
REPORTS
IN

INFORMATICS

ISSN 0333-3590

Characterization and recognition of digraphs of
bounded Kelly-width

D. Meister, J.A. Telle, M. Vatshelle

REPORT NO 351 March 2007

Department of Informatics

UNIVERSITY OF BERGEN
Bergen, Norway



This report has URL
http://www.ii.uib.no/publikasjoner/texrap/pdf/2007-351.pdf

Reports in Informatics from Department of Informatics, University of Bergen, Norway, is available at
http://www.ii.uib.no/publikasjoner/texrap/.

Requests for paper copies of this report can be sent to:

Department of Informatics, University of Bergen, Høyteknologisenteret,
P.O. Box 7800, N-5020 Bergen, Norway



Characterization and recognition of digraphs of
bounded Kelly-width

Daniel Meister and Jan Arne Telle and Martin Vatshelle

14th March 2007

Institutt for Informatikk, Universitetet i Bergen, 5020 Bergen, Norway

Abstract

Kelly-width is a parameter of directed graphs recently proposed by Hunter and Kreutzer
as a directed analogue of treewidth. We give several alternative characterizations of directed
graphs of bounded Kelly-width in support of this analogy. Weapply these results to give
the first polynomial-time algorithm recognizing directed graphs of Kelly-width 2. For an
input directed graphG = (V, A) the algorithm will output a vertex ordering and a directed
graphH = (V, B) with A ⊆ B witnessing either thatG has Kelly-width at most 2 or that
G has Kelly-width at least 3, in time linear inH .

1 Introduction

The tractability of large classes of NP-complete problems when parameterized by the treewidth
of the input graph counts among the strongest results in algorithmic graph theory. The algorithms
behind this tractability have two stages: first an algorithmcomputing treewidth, then an algo-
rithm solving the specific problem using the tree-structurediscovered in the first stage. See for
example [2] for a recent overview of these algorithms. For directed graphs (digraphs) there have
been several proposals for a parameter analogous to treewidth: ‘directed treewidth’ of Johnson,
Robertson, Seymour, Thomas [5], ‘D-width’ of Safari [7], ‘DAG-width’ of Berwanger, Dawar,
Hunter, Kreutzer [1] and independently Obdržálek [6], and ‘Kelly-width’ of Hunter and Kreutzer
[4]. Which of these proposed parameters is the better analogue of treewidth? In this paper we give
evidence in support of the Kelly-width parameter.

The success of a model depends on a balance between the modeling power, which measures
how general its domain of application is, and the analyticalpower, which measures how good it is
as an analytical tool. The two are typically in conflict. Thisis also the case for the above proposals
for tree-like parameters of digraphs. The better the modeling power, e.g. the larger the class of
digraphs that have bounded parameter value, the worse the analytical power, e.g. the smaller the
chance of successfully emulating both stages of the algorithmic results for treewidth. We do not
go into details of the modeling and analytical powers of eachof the proposed digraph parameters,
but simply note that from a purely algorithmic point of view there is no clear winner. How then
to choose the digraph parameter which is the most natural directed analogue of treewidth? Note
that while some concepts of undirected graphs have unambiguous natural translations to directed
graphs, e.g. from paths to directed paths, there are other concepts, e.g. cliques and separators,
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for which the translation is less clear. The treewidth parameter is known to have many equivalent
characterizations. If we start with a characterization of treewidth that uses only concepts that have
unambiguous translations to directed graphs then we shouldarrive at a directed graph parameter
which is a natural analogue of treewidth. This is the approach we take in this paper. In Section 3 we
give a new characterization of digraphs of Kelly-width at most k arising from a characterization
of treewidth that uses the fairly unambiguous concepts of vertex orderings, paths and neighbours.

We also enhance the algorithmic argument in favour of Kelly-width. Digraphs of Kelly-width 1
are the directed acyclic graphs and recognizable by a simplealgorithm. For all larger values of
k the only algorithms that were known for recognizing digraphs of Kelly-width k had running
time exponential in the size of the input digraph [4]. Using the given characterizations we are
able to present a fast algorithm recognizing digraphs of Kelly-width 2 in Section 4. For an input
digraphG = (V,A) this algorithm will output a vertex ordering and a digraphH = (V,B) with
A ⊆ B witnessing either thatG has Kelly-width at most 2 or thatG has Kelly-width at least 3,
in time linear inH . In the positive case the witness can be used to easily find a decomposition of
the digraph into a tree-like structure.

