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Abstract

Kelly-width is a parameter of directed graphs recently g by Hunter and Kreutzer
as a directed analogue of treewidth. We give several altemeharacterizations of directed
graphs of bounded Kelly-width in support of this analogy. ¥ly these results to give
the first polynomial-time algorithm recognizing directethghs of Kelly-width 2. For an
input directed grapiG = (V, A) the algorithm will output a vertex ordering and a directed
graphH = (V, B) with A C B witnessing either tha€¥ has Kelly-width at most 2 or that
G has Kelly-width at least 3, in time linear ifl .

1 Introduction

The tractability of large classes of NP-complete problenmenvparameterized by the treewidth
of the input graph counts among the strongest results irrighgac graph theory. The algorithms
behind this tractability have two stages: first an algoritbaemputing treewidth, then an algo-
rithm solving the specific problem using the tree-structtiscovered in the first stage. See for
example [2] for a recent overview of these algorithms. Foedtied graphs (digraphs) there have
been several proposals for a parameter analogous to trimewttirected treewidth’ of Johnson,
Robertson, Seymour, Thomas [5], ‘D-width’ of Safari [7], AG-width’ of Berwanger, Dawar,
Hunter, Kreutzer [1] and independently Obdrzalek [6]] afelly-width’ of Hunter and Kreutzer
[4]. Which of these proposed parameters is the better analogtreewidth? In this paper we give
evidence in support of the Kelly-width parameter.

The success of a model depends on a balance between the mygaiaier, which measures
how general its domain of application is, and the analyfcaver, which measures how good it is
as an analytical tool. The two are typically in conflict. Tlslso the case for the above proposals
for tree-like parameters of digraphs. The better the madetiower, e.g. the larger the class of
digraphs that have bounded parameter value, the worse #igtiaal power, e.g. the smaller the
chance of successfully emulating both stages of the algoitt results for treewidth. We do not
go into details of the modeling and analytical powers of eafdhe proposed digraph parameters,
but simply note that from a purely algorithmic point of vietete is no clear winner. How then
to choose the digraph parameter which is the most naturattgid analogue of treewidth? Note
that while some concepts of undirected graphs have unamirgoatural translations to directed
graphs, e.g. from paths to directed paths, there are othmerepts, e.g. cliques and separators,



for which the translation is less clear. The treewidth paganis known to have many equivalent
characterizations. If we start with a characterizationregtvidth that uses only concepts that have
unambiguous translations to directed graphs then we slastilek at a directed graph parameter
which is a hatural analogue of treewidth. This is the appnoee take in this paper. In Section 3 we
give a new characterization of digraphs of Kelly-width atsnk arising from a characterization
of treewidth that uses the fairly unambiguous concepts déxerderings, paths and neighbours.

We also enhance the algorithmic argument in favour of Keligith. Digraphs of Kelly-width 1
are the directed acyclic graphs and recognizable by a sialgtwithm. For all larger values of
k the only algorithms that were known for recognizing digrai Kelly-width £ had running
time exponential in the size of the input digraph [4]. Usihg given characterizations we are
able to present a fast algorithm recognizing digraphs ofykeldth 2 in Section 4. For an input
digraphG = (V, A) this algorithm will output a vertex ordering and a digraph= (V, B) with
A C B witnessing either tha€; has Kelly-width at most 2 or tha&r has Kelly-width at least 3,
in time linear in H . In the positive case the witness can be used to easily find@ng@sition of
the digraph into a tree-like structure.

2 Graph preliminaries and digraphs of bounded Kelly-width

A simple finite directed grapli: is a pair of sets(V, A), whereV is finite and A is an irreflexive
relation overV . The setV is called thevertex sebf G, and A is called thearc setof . Since
we mostly consider simple finite directed graphs, we shadly them “digraphs”. When we deal
with undirected graphs, we will explicity mention it. Fonarbitrary digraphH, V(H) and
A(H) denote the vertex and arc set Hf, respectively. An arc of graply is denoted agu, v)
and v is thestart vertexand v is theend vertexof (u,v). Let H be a digraph. We say that

is asubgraphof H,if V C V(H) andA C A(H). If V = V(H) andG is a subgraph ofd
thenG is aspanning subgrapbr partial graphof H . Further definitions are given when they are
needed.

Hunter and Kreutzer introduced the notion of Kelly-width. [Kelly-width is a parameter for
digraphs, and it is the least width of a so-calleelly-decomposition We will not define Kelly-
decompositions here, since we will not use this notion. Tute@s gave several alternative char-
acterizations of digraphs of bounded Kelly-width by: el@iion process, inductive construction,
graph game. We will study graphs of bounded Kelly-widthtstgrfrom the inductive construc-
tion. LetG = (V, A) be a digraph. Let: andv be vertices ofG. We call v anin-neighbour
of w, if (v,u) is an arc of G. The (open) in-neighbourhoodf «, denoted asVZ(u), is the
set of in-neighbours ofi. Theclosed in-neighbourhoodf w, denoted asV%[u], is defined as
N&(u) U {u}. Similarly, v is anout-neighbourof w, if (u,v) is an arc ofG. Openandclosed
out-neighbourhoof a vertex are defined respectively. Tinat-degreeof a vertex is the number
of its out-neighbours. LeX be a set of vertices ofr. We define theeommon in-neighbourhood
of X, denoted ag) NZ[X], recursively:

X =0 : ﬂ 7 [ X] =det
X #(anda € X : ﬂ NGIX] =aet N, ﬂ X\ {a}].

The inductive construction characterization of digraphdaunded Kelly-width by Hunter and
Kreutzer started from a basic class of graphs, and the pgraah relation defines the complete
class. The basic graphs are calleeDAGs Since certain of our statements become easier, we
generalise the definition and defikeGDAGSs



Definition 2.1 Let £ > 0. The class ofieneralisedt-DAGS, k-GDAGS, for short, is the class of
digraphs inductively defined by the two following constiarcsteps:

(1) agraph on one vertex is R-GDAG

(2) let G be ak-GDAG and letu be a vertex that does not appear @4. Let X be a set of
at mostk vertices ofGG, called theparent vertices of.. Then,G’ is a k-GDAG whereG’
emerges fronG by adding vertex: and the following arc set:

{(u,:z:)::z: € X}U{(y,u):ye ﬂNg}[X]}

With a k-GDAG, we associate a sequengs, ..., z,) of vertices, wherer; is the vertex of
the start graph in construction step (1) of Definition 2.1d aR, i € {2,...,n}, is added to the
graph on the verticesq, ..., z;_1, that has already been constructed, according to conistnuct
step (2). Letk > 0, and letG = (V, A) be ak-GDAG. A vertex sequence = (x1,...,x,) for
G is aconstruction sequender G, if G can be obtained according to construction steps (1) and

(2) adding vertices according te and choosingVg" (z;) N {z1,...,z;_1} as the parent vertices
setofz;, i € {1,...,n}. Parent vertices are always defined with respect to a veeguesice.

