirit—though not the details of the technical development—of formal
topology [9, 12], which postulates separation of points and opens of a topological system into
two distinct (and related) sets, i.e., structures (O, pt, D). The separation invites some degree of
independence in treatment of points, D, and opens, O, with one extreme being simply removing the
points completely. Keeping both sets present, one can endow O with various algebraic structures,
each leading to a corresponding requirement on the relation pt between opens and points. Thus,
the frames of pointfree topology are complete lattices with finite meets distributing over infinite
joins. The relation to points is then required to respect these. One can think of weaker structures
on O, e.g., as only meet-semilattice or just partial order, with the respective restrictions (of meet-



or po-compatibility) on pt. On the other extreme to that of frames, one may allow O, D to be
arbitrary sets and pt an arbitrary relation. This will be our setting, which is investigated under
the name “basic pair” in [10].

Compatibility of the relation pt and the structure of O ensures that the algebraic properties
of O reflect, as far as possible, the topological properties of D. In case of frames, the collection of
preimages pt~ (o) for all o € O gives the full topology (all open sets) on D. In the case of meet-
semilattice, such preimages yield only a basis for a possible topology. In our case of arbitrary sets
and relations, a topology on D is obtained by taking the preimages of O as the subbasis.

The reason for our choice is the context of application. We intend the points in D as distinctions
identifiable by an agent in his experience (or world), while we envision O as the possible reports
the agent may give to describe his world. L.e., the members of O are thought of as names of the
opens rather than the opens themselves. The spirit of formal topology allows one then to have
different reports in O which are extensionally indistinguishable, i.e., which denote the same (open)
sets of points. (The same spirit is discernible in the framework of “named sets” [11] and of Chu
spaces [8].)

In contrast to formal topology utilizing frames, our application does not justify our putting
any specific restrictions on the relation between these two sets, nor on possible structure of either.
Such structure and dependencies are to be induced exclusively by the relation between the sets.
For instance, one might wish to endow O with a partial ordering representing the specialization of
reports (as in [13]). We find it natural to introduce such an ordering by means of the very relation
between reports and points, namely, to view a report 7 as more specific (not more vague) than s
simply when its extension is included in that of s, pt(r) C pt(s).

The structure of the rest of this paper is as follows. The next section introduces the category
of interest. As we are interested in communication between agents with different subjective views
of the world and different subjective interpretations of a language, the objects in our category are
structures (O, pt, D), and the morphisms are defined between such structures. After we present
our definition of morphisms, we show that the result is indeed a category. In section three,
we show useful properties, in particular completeness and cocompleteness. We also give some
examples of the use of (co)limits to express possible relations between distinct languages and their
standarization. A final section concludes.

2 The category Rep

Objects in our category are multialgebras over a signature with two sort symbols O, D, and one
operation symbol pt : O — D. A multialgebra A over this signature is a pair of (possibly empty)
sets, 04, D4, with a set-valued function pt4 : 04 — P(D4).! Given a multilagebra A, we
write Q(A) for the topology induced on D4 by the relation pt4, i.e., by taking as the subbasis
SB(A) = {pt*(0) | 0 € O} U {2, DA}. Notice that we do not require totality or surjectivity of
pt4, e.g., there may be points d € D such that for all 0 € O4 : d € pt*(0). By adding the whole
set D4 to the subbasis we only ensure that a topology is always induced on the whole D4 and not
only on its subset. Likewise, there may be “empty” reports o € O4 which are not related to any
points, i.e., pt4(0) = @. Morphisms of such structures might seem at first to present a difficulty
due to all too many choices. We are able to address this issue, following the choice presented in
the overview and classification of homomorphisms of multialgebras given in [14, 15]; we will justify
this further in what follows.