2 Graph preliminaries and digraphs of bounded Kelly-width

A simple finite directed graphG is a pair of sets,(V,A) , whereV is finite andA is an irreflexive
relation overV . The setV is called thevertex setof G, andA is called thearc setof G. Since
we mostly consider simple finite directed graphs, we shortlycall them “digraphs”. When we deal
with undirected graphs, we will explicitly mention it. For an arbitrary digraphH , V (H) and
A(H) denote the vertex and arc set ofH , respectively. An arc of graphG is denoted as(u, v)
and u is thestart vertexand v is theend vertexof (u, v) . Let H be a digraph. We say thatG
is asubgraphof H , if V ⊆ V (H) and A ⊆ A(H) . If V = V (H) and G is a subgraph ofH
thenG is aspanning subgraphor partial graphof H . Further definitions are given when they are
needed.

Hunter and Kreutzer introduced the notion of Kelly-width [4]. Kelly-width is a parameter for
digraphs, and it is the least width of a so-calledKelly-decomposition. We will not define Kelly-
decompositions here, since we will not use this notion. The authors gave several alternative char-
acterizations of digraphs of bounded Kelly-width by: elimination process, inductive construction,
graph game. We will study graphs of bounded Kelly-width starting from the inductive construc-
tion. Let G = (V,A) be a digraph. Letu and v be vertices ofG. We call v an in-neighbour
of u , if (v, u) is an arc ofG. The (open) in-neighbourhoodof u , denoted asN in

G (u) , is the
set of in-neighbours ofu . Theclosed in-neighbourhoodof u , denoted asN in

G [u] , is defined as
N in

G (u) ∪ {u}. Similarly, v is anout-neighbourof u , if (u, v) is an arc ofG. Openandclosed
out-neighbourhoodof a vertex are defined respectively. Theout-degreeof a vertex is the number
of its out-neighbours. LetX be a set of vertices ofG. We define thecommon in-neighbourhood
of X , denoted as

⋂

N in
G [X] , recursively:

X = ∅ :
⋂

N in
G [X] =def V

X 6= ∅ anda ∈ X :
⋂

N in
G [X] =def N in

G [a] ∩
⋂

N in
G [X \ {a}] .

The inductive construction characterization of digraphs of bounded Kelly-width by Hunter and
Kreutzer started from a basic class of graphs, and the partial graph relation defines the complete
class. The basic graphs are calledk -DAGs. Since certain of our statements become easier, we
generalise the definition and definek -GDAGs.
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Definition 2.1 Let k ≥ 0. The class ofgeneralisedk -DAGs, k -GDAGs, for short, is the class of
digraphs inductively defined by the two following construction steps:

(1) a graph on one vertex is ak -GDAG

(2) let G be a k -GDAG and letu be a vertex that does not appear inG. Let X be a set of
at mostk vertices ofG, called theparent vertices ofu . Then,G′ is a k -GDAG whereG′

emerges fromG by adding vertexu and the following arc set:
{

(u, x) : x ∈ X
}

∪
{

(y, u) : y ∈
⋂

N in
G [X]

}

.

With a k -GDAG, we associate a sequence〈x1, . . . , xn〉 of vertices, wherex1 is the vertex of
the start graph in construction step (1) of Definition 2.1, and xi , i ∈ {2, . . . , n}, is added to the
graph on the verticesx1, . . . , xi−1 , that has already been constructed, according to construction
step (2). Letk ≥ 0, and letG = (V,A) be ak -GDAG. A vertex sequenceσ = 〈x1, . . . , xn〉 for
G is aconstruction sequencefor G, if G can be obtained according to construction steps (1) and
(2) adding vertices according toσ and choosingNout

G (xi)∩{x1, . . . , xi−1} as the parent vertices
set of xi , i ∈ {1, . . . , n}. Parent vertices are always defined with respect to a vertex sequence.
Thechild verticesof a vertexx are those vertices that choosex as a parent vertex.

Definition 2.2 Let k ≥ 0, and letG be a digraph.G is a partial k -GDAG if and only if G is a
partial graph of somek -GDAG.

Note that partialk -GDAGs cannot be associated with a construction sequence ingeneral.

Hunter-Kreutzerk -DAGs are defined analogous tok -GDAGs with the following difference:
instead of starting with a graph on a single vertex in construction step (1),k -DAGs start with
a complete graph onk vertices. This means that everyk -DAG contains a complete subgraph
on k vertices, which is not true fork -GDAGs in general.Partial k -DAGsare partial graphs of
k -DAGs. The following lemma relatesk -DAGs andk -GDAGs to each other.

Lemma 2.3 Let k ≥ 0, and letG = (V,A) be a digraph.