Thechild verticesof a vertexz are those vertices that chooseas a parent vertex.

Definition 2.2 Let k > 0, and letG be a digraph.G is apartial £-GDAG if and only if G is a
partial graph of some:-GDAG.

Note that partialk-GDAGs cannot be associated with a construction sequengenieral.

Hunter-Kreutzerk-DAGs are defined analogous (6GDAGs with the following difference:
instead of starting with a graph on a single vertex in comsion step (1),k-DAGs start with
a complete graph o vertices. This means that evektDAG contains a complete subgraph
on k vertices, which is not true fok-GDAGS in general Partial £-DAGsare partial graphs of
k-DAGs. The following lemma relates-DAGs andk-GDAGs to each other.

Lemma 2.3 Letk > 0, and letG = (V, A) be a digraph.

(1) If G is a k-GDAG, thenG is a partial k-DAG.
(2) If G isak-DAG, thenG is a k-GDAG.

Proof Let G be ak-GDAG with construction sequence= (zy,...,z,). Obtain H from G by
makingG[{z1, ...,z }] into a complete directed graph. Note that, with respeet,tevery vertex
of H has at mosk parent vertices. Hence,/aDAG H' can be constructed using sequence
and choosing parent vertices accordingHq and G is a partial graph ofd’. If G is a k-DAG
with construction sequence, G is a k-GDAG with construction sequence. O

Corollary 2.4 Letk > 0, and letG be a digraph.G is a partial k-GDAG if and only ifG is a
partial £-DAG.



The Kelly-width of a digraph is a width parameter based omtitth of Kelly-decompositions.
Kelly-width and Kelly-decomposition were introduced by rier and Kreutzer as a decomposi-
tion counterpart of tree-decompositions for undirecteapds [4]. The authors showed a strong
correspondence between partiaDAGs and graphs of bounded Kelly-width.

Theorem 2.5 ([4]) Let £ > 0, and letG be a digraph.G has Kelly-width at mosk + 1 if and
only if G is a partial k-DAG.

We can conclude that Kelly-width also characterises dakti&DAGS.

Corollary 2.6 Letk > 0, and letG be a digraph.G has Kelly-width at mosk + 1 if and only
if G is a partial k-GDAG.

In the following, we will mostly deal withk-GDAGs and partialk-GDAGs. We will also
speak of “graphs of bounded Kelly-width%k-DAGs are mentioned to discuss differences between
graph classes and with respect to obtained results.

3 Characterizations of graphs of bounded Kelly-width

So far, graphs of bounded Kelly-width have four differenaictterizations: via elimination pro-
cess, inductive construction, cops-robber game, decaitigpus These many characterizations
were the start point for us to consider the concepts of Keilgth and Kelly-decompositions as a
good digraph counterpart of the concepts of treewidth ag&ltlecompostion of undirected graphs.
Treewidth seems a very natural concept, since undirectgehgrof bounded treewidth can be char-
acterised by a long list of different statements. In thigise¢cwe will add two further results to the
list of characterizations for graphs of bounded Kelly-widiVe will see that graphs of bounded
Kelly-width have a vertex-ordering characterization, avelshow that partiak -GDAGs are the
same as subgraphs 6fGDAGs. We begin by recalling the elimination process cbidzation
by Hunter and Kreutzer. This characterization will be usddr

3.1 Elimination process characterization

Undirected graphs of bounded treewidth have a nice chaizatien using an elimination scheme.
Let G = (V, F) be an undirected graph on at least two vertices, and le¢ a vertex ofG. The
operationreducing G by z yields graphG’ that is obtained fromG by deleting vertexz and
adding the edge s€t{u,v} : u # v andu,v € Ng(x)}. In words, G’ is obtained fromG by
deletingx and making its neighbourhood (i) into a clique.

Theorem 3.1 (folklore) Let £ > 0, and letG = (V, E)) be an undirected graph. The; has
treewidth at mostt if and only if G can be reduced to a graph on one vertex by repeatedly
reducing by a vertex of degree at mast

The characterization of undirected graphs of bounded idébvin Theorem 3.1 can be trans-
lated into the world of digraphs. However, the reductionraien must be adjusted. L&t =
(V, A) be a digraph on at least two vertices, andaebe a vertex ofG. The operatiorreduc-
ing G by x yields graphG’ that is obtained fromG by deleting vertexz and adding the arc



set{(u,v) : u # vandu € N¥(z) andv € N2"(z)}. This definition of the reduction oper-
ation is a natural way to translate the completion from thdinected case to the directed case,
although it is not the only possibility. Hunter and Kreutz this to obtain the following result
for digraphs of bounded Kelly-width.

Theorem 3.2 ([4]) Let £ > 0, and letG = (V, A) be a digraph. ThenG has Kelly-width at
mostk + 1 if and only if G can be reduced to a graph on one vertex by repeatedly redinirsg
vertex of out-degree at most

The result of Theorem 3.2 implies an easy algorithm for reeigg graphs of bounded Kelly-
width. Unfortunately, this algorithm is not a polynomiahe algorithm. A given graph, partial
k-GDAG or not, can have more than one vertex of out-degree &t #o There is no a priori
argument or criterion deciding which one to choose.

3.2 \ertex-ordering characterization

In this subsection, we show that graphs of bounded Kellyiweéde the graphs whose vertices can
be arranged in a linear order to satisfy special conditidfie. start with a characterization &f-
GDAGs. This characterization is used in most of our proofsualgraphs of bounded Kelly-width.

Let G = (V, A) be adigraph. Aath P in G is a sequencéxy, . .., z;) of mutually different
vertices of G where (z;, xz;+1) is an arc ofG for everyi € {0,...,l — 1}. Let o be a vertex
ordering for G. Path P is called c-monotone-leftif z; <, --- <, x¢ holds. P starts at
vertex zg; so, if P is o-monotone-left, it is ar-monotone-left path starting at,. For a vertexu
and an arqz,y) of G, we say that(x,y) spans overu with respect too, if x <, u <, y or
y <, u <, x. If the orderingo is uniquely determined, we shortly say th@at, y) spans over
u. Let u be a vertex ofG. We say that ar-monotone-left path inG has thespanning-vertex:
property if the pair (P, u) satisfies the following condition: i contains an arc that spans over
u, then P contains a vertexw <, u such thatw € N2"(u) and the arc ofP that spans ovet
has end vertexv.