Definition 2.1 A homomorphism between two multialgebras, ¢ : A — B, is a pair of functions

1Of course, set-valued functions can be viewed as relations. However, when we focus on homomorphisms,
the difference between the two viewpoints becomes significant, and the more structured/algebraic character of
functions turns out to be useful. All mentioned results concerning multialgebras and their categories (except for
the construction of finite products in section 3.2) can be found in [15].



b0 : 04 = OF and ¢p : DA — DB, as shown on the left

P P(¢p
P(D4) — 292 p(ps) P4 —222L_ p(pp)
pt“T TptB ptAT WptB
A ¢o B A %o
0 0 P04 0B

and such that: Yy € OB : ptA(¢5(y)) = ¢p tB(y)).

Function applications are extended pointwise to sets (i.e., we operate with the weak-image, where
zefY)if JyeY : :ze f(y) iff f~(z)NY # @.) Note that commutativity of the diagram goes
in the direction opposite to the arrows ¢o,¢p, as shown on the right. This opposite direction
reflects the topological tradition. In the notation, we will usually confuse the two and write both
simply as ¢. The homomorphisms do compose and yield a category Rep (in [14, 15], it was called
MAlgor-)

One property of this definition of homomorphism is that, for every d € D®, if d is in the
image of ¢, then so are all reports of d; i.e., the image ¢[A] (= ¢o[04] U pp[D4]) is closed under
preimages of pt? : d € ¢o[0%] = (pt¥) (d) C ¢p[D4]. Another one is that, if o is an “empty
concept” in A4, i.e., ptA(0) = @, then if pt®(¢o(0)) # @ then pt?(do(0)) N ¢p[DA] = @; i.e.,
the ¢p-image of an “empty concept” need not be “empty”, but then none of its points is in the
image of ¢p. Intuitively, the first property says that if agent A asks agent B for something, and
agent B can interpret this request as including d, then anything agent B could have interpreted
as including d must be acceptable to A. The second property says that, if o is in agent A’s
language but is meaningless to A, then any morphism to agent B’s world can only translate o
either into meaningless concepts for B or into terms that B uses to describe things that A does
not understand. The force of this definition is that, if a standard is used to enable A and B to
communicate, then they must be able to validate what they discussed: however one agent reports
something must be translated to a report that the other agent can see as justified. In accounting
contexts, this is called representational faithfulness [4].

We take often advantage of the fact that morphisms are defined using functions rather than
relations. For instance, generalization of the continuity condition to relations offers several choices
and complications [10] while the following simple result obtains thanks to the fact that, when ¢
is a function, then ¢~ (X NY)=¢ (X)No (Y).

Fact 2.2 If ¢ : A — B is a homomorphism, then ¢p : DA — DB is a continuous mapping of the
topologies (A) — Q(B).

PROOF: We show that preimage of any element of subbasis ptZ(y) € SB(B), is an open in Q(A).
(Remember the abbreviations SB(A) for SB(D*), etc.)

For any pt®(y) € SB(B), there are two cases. If y & ¢[0?], then ¢~ (ptB(y)) = ptA (¢~ (y)) =
@ € Q(A). Otherwise, ¢~ (ptP(y)) = ptt (¢~ (v)) = Uzes- () ptA(z) € Q(A) being the union of
ptA(z) € SB(A). O
The homomorphism condition is, in fact, stronger than mere continuity. This fact can be justified
by the wish to provide not merely another way of doing standard topology (extended slightly by

allowing multiple names for the same opens), but also a more specific framework for our intended
application.

Example 2.3 Consider two algebras:

A: T T2 Y B
ay as by by



Viewed as topologies on the respective D sort, we have that Q(A) is discrete and Q(B) = {@, {y}}.
The mapping ¢p(x;) = y is continuous. There is, however, no homomorphism ¢ : A — B. Its
existence would require also a compatibility of reports (not only opens), namely, that preimage of
a B’s report means for A the same as the preimage of its meaning for B, i.e., for i € {1,2} :

pth (@ (b)) = ¢ (ptP (b)) = ¢~ (y) = {1, 22}

Definition of continuity can vary slightly between different frameworks of formal topology, so let
us only consider one simple example.