(1) If G is a k -GDAG, thenG is a partial k -DAG.

(2) If G is a k -DAG, thenG is a k -GDAG.

Proof Let G be ak -GDAG with construction sequenceσ = 〈x1, . . . , xn〉 . ObtainH from G by
makingG[{x1, . . . , xk}] into a complete directed graph. Note that, with respect toσ , every vertex
of H has at mostk parent vertices. Hence, ak -DAG H ′ can be constructed using sequenceσ

and choosing parent vertices according toH , andG is a partial graph ofH ′ . If G is a k -DAG
with construction sequenceσ , G is a k -GDAG with construction sequenceσ . 2

Corollary 2.4 Let k ≥ 0, and letG be a digraph.G is a partial k -GDAG if and only ifG is a
partial k -DAG.
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The Kelly-width of a digraph is a width parameter based on thewidth of Kelly-decompositions.
Kelly-width and Kelly-decomposition were introduced by Hunter and Kreutzer as a decomposi-
tion counterpart of tree-decompositions for undirected graphs [4]. The authors showed a strong
correspondence between partialk -DAGs and graphs of bounded Kelly-width.

Theorem 2.5 ([4]) Let k ≥ 0, and letG be a digraph.G has Kelly-width at mostk + 1 if and
only if G is a partial k -DAG.

We can conclude that Kelly-width also characterises partial k -GDAGs.

Corollary 2.6 Let k ≥ 0, and letG be a digraph.G has Kelly-width at mostk + 1 if and only
if G is a partial k -GDAG.

In the following, we will mostly deal withk -GDAGs and partialk -GDAGs. We will also
speak of “graphs of bounded Kelly-width”.k -DAGs are mentioned to discuss differences between
graph classes and with respect to obtained results.

3 Characterizations of graphs of bounded Kelly-width

So far, graphs of bounded Kelly-width have four different characterizations: via elimination pro-
cess, inductive construction, cops-robber game, decomposition. These many characterizations
were the start point for us to consider the concepts of Kelly-width and Kelly-decompositions as a
good digraph counterpart of the concepts of treewidth and tree-decompostion of undirected graphs.
Treewidth seems a very natural concept, since undirected graphs of bounded treewidth can be char-
acterised by a long list of different statements. In this section, we will add two further results to the
list of characterizations for graphs of bounded Kelly-width. We will see that graphs of bounded
Kelly-width have a vertex-ordering characterization, andwe show that partialk -GDAGs are the
same as subgraphs ofk -GDAGs. We begin by recalling the elimination process characterization
by Hunter and Kreutzer. This characterization will be used later.

3.1 Elimination process characterization

Undirected graphs of bounded treewidth have a nice characterization using an elimination scheme.
Let G = (V,E) be an undirected graph on at least two vertices, and letx be a vertex ofG. The
operationreducing G by x yields graphG′ that is obtained fromG by deleting vertexx and
adding the edge set{{u, v} : u 6= v andu, v ∈ NG(x)}. In words,G′ is obtained fromG by
deletingx and making its neighbourhood (inG) into a clique.

Theorem 3.1 (folklore) Let k ≥ 0, and letG = (V,E) be an undirected graph. Then,G has
treewidth at mostk if and only if G can be reduced to a graph on one vertex by repeatedly
reducing by a vertex of degree at mostk .

The characterization of undirected graphs of bounded treewidth in Theorem 3.1 can be trans-
lated into the world of digraphs. However, the reduction operation must be adjusted. LetG =
(V,A) be a digraph on at least two vertices, and letx be a vertex ofG. The operationreduc-
ing G by x yields graphG′ that is obtained fromG by deleting vertexx and adding the arc
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set {(u, v) : u 6= v andu ∈ N in
G (x) andv ∈ Nout

G (x)}. This definition of the reduction oper-
ation is a natural way to translate the completion from the undirected case to the directed case,
although it is not the only possibility. Hunter and Kreutzerdid this to obtain the following result
for digraphs of bounded Kelly-width.

Theorem 3.2 ([4]) Let k ≥ 0, and let G = (V,A) be a digraph. Then,G has Kelly-width at
mostk + 1 if and only if G can be reduced to a graph on one vertex by repeatedly reducingby a
vertex of out-degree at mostk .

The result of Theorem 3.2 implies an easy algorithm for recognizing graphs of bounded Kelly-
width. Unfortunately, this algorithm is not a polynomial-time algorithm. A given graph, partial
k -GDAG or not, can have more than one vertex of out-degree at most k . There is no a priori
argument or criterion deciding which one to choose.