Theorem 3.3 Let £ > 0, and letG = (V, A) be a digraph.G is a k-GDAG if and only if there
is a vertex orderingr = (1, ..., z,) for G such that the pairfG, o) satisfies the following two
conditions:

(1) foreveryi € {1,...,n}, |INZ"(z;) N{z1,..., 21} <k

(2) for every pairu, v of vertices ofG whereu <, v, (u,v) is an arc ofG if and only if every
o-monotone-left path starting at has the spanning-vertex property.

If G is a k-GDAG, the vertex orderings such that the painG, o) satisfies conditions (1) and
(2) are exactly the construction sequencesdar

Proof We prove two implications. Le&G be ak-GDAG, and leto = (z1,...,x,) be a con-
struction sequence fak. We show that the paifG, o) satisfies the two conditions. By definition
of k-GDAGSs, every vertexr; chooses at most parent vertices among,...,z; 1, SO that

condition (1) is obviously satisfied. We show satisfactibeandition (2) by induction. For; as
vertexv, condition (2) is trivially satisfied. Now, consides; as vertexv for ¢ > 2. Let X be the
parent vertices set of;. Let u € {z1,...,x;_1}. According to construction step (2)y, v) is an



arc of G if and only if » is a vertex in the common in-neighbourhoodXfin G[{z1,...,z;—1}].
Let X’ be the set of vertices in X for which holdsu <, z. Applying the induction hypothesis,
u is in the in-neighbourhood of € X' if and only if every o -monotone-left pathP’ starting at
x has the spanning-vertex property.

(@) Let (u,v) beinG. Let P be ac-monotone-left path starting at that does not contain.
Let =z be the endvertex oP, and letz <, . Note thatP contains at least two vertices. Let
y be the vertex onP following v. Then,y isavertexinX . If y € X', thenP’ =4 P—v
is a o -monotone-left path starting at with last vertexz <, u that does not contaim.
Since (u,y) is an arc of G, we obtain by applying the induction hypothesis tlit has
the spanning-vertex. property, i.e.,P’ contains a vertexw <, u such thatw € N2"[u]
and the arc ofP’ with end vertexw spans over.. Hence, P has the spanning-vertex
property. Lety ¢ X’. Then,y is an out-neighbour of. and arc(v,y) spans over, which
means thatP has the spanning-vertex property.

(b) Let (u,v) be notinG. Then, there is a parent vertexof v such thatu is not an in-
neighbour ofy. If y € X', there is as -monotone-left pathP starting aty in G that does
not have the spanning-vertex property according to induction hypothesis. We can extend
P by addingv as start vertex and obtaincamonotone-left path starting at that does not
have the spanning-vertex property. Ify ¢ X', then the ardv, y) spans ovew but u is
not an in-neighbour ofy, i.e., there is ar-monotone-left path starting atin G that does
not have the spanning-vertex property.

Hence, the paifG, o) satisfies conditions (1) and (2).

We prove the second implication. Lét be a digraph and let = (z1,...,x,) be a vertex
ordering for G' such that the pai(G, o) satisfies conditions (1) and (2). We show tl@Gitis
a k-GDAG by showing thatG is equal to some:-GDAG. Let H be constructed using as
construction sequence and choosing the parent verticesdaeg to condition (1), i.e., the parent
vertices set ofz; is X; =qer N&"* () N {x1,...,x;_1}. Itis clear thatH is a k-GDAG by the
choice of the parent vertices and condition (1). We first sieat G is a partial graph of7 . By
definition, for every pain, v of vertices whereu <, v, (v,u) is an arc ofH if and only if (v, u)
is an arc ofG. For the remaining arcs off, we prove by induction ovei € {1,...,n} that
{(u,2;) € A(G) : v <5 x;} = {(u,x;) € A(H) : u <, x;} holds. The claim obviously holds
for i = 1. Leti > 2. We show two inclusions. First, l€t, z;) be an arc ofG, whereu <, z;.
We show thatu is in the common in-neighbourhood &f; in H. Let y be a vertex inX; \ {u}.
We distinguish two cases.

(a) Let u <, y. Since(u,x;) is an arc ofG, every o -monotone-left path starting at; in G
has the spanning-vertex property. In particular, every -monotone-left pathP starting
at z; and containingy as successor af; on P has the spanning-vertex property. Thus,
every o -monotone-left path starting at has the spanning-vertex property, which means
that (u, y) is an arc ofG due to condition (2). By induction hypothesig, y) is an arc of
H.

(b) Lety <, u,i.e.,y <, u <, x;. Then, there is a-monotone-left pathP starting atz; and
containingy as the successor af on P, and by assumption? has the spanning-vertax
property. Note tha(z;,y) spans oven, so thaty must be an out-neighbour ef due to
the spanning-vertex. property of P. By definition of H, (u,y) is an arc ofH .



So,u € (Y NB[X;], and (u, z;) is an arc ofH according to construction step (2) féBrGDAGs.
For the second inclusion, let € {x1,...,z;—1} be such tha{z;,«) is not an arc ofG. Hence,
there is ac-monotone-left pathP starting atz; which does not have the spanning-vertex
property. Note that? must contain at least two vertices. Lgtbe the successor af; on P.

If arc (x;,y) spans ovemr, u is not an in-neighbour of;. If v <, y, there is ac-monotone-
left path starting aty in G that does not have the spanning-verixproperty. According to
condition (2),(u, y) is not an arc ofG. For the two cases, it follows by induction hypothesis, that
u ¢ (NB[X;], and (u, ;) is not an arc ofH. We conclude thatz and H have the same arc
sets, i.e., they are equal. Thus,is a k-GDAG ando is a construction sequence f6ét. O

Also for k£-DAGSs, a characterization theorem in the flavour of Theore®can be formulated.
However, it will have a more complex version of condition.(1)

We want to extend the characterization result of Theoremf@.3:-GDAGs to digraphs of
bounded Kelly-width. Since partidl-GDAGs are just the partial graphs BfGDAGSs, there must
be some relaxation in the conditions of Theorem 3.3. Thisxagion affects condition (2). The
following lemma defines a subclass of partialGDAGs for which a characterization in the flavour
of Theorem 3.3 exists.