Example 2.4 The two algebras from the previous example can be viewed as basic pairs of [10]
(where pt is viewed as relation). The (continuous) morphisms proposed there are pairs of relations
rp C DA x DB and ro C O4 x OB, such that (pt*)~;ro = rp; (ptB)~, where _;_ denotes the
usual composition of binary relations.

The mapping ¢(x;) = y and ¢(a;) = b; will not satisfy this condition. However, the two
structures are related by the morphism with rp = DA x DB and ro = 04 x OF.

Intuitively, we would say that a homomorphism ¢ : A — B describes the space of possible
“adequate communication” from A to B. (Notice that in the setting of the last example, any
morphism A — B gives rise to the (inverse) morphism A « B, i.e., using morphisms as “ways
of communication”, all communication becomes mutual and symmetric.) ¢o(a;) = b; means that
A’s saying a; is heard by B as b;. (It may happen that also A’s ay is heard by B as by, i.e., also
¢o(az) = b;.) The adequacy is verified at A’s “intended distinctions”: by a; A intends z;. If B
hears by, he understands by it pt®(b;); the preimage of these points among A’s distinctions must
equal what A understands by all reports which could be heard by B as b;. In the present case, this
is impossible because B has too many reports (of his “confused” distinction y) while A has too
precise language. Whatever he says will be understood by B as y, but there is no imprecision in A’s
language, reflecting the imprecision of B’s pt?(b;) = y = pt®(b;). With such an interpretation,
it seems appropriate to exlude any morphism from A to B. (If B did not have the report bs,
we would obtain a possible homomorphism from A; and likewise if A had more superflous words,
e.g., an az with pt4(as) = 2.) On the other hand, an “adequate communication” from B to A is
possible, since B has very little to communicate: his y can be taken as A’s 1 (or z2), in which
case both reports by, be are taken by A as a; (respectively, az). This is then a homomorphism
¥ : B — A, given by ¢¥(y) = z; and ¥(b;) = ay.

2.1 Homomorphisms, congruences and subalgebras
The following fact gives a handy and desirable characterization of epis and monos.
Fact 2.5 A morphism is epi iff it is surjective and mono iff it is injective.

The classical congruence condition is replaced by bireachability which is also defined generally as
a relation between arbitrary two algebras.

Definition 2.6 Given A;, A2 € Rep, a relation ~ C Ay X As (i.e., a pair of relations ~o C
041 x 042 and ~p C D41 x D42) is bireachability iff:

Va,b,a;: a~pbAa€ptii(a;) = 3b € Ay : b€ ptA2(b1) Aay ~o by

& Va,b,by: a~pbAbecpt2(b) = 3ag € Ay :a € pthi(ay) Aay ~o by (2.7)
A bireachability R between Ay and Ay is given a natural algebraic structure:
pt"((a, b)) = pt™t(a) x pt*2(b) N R. (2.8)

A bireachability on A, is a bireachability between A and A.

Bireachability is a “bisimilarity in the opposite direction”. The name refers to the following
property of such relation. If two points are bireachable, di ~p da, and dy € ptt (01) then there



exists 02 ~o o1 such that dy € pt42(0;), and vice versa. Since there are no operations returning
elements of sort O, arbitrary two elements of this sort can be made bireachable. One verifies
easily that with the algebra structure on a bireachability R given by (2.8), the projection arrows
pri: R = A;, pri({a1,a2)) = a;, are morphisms in Rep.

Fact 2.9 For every span of morphisms ¢; : X — A;, i € {1,2}, the relation R = {{$1(z), d2(x)) |
x € X} is a bireachability between A; and As.

Bireachability between A; and A, represents some degree of “compatibility”. For instance, any
subset of 041 x 042 is a bireachability, which can be interpreted as saying that, as long as
one does not take into account the “real distinctions” (points in D), any reports of A; can be
related to any of A,. However, in the moment we also want to relate some points d; € D4 and
dy € D42 the “compatibility” requires that also the respective reports get related: for any report
01 € (pt41)~(d;) there must be a corresponding report oy € (pt42)~(dz) and vice versa.