3.2 Vertex-ordering characterization

In this subsection, we show that graphs of bounded Kelly-width are the graphs whose vertices can
be arranged in a linear order to satisfy special conditions.We start with a characterization ofk -
GDAGs. This characterization is used in most of our proofs about graphs of bounded Kelly-width.

Let G = (V,A) be a digraph. Apath P in G is a sequence(x0, . . . , xl) of mutually different
vertices ofG where (xi, xi+1) is an arc ofG for every i ∈ {0, . . . , l − 1}. Let σ be a vertex
ordering for G. Path P is called σ -monotone-left, if xl ≺σ · · · ≺σ x0 holds. P starts at
vertexx0 ; so, if P is σ -monotone-left, it is aσ -monotone-left path starting atx0 . For a vertexu
and an arc(x, y) of G, we say that(x, y) spans overu with respect toσ , if x ≺σ u ≺σ y or
y ≺σ u ≺σ x . If the orderingσ is uniquely determined, we shortly say that(x, y) spans over
u . Let u be a vertex ofG. We say that aσ -monotone-left path inG has thespanning-vertexu
property, if the pair (P, u) satisfies the following condition: ifP contains an arc that spans over
u , thenP contains a vertexw ≺σ u such thatw ∈ Nout

G (u) and the arc ofP that spans overu
has end vertexw .

Theorem 3.3 Let k ≥ 0, and letG = (V,A) be a digraph.G is a k -GDAG if and only if there
is a vertex orderingσ = 〈x1, . . . , xn〉 for G such that the pair(G,σ) satisfies the following two
conditions:

(1) for everyi ∈ {1, . . . , n}, |Nout
G (xi) ∩ {x1, . . . , xi−1}| ≤ k

(2) for every pairu, v of vertices ofG whereu ≺σ v , (u, v) is an arc ofG if and only if every
σ -monotone-left path starting atv has the spanning-vertexu property.

If G is a k -GDAG, the vertex orderingsσ such that the pair(G,σ) satisfies conditions (1) and
(2) are exactly the construction sequences forG.

Proof We prove two implications. LetG be ak -GDAG, and letσ = 〈x1, . . . , xn〉 be a con-
struction sequence forG. We show that the pair(G,σ) satisfies the two conditions. By definition
of k -GDAGs, every vertexxi chooses at mostk parent vertices amongx1, . . . , xi−1 , so that
condition (1) is obviously satisfied. We show satisfaction of condition (2) by induction. Forx1 as
vertexv , condition (2) is trivially satisfied. Now, considerxi as vertexv for i ≥ 2. Let X be the
parent vertices set ofxi . Let u ∈ {x1, . . . , xi−1}. According to construction step (2),(u, v) is an
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arc ofG if and only if u is a vertex in the common in-neighbourhood ofX in G[{x1, . . . , xi−1}] .
Let X ′ be the set of verticesx in X for which holdsu ≺σ x . Applying the induction hypothesis,
u is in the in-neighbourhood ofx ∈ X ′ if and only if everyσ -monotone-left pathP ′ starting at
x has the spanning-vertexu property.

(a) Let (u, v) be in G. Let P be aσ -monotone-left path starting atv that does not containu .
Let z be the endvertex ofP , and letz ≺σ u . Note thatP contains at least two vertices. Let
y be the vertex onP following v . Then,y is a vertex inX . If y ∈ X ′ , thenP ′ =def P−v

is a σ -monotone-left path starting aty with last vertexz ≺σ u that does not containu .
Since (u, y) is an arc ofG, we obtain by applying the induction hypothesis thatP ′ has
the spanning-vertexu property, i.e.,P ′ contains a vertexw ≺σ u such thatw ∈ Nout

G [u]
and the arc ofP ′ with end vertexw spans overu . Hence,P has the spanning-vertexu
property. Lety 6∈ X ′ . Then,y is an out-neighbour ofu and arc(v, y) spans overu , which
means thatP has the spanning-vertexu property.

(b) Let (u, v) be not in G. Then, there is a parent vertexy of v such thatu is not an in-
neighbour ofy . If y ∈ X ′ , there is aσ -monotone-left pathP starting aty in G that does
not have the spanning-vertexu property according to induction hypothesis. We can extend
P by addingv as start vertex and obtain aσ -monotone-left path starting atv that does not
have the spanning-vertexu property. If y 6∈ X ′ , then the arc(v, y) spans overu but u is
not an in-neighbour ofy , i.e., there is aσ -monotone-left path starting atv in G that does
not have the spanning-vertexu property.

Hence, the pair(G,σ) satisfies conditions (1) and (2).