Lemma3.4 Letk > 0, and letG = (V, A) be a digraph. The following two statements are
equivalent:

(A) there is a vertex ordering = (z1,...,z,) for G such that the painG, o) satisfies the
following two conditions:

(1) foreveryi € {1,...,n}, |IN2"(x;) N {z1,..., 21} <k
(2) for every pairu, v of vertices ofG whereu <, v, if (u,v) is an arc of G then every
o -monotone-left path starting at has the spanning-vertex property

(B) there is ak-GDAG H with construction sequence such that the triplg G, H, o) satisfies
the following two conditions:

(3) G is a partial graph of H
4) AG)N{(u,v) :v <5 u}=AH) N {(u,v) : v <, u}

Proof We prove two implications. Letd be ak-GDAG with construction sequence such
that the triple(G, H, o) satisfies conditions (3) and (4). Note that the pdif, o) satisfies con-
ditions (1) and (2) of Theorem 3.3. Then, satisfaction ofditton (1) of Theorem 3.3 and of
condition (4) implies satisfaction of condition (1). We peosatisfaction of condition (2) by in-
duction overi € {1,...,n}, showing that every ar¢u, z;) for u <, x; has the property of
condition (2). The claim obviously holds far= 1. So, leti > 2. Let (u,z;) be an arc of
G, whereu <, x;, and let P be ac-monotone-left path starting at; in G. Let z be the last
vertex of P, let z <, u, and letu be not a vertex onP. Then, P has the spanning-vertex
property in H, which means thaP contains a vertexv <, v such thatw € N () and the arc
of P with end vertexw spans over,. By the choice ofH, w is an out-neighbour of; also in
G. Hence, pathP has the spanning-vertex property also inG. Thus, the paifG, o) satisfies
condition (2).

For the second implication, let be a vertex ordering fo€; such that the paifG, o) satisfies
conditions (1) and (2). LeH be the graph obtained fror¥ by adding as many arcs from the

7
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Figure 1: A partial 1-GDAG without the property required bynalition (4) of Lemma 3.4.

set{(u,v) : u <, v} as possible such th&#/, o) still satisfies conditions (1) and (2). Then, the
pair (H, o) satisfies the two conditions of Theorem 3.3, which means thas a k-GDAG with
construction sequence. Furthermore G is a partial graph off and condition (4) is satisfied by
construction ofH . O

The crucial point of the characterization in Lemma 3.4 isditon (4). Informally, the ques-
tion is whether every partiat-GDAG G can be embedded into/laGDAG H; where Hg can
be constructed according to the two construction steps thathevery vertex chooses only parent
vertices that are out-neighbours @».

For partial 0-GDAGS, the question can immediately be ansd/gositively, since 0-GDAGs
do not choose any parent vertex. Interestingly, alreadyéotial 1-GDAGSs, the answer is neg-
ative. We prove this by giving an example. Consider the grdgbicted in Figure 1; let us call
it G. Observe that7 is a partial 1-GDAG: using construction sequeneec, a, f, b, d), we can
construct a 1-GDAG that contairs as a partial graph. We show that there is no 1-GDAGand
no vertex orderings for H such thatr is a construction sequence féf and the triple(G, H, o)
satisfies conditions (3) and (4) of Lemma 3.4. Note that teevartex of a construction sequence
for a 1-GDAG has at most one out-neighbour, which is its paventex. G has exactly three
vertices with out-degree at most 1, namelyb and d. Furthermore, vertices and e have out-
degree 5, which means that at least four vertices come @fted e in every possible construction
sequence. Hence,ande are the first two vertices in every construction sequenca ftiGDAG
containingG. We distingusih two cases. Let be the last vertex. The parent vertex ofis e,
andb andd must be in-neighbours of. Hence,b and d have a new parent vertex. L&tor d be
the last vertex. Theny is the parent vertex, and must be an out-neighbour g¢f. Then,a or d
can be the predecessor vertex in a construction sequentes df, e must be an out-neighbour of
f, which makese the parent off . Ifitis d, eithera or e is the parent off. Hence, there is no
1-GDAG H and construction sequeneefor H such that(G, H, o) satisfies conditions (3) and
(4) of Lemma 3.4.

So, for a characterisation of partiakGDAGSs, we have to relax the conditions a little more.

Theorem 3.5 Let k£ > 0, and letG = (V, A) be a digraph.G is a partial £-GDAG if and only
if there are a vertex ordering = (x1,...,x,) and a setF’ of arcs such that the tripléG, F, o)
satisfies the following two conditions, where weGét=4.s G U F':

(1) foreveryi € {1,...,n}, [N (z;) N{z1,..., 21} <k

8
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Figure 2: A partial 2-GDAG, which is proved by the vertex seqce(a, b, ¢, d, e, f), without the
property required by condition (2) of Lemma 3.4.

(2) for every pairu,v of vertices ofG whereu <, v, if (u,v) is an arc of G then every
o-monotone-left path starting at in G’ has the spanning-vertex property inG’.

Proof Let G be a partial graph ok-GDAG H, and leto be a construction sequence far. Let
F =gef (A(H)\A(G))N{(u,v) : v <5 u}. Let G’ =g, GUF. Itholds that the tripl€G’, H, o)
satisfies conditions (3) and (4) of Lemma 3.4, from whichda# that the tripl§ G, F, o) satisfies
the conditions of the theorem. For the conversegldie a vertex ordering fo€z and I’ a set of
arcs such thatG, F', o) satisfies the two conditions of the theorem, where we8et s GU F'.
Hence, the pai{G’, o) satisfies conditions (1) and (2) of Lemma 3.4, from whichdat thatG’
is a partialk-GDAG. Sinced is a partial graph of?’, G is a partialk-GDAG. O

Itis clear thatin casé = 0 of Theorem 3.5, the sdf' can be chosen empty. Interestingly, the
counterexample in Figure 1 cannot be chosen as counteréxdonpartial k-GDAGSs for k > 2:
let the graph in Figure 1 bé&'. For constructing a 2-GDAG containing as partial graph, we can
use vertex orderingr = (e, c,a,b,d, f). So, the question arises whether the problems for partial
1-GDAGs of satisfying condition (4) in Lemma 3.4 are alsolgpeons for partialk-GDAGs for
k > 2. At least for partial 2-GDAGs, Figure 2 gives an example ofaph with problems similar
to G from Figure 1.

3.3 Subgraph characterization

From the characterization result of Theorem 3.5, we derdt@ayother characterization of digraphs
of bounded Kelly-width. This characterization is not sisjng, rather a necessity. It simply says
that “partial graph” in the definition of partidt-GDAGs can be replaced by the more natural term
“subgraph”. This is an analogue to partfaltrees, which are defined as partial graphs:efees
and can be characterised as subgraphs-tees.

Lemma3.6Letk > 0, and letG = (V, A) be a k-GDAG. Leta be a vertex ofG. Then,
G' =4ef G—a is a partial k-GDAG.