Although a span from X induces a bireachability R (with the associated algebra structure), it
need not be the case that the morphisms factor through the induced R.

Example 2.10 Consider two algebras:

A1 agp bo A2
N AN
ai as by bob
Zo (ao, bo) R

/N AN

X 7z 22 (a1,b1)  (a2,b1)  (a2,a3)

and two homomorphisms:
e o1 : X — Ay, given by ¢1(x;) = a; and ¢1(x) = as, and
o ¢ : X = Ay, given by ¢a(x;) = b; and ¢2(x) = by.

The induced bireachability R is shown to the right. There is, however, no homomorphism u : X —
R since, sending u(xo) = {ag,bo), requires all the three arguments to be in the image of u, in
which case the homomorphism condition for u fails for z = u(z), i.e., fX(u™(2)) = fX(x) = @ #

{zo} = u™ (F1(2)).

Obviously, the condition (2.7) is preserved under arbitrary unions. Given two algebras and a
collection of bireachabilities C; C A; x Ay, then also thier union [J; C; satisfies trivially this
condition (since the antecendent of the implication mentions only one of the bireachabilities,
which can then be used to verify the consequent). Thus, collecting all bireachabilities between A
and B we obtain the maximal one.

Fact 2.11 For every A;, As € Rep there exists a (unique) mazimal (wrt. set-inclusion) bireacha-
bility between Ay and As.

In particular, for every algebra A there exists a maximal bireachability on A. (It will always be
total on the O-part, i.e., 04 xO4. But it need not be total on D. E.g., for O4 = {0}, DA = {d;,d>}
and pt*(0) = {d,}, there is no bireachability making d; ~ ds.)

A bireachability equivalence on an algebra is a bireachability which is also equivalence. Such
relations play the role of congruences. The kernel of a morphism is a bireachability equivalence and
any bireachability equivalence ~ on A gives rise to a surjective morphism of A onto the quotient
Al..

Fact 2.12 The kernel of a homomorphism ¢ : A — B is a bireachability equivalence on A and,
given a bireachability equivalence ~ C A X A, we obtain an epimorphism e : A — A/, where the
latter is defined as the collection of ~-equivalence classes with the operation given by pt4/~([o]) =
{[d]| 30 € o] d' € [d] : d' € pt*(d')}.



Henceforth, congruence will mean bireachability equivalence. The existence of a congruence on A
which is identity on O4 and non-identity on D4 implies that Q(A) is not even Tp; i.e., there are
(at least) two distinct points which belong to exactly the same opens. The above quotient by such
a congruence amounts then to identifying all points which belong to the same opens.? One might
wish to check other topological properties which are reflected in the properties of bireachabilities.

Define subalgebra relation A C B iff there exists a mono A — B. This relation is dual to the
classical one in the following sense:

Fact 2.13 AC B if A C B and A is closed under B-preimages of operations, i.e., ¥d € D4 C
D : (pt?)=(d) C A.

This and the following two facts are special cases of the corresponding results proved for multial-
gebras over arbitrary signatures in [15].

Fact 2.14 For any A € Rep and every d € DA, the pair S = ((pt?)~(d),d) with the operation
ptS(z) = d for all x € (pt*)~(d) is a subalgebra S C A.

A useful fact is

Fact 2.15 For B € Rep and X C B, there exists a largest A C B such that A C X.

3 (Co)completeness of Rep

We show that the category Rep is complete and cocomplete. The latter is but a special case of
the general result from [15] and we only sketch the involved constructions. Also existence of final
objects and equalizers follows from this earlier work. Subsection 3.2 describes the character and
construction of (binary) products, thus completing the proof of the existence of (finite) limits in
Rep.

3.1 Some earlier results

Theorem 3.1 Rep is cocomplete.