Proof Let o be a construction sequence f6t. Then, the pair(G, o) satisfies conditions (1)
and (2) of Theorem 3.3. Let’ =4, 0—a. We show that the triplédG’, (), o’) satisfies the three



conditions of Theorem 3.5. It is clear that conditions (1l é2) of Theorem 3.5 are satisfied. So,
let (u,v) be an arc ofG’ wherew <, v. Let P be ac’-monotone-left path starting atin G’'.
Let z be the last vertex of?, and letz <, u. Finally, let u be not a vertex onP. Note that,
by construction,P is a o -monotone-left path inG. Hence, there is a vertex on P such that
w € Ng"(u) and the arc ofP with end vertexw spans over. Sincew # a, we conclude that
P has the property of condition (3) of Theorem 3.5 alsaih Hence,G’ is a partialk-GDAG.

O

Theorem 3.7 Let £ > 0, and letG = (V, A) be a digraph. Then¢ is a partial k-GDAG if and
only if G is a subgraph of &-GDAG.

Proof If GG is a partial graph of &-GDAG H, then(G is also a subgraph off . Now, let G be
a subgraph of-GDAG H. If G and H have the same vertex sets, is a partial subgraph of
H , hence a partiak-GDAG. Otherwise, letu be a vertex ofH that is not contained id. Then,
G is a subgraph also off —u. According to Lemma 3.6 —u is a partialk-GDAG, i.e., partial
graph of ak-GDAG H'. By induction, we conclude tha®¥ is a partial graph of &-GDAG. O

4 A connection between digraphs of bounded Kelly-width and odi-
rected graphs of bounded treewidth

We argued in the introduction that the notion of Kelly-widtr digraphs can be considered an
appropriate analogue of the notion of treewidth for undegdagraphs. We based our argumentation
on the many similarities in different characterizationsngen the two notions. In this section, we
illustrate the connection between the two graph notionsspexial way: we answer the question
whether undirected graphs of bounded treewidth can be emeldddto digraphs of bounded Kelly-
width. The embedding relation must be defined, and we chdmsmbst natural approach. It will
turn out that the basic class-GDAGs, does not exactly correspond to the clasg®f.. ., k}-
trees but to a reasonable bigger class.

For the results in this section, we need further definitidred. G = (V, A) be a digraph. Two
verticesu and v of G are calledstrongly adjacentif (u,v) and (v, ) are arcs ofG. If v and
v are strongly adjacent, we caflu, v} a bi-directional arcof G. Otherwise, ifu andv are not
strongly adjacent{u, v} is called auni-directional arc By bi-dir(G), we denote the undirected
graph on vertex set’ where two vertices are adjacent if and only if they are stipagjacent in
G. Let G’ = (V, FE) be an undirected graph’’ is chordal if G’ does not contain an induced
cycle of length greater than 3. A vertex 6f is calledsimplicial, if its neighbourhood is a clique
in G'. Every chordal graph has a simplicial vertex [3]. Using thégfinitions, we can modify
Theorem 3.1 to obtain a characterization of chordal grapi®onded treewidth.

Theorem 4.1 (folklore) Let k > 0, and letG = (V, E) be an undirected graph. Thexy; is a
chordal graph of treewidth at modgt if and only if G can be reduced to a graph on one vertex by
repeatedly reducing by a simplicial vertex of degree at niost

Since chosen vertices in Theorem 4.1 are simplicial, no relye és added during the elimi-
nation process. Vertex orderings for chordal graphs definetihe elimination process are called
perfect elimination schemeand the first (leftmost) vertex in the ordering is the firsttgr to be
eliminated.
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Theorem 4.2 Let k > 0. An undirected graplt is a chordal graph of treewidth at mostif and
only if there is ak-GDAG H such thatG = bi-dir(H).

Proof Let G be a chordal graph with treewidth at mdstand letoc = (x4, ...,z,) be a perfect
elimination scheme fotz. Let G; =4ef G[{zi,...,x,}| foreveryi € {1,...,n}. We show by
induction that we can constructiaGDAG H with construction sequencgr,,, ..., x1) (reverse
order!) such thatz; = bi-dir(H[{z;,...,z,}]) foreveryi € {1,...,n}. Let X; =qet Ng(z;)N
{zi}1,...,z,} foreveryi € {1,...,n}. Let H, be the digraph on vertex,,. Obviously,
G, = bi-dir(H,,) andH,, is ak-GDAG. Leti < n. Let H; emerge fromH,,, by addingz; and
choosingX; as the parent vertices set®f. Due to Theorem 4.1X; contains at mosk vertices,
so thatH; is ak-GDAG. By definition ofo, X; is a clique inG;,1, and by induction hypothesis,
X; induces a complete graph i, . In particular, every vertex inX; is in-neighbour inH;, 1
of every other vertex inX;, so thatz; is strongly adjacent with every vertex i; in H;. Hence,
X; U{x;} induces a complete subgraph iy andG;, i.e., G; = bi-dir(H;).

For the converse, lel = (V, A) be ak-GDAG. Leto = (z1,...,z,) be a construction
sequence foif, and let X; be the parent vertices set of with respect too, i € {1,...,n}.
We first show that bi-ditH) = bi-dir(H’) where H' is a k-GDAG with construction sequence
and the following parent vertices set& =4s {u € X; : u andz; are strongly adjacent i }.
With these definitions, it is an easy induction over the amesion steps forld and H' to prove
that {(u,v) € A: u <, v} C {(u,v) € A(H') : u <, v}. Then, two vertices of{ are strongly
adjacent inH if and only if they are strongly adjacent ifl’, i.e., bi-difH) = bi-dir(H").
Furthermore, X! induces a complete subgraph i, i.e., X! is a clique in bi-difH’). Then,

(xn,...,21) is a perfect elimination scheme for bi-di’) = bi-dir(H ), from which follows that
bi-dir(H) is chordal, and since every s&t does not contain more thanvertices, bi-difH) has
treewidth at mosk due to Theorem 4.1. 0

Let us mention that fok-DAGSs the statement analogous to Theorem 4.2 becoaresndi-
rected graph(G is a chordal graph of treewidtlt — 1 or % if and only if there is a-DAG H such
that G = bi-dir(H).

Corollary 4.3 Let k > 0. An undirected graplG has treewidth at most if and only if there is
a partial k-GDAG H such thatG = bi-dir(H).

Proof Let G be an undirected graph of treewidth at méstThen, there is &-tree G’ containing
G as partial graph.G’ is a chordal graph of treewidth at mokt so there is a&-GDAG H’
such thatG’ = bi-dir(H’) due to Theorem 4.2. Hencé]’ has a partial graphH such that
G = bi-dir(H). The converse is analogous. O

Combining the result of Corollary 4.3 and the characterarabf Theorem 3.5 provides the
following characterization of undirected graphs of bouhtteewidth. The definitions af -mono-
tone-left paths and spanning-vertexproperty for undirected graphs are obtained just by reptaci
‘arc’ by ‘edge’. Note that the end vertex of an edge with respect to a vertex ordering then is
the one vertex preceding the other.

Theorem 4.4 Letk > 0, and letG = (V, E) be an undirected graphGG has treewidth at most

if and only if there are a vertex ordering = (x1,...,z,) for G and a setF" of additional edges
such that the triplgG, F, o) satisfies the following two conditions, where weGét=4.; GU F':
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(1) for every: € {1, . ,n}, |NG/(:L’Z) N {:131,. .. 7$i71}| <k

(2) for every pairu,v of vertices ofG whereu <, v, if uv is an edge ofG then every
o-monotone-left path starting at in G’ has the spanning-vertex property inG’.

Proof Let G have treewidth at most. Due to Corollary 4.3, there is a partia-GDAG H
such thatG = bi-dir(H). Applying Theorem 3.5, there are a vertex orderingor H and a
set F’ of arcs such that the tripleH, F’, o) satisfies the two conditions of Theorem 3.5. Without
loss of generality, if(u,v) € F' thenv <, u. Let F =g4¢¢ {uv : (u,v) € F'}. We show
that the triple(G, F,, o) satisfies the two conditions. Condition (1) is clearly d&tt since every
neighbour ofx precedingx with respect too in G U F' is a preceding out-neighbour of in

H U F'. For satisfaction of condition (2), note thatib, u <, v, is an edge of7 then (u,v) is

an arc of H, and everys -monotone-left path starting atin G U F' is a ¢ -monotone-left path
starting atv in H U F’. Thus, satisfaction of condition (2) follows from Theorerns.3

For the converse, let be a vertex ordering foz and F' a set of additional edges such that
the triple (G, F, o) satisfies conditions (1) and (2). Léf be an arc-minimal digraph such that
bi-dir(H) = G. Let F' =4t {(v,u) : uwv € F andu <, v}. Then, itis easy to verify that the
triple (H, F’, o) satisfies conditions (1) and (2) of Theorem 3.5, which mehasH is a partial
k-GDAG. Applying Corollary 4.3, we conclude th&t has treewidth at moskt. O

The concept of ar-monotone-left path having the spanning-vertexroperty is unambigu-
ously translated between undirected graphs and directgpohgr Thus, apart from the binary
choice of translating ‘neighbours’ to either ‘in-neighlbsuor ‘out-neighbours’, all undirected
graph concepts used in Theorem 4.4 to characterize traewigt unambiguously translated to
give Theorem 3.5 characterizing Kelly-width. In our opimithis constitutes a weighty argument
that Kelly-width is indeed the natural directed analogugeéwidth.

5 Afast algorithm for recognition of digraphs of Kelly-widt h 2

Theorem 3.2 gives an algorithm for recognition of digraphbaunded Kelly-width: a graph has
Kelly-width at mostk+1 if and only if it can be reduced to a graph on a single vertex@peatedly
reducing by a vertex of out-degree at més{Theorem 3.2). A polynomial-time algorithm does
not evolve directly from this result, since it is not cleariahof the possible vertices to choose.
However, in this section we show that it does give a polyndiimae algorithm for Kelly-width 2.

In fact, we will show that every choice of a vertex is then adjoboice.

For graphs of Kelly-width 2, vertices of out-degree 0 and & ba chosen. We treat the two
cases separately. The main difference between both catted ieducing a graph by a vertex of
out-degree 0 does not change the remaining graph, wheréasimg by a vertex of out-degree 1
may add new arcs between vertices in the remaining graphrsitive consider the out-degree O
case. We can even show a general result: the Kelly-width @rajph is not influenced by vertices
of out-degree 0.

Theorem 5.1 Let & > 0, and letG = (V, A) be a digraph on at least two vertices. Letbe a

vertex ofG of out-degree 0. Ther(y is a partial £-GDAG if and only if the graph obtained from
reducingG by a is a partial £-GDAG.
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Proof Let G’ be the graph obtained from reducing by a. Sincea does not have any out-
neighbours, the reduction operation does not add any nesvtarG’. So, G’ is a subgraph of
G, which means that’ is a partial k-GDAG due to Theorem 3.7. For the converse, (8tbe
a partial graph ofc-GDAG H'. Let H emerge fromH’ by addinga according to construction
step (2) choosing no parent vertices. By definitidd, is a k-GDAG and  is an in-universal
vertex in H. Hence,G is a partial graph offf, i.e., a partialk-GDAG. O

The proof of the out-degree 1 case is more complicated. Thet nadural approach to prove
an upper bound for the Kelly-width of a graph is to use the sahly characterization. Consider
the following situation: given a digrapy and ak-GDAG H containingG. Let G’ be the result
of reducingG by a vertexz of out-degree 1. Certainly?’ does not have to be a subgraphiéf
To show thatG’ still has Kelly-width &, anotherk-GDAG has to be found that contair®’ as
subgraph. Such a graph is obtained by performing an oparatiod that definitely produces a
supergraph of7’ and does not increase the Kelly-width. We cannot just perfareduction on
H, sincez may have more than one out-neighbourdh We choose a more selective form of
reduction. LetG = (V, A) be a digraph, and lefa, b) be an arc ofG. The graph obtained from
in-contracting arc(a, b) in GG, denoted a%+<;(a, b), is defined as

(G—a) U{(z,b) : z # bandz € N¥(a)}.

Informally spoken, arda, b) is in-contracted by deleting vertexand making every in-neighbour
of a an in-neighbour ofb. If a has out-degree 1, in-contracting afe,b) is exactly what we
mean by reducing by vertex.

Lemma5.2 Letk > 0, and letG = (V, A) be ak-GDAG. Leto be a construction sequence
for G, and let (b,a) be an arc of G wherea <, b. Then,G<;(b,a) is a partial graph of a
k-GDAG H with construction sequence—b.

Proof Leto = (z1,...,z,), and leto’ =4ef 0—b. Let X; =qor N2 (x;) N {z1,...,2i-1}. We
define the following sets:

! X; , b X;
Tl (X \ ) u{a} ifbeX;.

Let H be the k-GDAG with construction sequence and parent vertices set§/. Note that
this can be done, since we assumee, b. We show thatG’ =4 G<;(b,a) is a partial graph
of H. By definition of H, A(H) N {(v,u) : u <o v} = A(G") N {(v,u) : u <, v}. Note
that there may be arc:, b) for a <, u <, b in G, which become arcéu,a) in G’, i.e., that
change direction with respect to. Let (u,b) be such an arc off. Since (b, a) is an arc ofG

there is as-monotone-left pathP starting atb in G that does not contaim and z <, u for z

the last vertex ofP. Due to condition (2) of Theorem 3.3 and sin@ea) spans ovem, a is an
out-neighbour ofu. Hence,(u, a) is an arc ofH by definition.