ProOOF: We only sketch the used constructions. The empty algebra (&, &, @) is trivially initial.
The coproduct C of a collection {A; | i« € I} is given by the disjoint union of the carriers of
the components with pt®(a;) = pt?i(a;) for all a; € A;. To construct coequalizer for two arrows
01,02 : A — B, we start as usual by considering the equivalence closure ~ on B of the relation
E = {{¢1(a), #2(a)) | a € A}. Denoting these classes as [b;], the operation is defined by: [bo] €
ptE([b1]) < [ba] C ptB([b1]) or, working only with representatives: by € pt®F (b)) <= [ba] C
pt?([ba]). O

Lemma 3.2 Rep has final objects and equalizers.

PROOF: As a final object Z, we can take the algebra with DZ = {r,u} and O = {0}, where
pt?(0) = {r}. Thus, it has an “unreportable” point u, but no “empty” reports. The unique
morphism from any other algebra A — Z will map all elements of O4 to o, the elements of D4
which are in the image of pt4 to r and those which are not to .

An equalizer object E and arrow e : E — A, for a pair of arrows ¢q, ¢ : A — B, is constructed
in the more or less standard way. We let By = {a € A | ¢1(a) = ¢2(a)} and let E be the
largest subalgebra of A contained in Ey, which exists by fact 2.15. The operation is defined by
ptf (z) = ptA(z) N E for all z € E, and the arrow e : E — A is inclusion (which is monomorphism,
by fact 2.15). O

Products are a new story, and we present them in detail in the following subsection.

2Vickers [12], p. 62, calls this the “localification” of the space Q(A).



3.2 Products

We consider first the relationship between products and (maximal) bireachability between algebras.
In the case of co-algebras for functors preserving mono-sources, products and maximal bisimulation
coincide (theorem 8.6 in [5]). If we considered only the subcategory of multialgebras obtained as
inverse from coalgebras (over a given polynomial functor), we could conclude the existence of
products, namely, of maximal bireachabilities (corresponding to maximal bisimilarities between
co-algebras) between the arguments. That is, if the inverse of pt is deterministic, the maximal
bireachability becomes a product (which is the same statement as the one that maximal bisimilarity
between co-algebras over a polynomial functor is their product).

Example 3.3 Consider two algebras:

ay as by by
N S N S
A a b B
The mazimal bireachability between them is (the inverse of the mazimal bisimilarity between their

inverses viewed as co-algebras):

(a1,b1) _ (a1,b2) (az,b1) _ (a2,b2)
AN s
(a, b)

and this is the product A x B.

Thus, if there are only ambiguous reports (like a or b), but no points are reported in more than
one way, the product — maximal bireachability — increases “the degree of ambiguity”. However,
our case is more general and also more complicated. In general, maximal bireachability need not
be the product. As is to be expected from the above remark, the problems and counterexamples
are provided by multialgebras which are not inverse of coalgebras for polynomial functors. The
problem arises when the reports are “overly precise” in the sense of several reports making no real
distinctions (denoting the same points).

Example 3.4 Consider two algebras:
Al a b AZ
N VAN
ai az by by

The following are examples of bireachabilities between Ay and As:

Ry <Cl, b) Ry : (a, b)
7 AN 7 AN
Ro : {a1,b1) (a1,b1) (a2, b2) {a1,b2) (az,b1)
Rs: (a, b) Ry =Ri{UR5: (a, b)
P TN e N
(a1,b1)  {a1,b2) (a2, b2) (a1,b1) m, m (az,b2)

Ry is the maximal bireachability between A and B — every other bireachability is a subset of it.
However, only Ry C Ry, while neither Ry, Ry nor Rz is a subalgebra of Ry: their inclusions are
not homomorphisms. Consequently, Ry can not possibly be the product Ay x As, as the projections
from, say, Ro would not factor through it.