Now, letu <, v and let(u,v) be an arc of¢’. Let P be ac’-monotone-left path starting at
v in H that does not contain and z <, u for z the last vertex ofP. If P is ac-monotone-left
path starting ab in G, let Q =4 P. Assume thatP is not ac-monotone-left path starting at
in G. This can only be the case, / in H contains an arc that is not an arc. By definition
of H, P then containsz and the arc(z,a) for some vertexz € N2 (b). Then, “adding”b
betweenz and a gives ac-monotone-left path) starting atv in G. Note that we denote both
possible paths by). We distinguish two cases. Lét,v) be an arc ofG. Due to condition (2)
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of Theorem 3.3u has an out-neighbour <, « on @ and the arc with end vertex spans over
u. If w = b, thena is an out-neighbour of: in H, a is a vertex onQ (by the second case
of the definition of@Q), ¢ <,» u and the arc of) with end vertexa spans over. If w # b,
then w is a vertex on@, and the path has the property of condition (2). Iletv) be not an
arc of G, i.e., (u,v) = (u,a) and (u, b) is an arc ofG. But such arcs do not exist, since every
in-neighbourw <, a of b is an in-neighbour also af according to construction step (2). Hence,
G’ is a partial graph offf , thus a partialk -GDAG. O

The second lemma that we need for our result above reducing@ dy a vertex of out-
degree 1 is stated only for 1-GDAGs.

Lemmab.3 Let G = (V, A) be a 1-GDAG with construction sequengeLet (a,b) be an arc of
G wherea <, b. Then,G<;(a,b) is a partial 1-GDAG.

Proof Leto = (z1,...,x,), and letX; be the parent vertices sets. L&t =4t G<;(a,b). Let
P be the maximab -monotone-left path starting atin G. We distinguish three cases. Letbe
avertex onP. Let ¢ be the predecessor af, = a on P. We define the following sets:

Xi 5 IfCLgXZ
{c} ,ifae X;andz; <, c
{b} ,ifa€ X;andc <, x;
X, Lifx;=c,

/
Xi —def

i € {1,...,n}. Let F be the digraph on vertex sét’ =gt {1,...,Z5-1,Ts41,.--,Tn}
and with the arcqz;,y) for x; € V' andy € X]. Let Ty,..., T be the (weakly) connected

components off’, and letry,...,r, be the uniquely defined vertices ifi, ..., T, with out-
degree 0, respectively. Without loss of generality, we ssumer; <, --- <, 7. FOr every
connected component df, we define a vertex ordering. Let,, i € {1,...,k}, be a vertex

ordering onV (T;) satisfying the following two conditions:
1) if z € X thenz <,/ z;
(2) if Xj, = X]/-/ thenxj -<U§ Tjr & Tj <g Tl

Note that these orderings exist. We obtain vertex ordetihdpy concatenationio’ =g4er o} o
-0 0. Let H' be the 1-GDAG obtained frora’ and the parent vertices sels;, ..., X);
condition (1) and the partition into the connected comptsmen ' ensure thatd’ can be con-
structed correctly. We show that’ is a partial graph ofif’. By construction, for every pait, v
of vertices of G’, u <,/ v, if (v,u) is an arc ofG’ then (v, u) is an arc of H': we added new
such arcs only for vertices that are child verticesaoin G (and ¢’ satisfies condition (1) and
the concatenation of, ..., o, respects the ordering ofi, ..., r; with respect tos). Now, let
(u,v) be an arc ofG’ whereu <, v. Let P’ be ac’-monotone-left path starting atin H', and
let P’ strictly passu. Note that this means that and v are in the same connected component
of F' by definition of o’. Let P’ do not containc. Then, P’ is a o -monotone-left path starting
atv in G. Let w <, u be the out-neighbour of. on P’ in G, that exists due to Theorem 3.3.
Let w’ be the predecessor af on P’; due to Theorem 3.3p <, u <, w’. Hence, according
to condition (2) of the definition o&’, w <, v <, w’, and the arqw, w’) spans ovem, i.e.,
(u,v) is an arc ofH'. Let P’ containc. Then, the maximab -monotone-left pathy starting at
v in G containsa. Let = be the predecessor ofin @ in G. We distinguish the following three
cases:
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e r <, c: thenz is the predecessor af on P’ in H', and @ is obtained fromP’ by
replacinge by a. Furthermore(Y does not contaim, So contains an out-neighbour <, «
of w. Then, P’ containsw, and the arc ofP’ with end vertexw spans over, i.e., (u,v)
is an arc ofH’.

e ¢ <, x: thenz is a child vertex ofb in H', and @ is obtained fromP’ by replacing the
subpath of P’ from b to ¢ by a. If u is a child vertex ofa in G, thenw is a child vertex of
b or cin H', and according to condition (2) of the definition &f, we conclude thatu, v)
is an arc ofH'.

e ¢ = z:then,Q is obtained fromP’ by addinga as the successor afon Q. We conclude
that (u,v) is an arc ofH’.

In particular, N®(a) € N%,(b). Hence,G’ is a partial graph ofH’, and therefore a partial
1-GDAG.

Let P passa. Let w be the out-neighbour aof on P in G such thatw <, a and the arc ofP
with end vertexw spans over. ConsiderG” =q4of G<;(a,w). According to Lemma 5.2, there
is a 1-GDAG H with construction sequence—a that containgG” as partial graph. In particular,
N&(a) € NB(w) C N2(b), where the second inclusion is an immediate consequendeeof t
characterization of Theorem 3.3. Hend®, is a partial graph of 1-GDAGH,, i.e., a partial 1-
GDAG.

Let P do not containz and do not pasa. Reconsider the definition of graph above. Using
the parent vertices set&, ..., X,,, we construct an analogous graph and define an analogous
1-GDAG H’. It holds thata andb are not contained in the same connected componeht, aind
by definition of 1-GDAGS, the vertices in the same connectmuponent of ' with b are out-
neighbours of every vertex in the same connected compoifiehtasa. Hence,G’ is a subgraph
of H',i.e., a partial 1-GDAG due to Theorem 3.7. O

Theorem 5.4 Let G = (V,A) be a partial 1-GDAG, and lefa,b) be an arc ofG. Then,
G<;(a,b) is a partial 1-GDAG.

Proof Let G be a partial graph of 1-GDAG{ , and lets be a construction sequence far. Let
G’ =g4et G<i(a,b) and H =g4e¢ H<;(a,b). Obviously, G’ is a partial graph of’. If b <, a,
then H' is a partial graph of a 1-GDAG due to Lemma 5.2ali,, b, then H' is a partial graph
of a 1-GDAG due to Lemma 5.3. Heno@] is a partial 1-GDAG. O

Corollary 5.5 LetG = (V, A) be a digraph, and let: be a vertex of out-degree 1 6f. Then,G
is a partial 1-GDAG if and only if the graph obtained from reilhig G by a is a partial 1-GDAG.