Fixing the algebras A;, A> and letting R 4, x4, be the collection of all bireachabilities between
them — each with the canonical algebraic structure as defined in (2.8) — we consider the diagram
(partial ordering) (R4, x4,,C) and its colimit P. Consider only R, R3 from the above example.
They have two common subobjects, Ry = (a1,b1) and Rj = (az,b2), and these subobjects have
to be identified. The (part of the) result will be (where the bold face indicates the identified
subobjects):

P (a, b>1 (a, b)3
b —7 }

(a1,b1)  (az,b2)  {(ai,b2)

P ¢ A; x Ay, so it is no longer a bireachability between A; and A;. But we do have that
Ry, R}y, R1,R3 T P, where the inclusion of R; will map 41({a, b)) = (a,b)1, while that of R :
i3({a,b)) = (a,b)s. Thus, if we interpret a bireachability between A; and A as a kind of potentially
compatible communication, the colimit of the diagram (R 4, x 4,, C) represents all such potentials,
some of which need not be possible simultaneously. It collects all possible combinations of the
“compatible” reports assigning to them respective “compatible” points. (But also, as in the
previous example 3.3, if there are too many distinctions reportable in ambigous ways, the resulting
reports acquire only more ambiguity.) The colimit P of the diagram (R4, xa,,C) is equipped
with the projections m; : P — A;, i € {1,2}, obtained as the mediating arrows for all projections
{p% : Rr &> A; | R, € R4,x4,}. This colimit is the product of the two algebras and we register
some of its properties to be used in the proof of this claim.

Fact 3.5 Let P be the colimit of the diagram (Ra,xA,,C) for A; € Rep. Then
1. OF ~ 041 x 042,

2. for every d,d' € DY, if (pt¥')(d) = (pt¥) (d') and 7;(d) = mi(d') for i € {1,2}, then
d=d.

PRrOOF: 1. We show that |OF| = |04 x O42|. All colimit arrows and projections considered
below are restricted to the sort O. (i) For every bireachability R € R4, x4, : OF C 041 x 042,
By the construction of colimits (coproducts and coequalizers) in Rep, the collection of all colimit
arrows {pr : R & P | R € R, x4,} is jointly epi, in particular, jointly surjective (on the sort
OF). (ii) For each bireachability R € R4,x4,, the colimit arrow pg : R — P is injective on the
sort O®. This follows from the fact that OF C 041 x 042 and the commutativity of the diagram:

OR
j"/pLY
v

0A1 <T OP Tg> OA2

If for two distinct (a1,a2) = a # b = (b1, b2) € OF, pr(a) = pr(b), the commutativity would be
violated. Thus, in particular, if we consider the bireachability 041 x 042, we obtain an injection
from it into OF. (iii) Finally, for every a = (a;,as) and every pair of bireachabilities R # R/,
if a € OB NO®', then also pr(a) = prr/(a). This follows from the fact that such an a is itself
a bireachability (R* € Ra,x4,, with the algebra structure given by OF" = {a}, D" = &) and
R* C R and R® C R'. Since P with all colimit arrows is a commutative cocone over (R4, x4,,C),
we have that pra(a) = pr(i(a)) = pr (i'(a)).

]

SOR' —— OF
|
Apia Pr!
OP

This means that the joint surjectivity of all colimit arrows from (i) factors through a surjective
arrow 041 x 042 — OF. Equivalently, there is an injection in the opposite direction. Combined

i

OR



with the existence of an injection 04 x 042 — OF from (ii), this gives, by Schroder-Bernstein
theorem, the required bijection.
2. Let us write d; = m;(d) = m;(d'). We have two subalgebras B = {(ptf)~(d),{d}) C P
and B’ = ((pt¥)~(d'),{d'}) T P. Since the colimit arrows are jointly surjective we have two
bireachabilities R, R' € R, x4, with pr(z) = d (and hence OF C pgr[O%]) and pr/ (z') = d’ (and
hence OB C pr/[O®'])). In particular, for any o € (pt£)(d), (m1(0),m(0)) € RN R'. But this
means that we have subalgebra inclusions i : Q C R and ' : Q C R, where @ is the bireachability
(N, {dy,d2)) with N = {(m1(a),m=2(a)) | a € (ptF)~(d)}. Since (P,{p, | R € Ra,x4,} is a
commutative cocone, we thus have that i;pr = pg = i';pr, in particular, d = pr(i({(d1,d2))) =
pQ((d1, d2)) = pr (' ({d1, d2))) = d'.

O

Lemma 3.6 Given Aj, As € Rep, the colimit P of (R, xA,,C) is their product.

PROOF: The existence of projection morphisms 7; : P — A; follows from the colimit property of
P. Given any X with ¢; : X — A;, define u: X — P by:

1. for 0 € O : u(0) = (¢1(0), $2(0))
2. for d € DX : u(d) = dd such that m;(dd) = ¢;(d) & (pt¥')~(dd) = u((pt*)~(d)).

We show that such a u is the unique morphism making ¢; = u; ;. The existence and uniqueness
of u on the sort O follows from fact 3.5.1. For 2, we have to show existence and uniqueness. Then
we verify the homomorphism condition, 2.1, for the whole w.

Existence: Given a d € DX, the pair S = {(ptX)~(d),d), with pt°(z) = ptX(z) = d for all
z € (pt¥*)~(d), is a subalgebra of X (fact 2.14). Hence ¢;’s restricted to S are morphisms. So they
induce a bireachability R = (N, {t}) € R4, x4,, where m;(t) = ¢;(d) and N = {(¢1(z), $2(z)) | = €
(ptX)~(d)}, fact 2.9. We have the epimorphism s : S — R and, letting r : R — P be the unique
morphism as in fact 3.5.2, we obtain s;r = u' : S — P (this u' is the restriction of the postulated
morphism u : X — P to the subalgebra S C X). Then, for some dd € DF : u/'(d) = r(t) = dd
and o' ((pt®)~(t)) = u((pt*)~ (d)) = r(N) which, since ' is a morphism, equals (pt”)~ (dd). This
shows the existence of dd as required.

Uniqueness: Existence of two distinct dd; # ddy with m;(dd;) = m;(ddy) and (pt¥)~(ddy) =
(ptf)~ (ddy), is excluded by fact 3.5.2.

Homomorphism condition: Let o € OF be such that m;(0) = a;. Then u (o) = ¢7 (a1) N
¢5 (az). 1) If u=(0) = @ then either la) pt¥(0) = @, in which case the condition is verified, or
1b) ptf(0) # @. If there exists a dd € ptf' (o) Nu[X], i.e., dd = u(d) for some d € DX then, by
2, 0 € (pt)~(dd) = u((pt*)~(d)), which contradicts the assumption 1. So assume 2) u~ (0) # @.
We have to show two inclusions. 2a) ptX (u~(0)) C u~ (ptF(0)): Let z € u (o) and d € ptX (z).
Then, since for dd = u(d) we have (pt¥)~(dd) = u((pt*)~(d)), and o € u((pt*)~(d)), so u(d) =
dd € ptf (o) and thus d € u~ (ptF'(0)). 2b) u=(ptF'(0)) C ptX(u=(0)): Let d € u~(ptF(0)), i.e.,
for some dd € ptf' (o) : u(d) = dd (d € u=(dd)). Then o € (ptF)~(dd) = u((pt¥*)~(d)), i.e.,
u~(0) N (pt*)~(d) # @. But this means that d € ptX (u~(0)). m]

Notice that although, according to Fact 3.5, the O sort of the product P is always the cartesian

product of the O sorts of the arguments, D¥ can be empty even if it is not empty in any of
the argument algebras. (For instance, for A; = ({a}, {1},pt4) with pt41(a) = {1} and A, =
({b}, {2}, @), the product is {{ab}, &, &), as the only bireachability 4; ~ A, is {a ~o b, &).)

Theorem 3.7 The category Rep is (finitely) complete.