Proof Let G’ be the digraph obtained from reducidg by a. Let b be the out-neighbour aof in

G. Then,G' = G<;(a,b), and G’ is a partial 1-GDAG due to Theorem 5.4. For the converse, let
G’ be a partial graph of 1-GDAG{’. We add vertex: to H' according to construction step (2)
choosingb as the parent vertex af and obtain 1-GDAGH . Since N2 (a) C N (b) C Ni¥,(b),
N@H(a) € Nij(a), which means thati is a partial graph off7, i.e., a partial 1-GDAG. O

The result of Theorem 5.4 is stronger than the corresponoiimgication of Corollary 5.5:
reducing a graph by a vertex of out-degree 1 can be simulategthkappropriate in-contraction
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operation. Equivalence only holds, if the start vertex @& if-contracted arc has out-degree 1. It
is a natural question to ask whether Corollary 5.5 holds fotigl £-GDAGs for k£ > 2, which
means to ask whether a generalised version of Lemma 5.3 cprobed. The comparison with
reduction results for undirected graphs of bounded tretwsthows that there is little hope to
generalise Corollary 5.5 to reducing vertices of out-degrere than 2.

Using the two main results about reducing a graph, we obtaimagacterization of graphs of
Kelly-width 2 that is stronger than Theorem 3.2.

Theorem 5.6 Let G = (V, A) be a digraph. Then¢ is a partial 1-GDAG if and only ifG' can
be reduced to a graph on one vertex by repeatedly reducinghtayrlaitrary vertex of out-degree
at most 1.

Proof We show the statement by induction over the set of verticdsany, a digraph on one
single vertex is a partial 1-GDAG (construction step (1)et I haven > 2 vertices, and let
the statement be true for all digraphs an— 1 vertices. Letu be a vertex ofG of out-degree

at most 1, and letz’ be the digraph obtained from reducirig by «. Due to Theorem 5.1 and
Corollary 5.5,G’ is a partial 1-GDAG if and only ifG is a partial 1-GDAG, and due to induction
hypothesis,GG’ is a partial 1-GDAG if and only ifG’ can be reduced to a digraph on one vertex
by always choosing an arbitrary vertex of out-degree at rhostinceu was chosen arbitrarily,
we conclude the statement. O

The result of Theorem 5.6 implies a fast algorithm for redbgn of graphs of Kelly-width at
most 2. The reduction sequence can even be used to constaitcieas for being a Kelly-width-
2 graph: al-GDAG containing the input graplir. In the negative case, our algorithm outputs
a graph H’ and a vertex sequenc€ = (z,,...,x,) of the following kind: letG,, =4 G,
and let G; be obtained fromG,; by reducing byz;yi, i € {r,...,n — 1}. Then, z;;1,
i € {r,...,n — 1}, has out-degree at most 1 @, and G, does not contain any vertex of
out-degree at most 1. Due to Theorem SBcan therefore not be a partial 1-GDAG. The output
witness H' is defined as follows: le#l] =g G, and obtainH; , from H; by addingz;
according to construction step (2) of Definition 2.1 chogsas parent vertex the out-neighbour
of x; 41 in G;y1, if there is one. ThenH’ =4¢ H] . Using ¢’ it is easy to verify by the user of
the algorithm thatH’ arises fromG and thus the algorithm worked correctly. Moreovéf, is
independent of’ in the sense that on inpdf’ any reduction sequence on vertices of out-degree
at most 1 will result inG,, .

Theorem 5.7 There is an algorithm that, given a digragh, decides whethet: has Kelly-width
at most 2, and if so, outputs a 1-GDAK that containsG as partial graph. IfG has Kelly-width
at least 3, the algorithm outputs a witness for this casectwig a graph containing= as partial
graph and a vertex sequence. The running time and the wosgage of the algorithm are linear
in the size of the output graph.

Proof The algorithm is simple: choose an arbitrary vertex of oegrge at most 1 and reduce
the graph by this vertex. This elimination process can baezhout until the graph contains only
one vertex if and only ifG has Kelly-width at most 2 (Theorem 5.6). Furthermore, theofs
of Theorem 5.1 and Corollary 5.5 show that the reverse omlevhich vertices are eliminated
is a construction sequence of a 1-GDA& that containsG as partial graph, and? can be
constructed in time linear in its size. & is not a graph of Kelly-width at most 2, there will be
an elimination step in which no vertex of out-degree at mosar be chosen. So, Iéf’ be the
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obtained reduced graph, and let;, . .., z,) be the already generated construction sequence. We
add the vertices;;, . .., x,, to H' in the sense of construction step (2) foiGDAGs choosing one

or no parent vertex. We obtain a graph that contaihas subgraph, and we output this graph and
the sequencéz;, ..., z,).

For the running time of the reduction algorithm, it is firstriote that, after every reduction
step, the resulting graph is a subgraphtbf Reducing by a vertex takes time linear in the number
of is neighbours, since the in-neighbours of the reducetkxdrecome in-neighbours of the single
out-neighbour, if there is one. Letbe eliminated and lei be its only out-neighbour. The crucial
point is to find the in-neighbours aof that are in-neighbours also @f. These are exactly the
vertices whose out-degree is decreased by 1. We assumabetadjacency lists of the vertices are
ordered with respect to some ordering. The intersectiorheftivo in-neighbourshoods is com-
puted by just scanning the two lists. The reason that thisésit time even if the in-neighbourhood
list of b is larger than that of; is that the in-degree af in H is not smaller than the in-degree of
b. This gives linear running time and working space in the siz@put and output graph. O

For deciding whether a graph has Kelly-width exactly 2, ffisas to run the algorithm only
for non-acyclic graphs. Acyclic graphs are exactly the gsapf Kelly-width 1.

6 Final remarks

Since Kelly-width of a directed graph is a new concept, a fgroblems can still be solved. The
most important question, however, affects the status ofyKeidth: does it really capture the
notion of treewidth for undirected graphs in the directettisg? We gave good reasons to answer
positively: we presented two new characterizations ofajpgs of bounded Kelly-width, and we
gave an easy algorithm for recognition of digraphs of Keligith 2. This recognition algorithm
can be considered a directed version of the undirected equart: a reduction algorithm for
graphs of treewidth at most 1. Recognition algorithms fapis of bounded Kelly-width are
of great interest, since one can expect that they also cargpitelly-decomposition, which is
important for the design of algorithms solving optimizatiproblems on digraphs of bounded
Kelly-width.
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