3.3 A few examples

Any span between two algebras induces a bireachability between them and we have suggested
that this amounts to a kind of “compatibility” of the respective (sub)algebras. We can follow



this interpretation by considering such a “compatibility” as a requirement of agreement on the
two involved agents. Pushout will then yield an object which can be interpreted as the setting
ensuring that both agents can communicate in (or into) it respecting the requirement.

Example 3.8 Consider a pushout of the span ¢; : X — A;:

DX o 1 2 DA
\
o0X a b _ l I oM
®2 Y1
DA 1 2 — I, 2 Iy 2
C o N
042 a a b

We let ¢;(a) = a and ¢;(b) = b. This span can be viewed as a requirement that A1 and Ay must
agree on using a,b consistently, i.e., a said by A; must be heard/translated as a in Az, and vice
versa. (Notice that there is no homomorphism from Ay to As (nor other way around) mapping a
to a and b to b.) There is, however, no requirement on the denoted distinctions.

The pushout object P contains thus a,b with 1;(a) = a and 1;(b) = b. Images of 1,2 € D42
have subscript o, and similarly for Ay. In short, agents do use the same reports, a,b, in a
consistent manner, but no actual distinctions are being communicated, since, for instance, a € P
represents 1o and 25 for As while 11 for A;.

Example 3.9 Consider another requirement, where the span ¢; : X — A; is given by ¢1(c) =
b, $1(3) = 2 while ¢2(c) = a, $2(3) = 1, which requires As’s a/1 to correspond to A;’s b/2:

DX 3 1 2 DA
RN
oX c _— a b OA1
®2 Y1
DA2 1 2 o 1 1524 29
1/ IOt T
OAz a b ay bias b P

The images under v; in the pushout object are identified by the subscripts. Now, any b spoken by
Ay in the common space P is heard as byas which is denoted by As as a. The distinction 122, is the
part corresponding to the original requirement. Besides that, we have “private” distinctions from
both agents (not captured by any requirements), and likewise the report ay /by in P still “belongs
only to” A1/Az, as Az/A1 does not have any word corresponding to it under 12 /1)1 .

Morphisms (quotients) from the pushout object P will allow for further agreements/coincidences
or, in the extreme cases, e.g., of a final object, confusions. Pushout object can be thus taken as a
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maximal common communication space (standard) induced by the two agents and allowing these
agents to share the part given by the initial requirement.

A different situation is obtained by interpreting pullbacks. Here we have a cospan ¢; : A; = X
into a “common space” X (given standard), and its pullback gives us the minimal space repre-
senting the possibility of agreement, or adequate communication between A; and Ay, when using
the standard X.

Example 3.10 Consider a pullback of the cospan ¢; : A; — X, where images are identified by
the subscripts:

DF 1 1 2 DA
or l R l l oM
P2 1
DA2 1 2 0 1:15 2 2;
1/ P 7
042 a b aiaz b1bs X

The agreement in X concerns the common use of biba for b both by Ay and As (albeit with reference
to distinctions which do not correspond), and the fact that aias means in either case at least 1115
which corresponds to the respective 1s.

4 Conclusion

We develop a formal structure for studying standardization of a language between agents who
individually use different private languages. The notion of a standardized language that emerges
is essentially one of a coarsening: two agents can translate their private languages into a shared one
if and only if the terms in the shared language can be expressed in each agent’s private language.
Thus, the simplicity of standardization of information exchange comes at the cost of reducing the
amount of information agents can express.

To formalize these notions, we develop a category, called Rep, of reporting environments,
and model the translation of one reporting environment to another as a homomorphism in this
category. We show that Rep is complete and cocomplete, and observe that homomorphisms
between two agents may exist in only one direction. Thus, communicating to someone is different
from understanding someone.

This category provides a promising new approach for studying standardization of communi-
cation. A fulfillment of this promise will be the point of future research, for example studying
settings where agents are not aware of the same things and where agents need to consider outside
parties when agreeing upon a standard. Preliminary examples of such study were given in terms
of pushouts/pullbacks in Rep.
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