We prove the second implication. LetG be a digraph and letσ = 〈x1, . . . , xn〉 be a vertex
ordering for G such that the pair(G,σ) satisfies conditions (1) and (2). We show thatG is
a k -GDAG by showing thatG is equal to somek -GDAG. Let H be constructed usingσ as
construction sequence and choosing the parent vertices according to condition (1), i.e., the parent
vertices set ofxi is Xi =def Nout

G (xi) ∩ {x1, . . . , xi−1}. It is clear thatH is a k -GDAG by the
choice of the parent vertices and condition (1). We first showthat G is a partial graph ofH . By
definition, for every pairu, v of vertices whereu ≺σ v , (v, u) is an arc ofH if and only if (v, u)
is an arc ofG. For the remaining arcs ofG, we prove by induction overi ∈ {1, . . . , n} that
{(u, xi) ∈ A(G) : u ≺σ xi} = {(u, xi) ∈ A(H) : u ≺σ xi} holds. The claim obviously holds
for i = 1. Let i ≥ 2. We show two inclusions. First, let(u, xi) be an arc ofG, whereu ≺σ xi .
We show thatu is in the common in-neighbourhood ofXi in H . Let y be a vertex inXi \ {u}.
We distinguish two cases.

(a) Let u ≺σ y . Since(u, xi) is an arc ofG, everyσ -monotone-left path starting atxi in G

has the spanning-vertexu property. In particular, everyσ -monotone-left pathP starting
at xi and containingy as successor ofxi on P has the spanning-vertexu property. Thus,
everyσ -monotone-left path starting aty has the spanning-vertexu property, which means
that (u, y) is an arc ofG due to condition (2). By induction hypothesis,(u, y) is an arc of
H .

(b) Let y ≺σ u , i.e.,y ≺σ u ≺σ xi . Then, there is aσ -monotone-left pathP starting atxi and
containingy as the successor ofxi on P , and by assumption,P has the spanning-vertexu
property. Note that(xi, y) spans overu , so thaty must be an out-neighbour ofu due to
the spanning-vertexu property ofP . By definition ofH , (u, y) is an arc ofH .

6



So, u ∈
⋂

N in
H [Xi] , and(u, xi) is an arc ofH according to construction step (2) fork -GDAGs.

For the second inclusion, letu ∈ {x1, . . . , xi−1} be such that(xi, u) is not an arc ofG. Hence,
there is aσ -monotone-left pathP starting atxi which does not have the spanning-vertexu

property. Note thatP must contain at least two vertices. Lety be the successor ofxi on P .
If arc (xi, y) spans overu , u is not an in-neighbour ofy . If u ≺σ y , there is aσ -monotone-
left path starting aty in G that does not have the spanning-vertexu property. According to
condition (2),(u, y) is not an arc ofG. For the two cases, it follows by induction hypothesis, that
u 6∈

⋂

N in
H [Xi] , and (u, xi) is not an arc ofH . We conclude thatG and H have the same arc

sets, i.e., they are equal. Thus,G is a k -GDAG andσ is a construction sequence forG. 2

Also for k -DAGs, a characterization theorem in the flavour of Theorem 3.3 can be formulated.
However, it will have a more complex version of condition (1).

We want to extend the characterization result of Theorem 3.3for k -GDAGs to digraphs of
bounded Kelly-width. Since partialk -GDAGs are just the partial graphs ofk -GDAGs, there must
be some relaxation in the conditions of Theorem 3.3. This relaxation affects condition (2). The
following lemma defines a subclass of partialk -GDAGs for which a characterization in the flavour
of Theorem 3.3 exists.

Lemma 3.4 Let k ≥ 0, and let G = (V,A) be a digraph. The following two statements are
equivalent:

(A) there is a vertex orderingσ = 〈x1, . . . , xn〉 for G such that the pair(G,σ) satisfies the
following two conditions:

(1) for everyi ∈ {1, . . . , n}, |Nout
G (xi) ∩ {x1, . . . , xi−1}| ≤ k

(2) for every pairu, v of vertices ofG whereu ≺σ v , if (u, v) is an arc ofG then every
σ -monotone-left path starting atv has the spanning-vertexu property

(B) there is ak -GDAGH with construction sequenceσ such that the triple(G,H, σ) satisfies
the following two conditions:

(3) G is a partial graph ofH

(4) A(G) ∩ {(u, v) : v ≺σ u} = A(H) ∩ {(u, v) : v ≺σ u}

Proof We prove two implications. LetH be a k -GDAG with construction sequenceσ such
that the triple(G,H, σ) satisfies conditions (3) and (4). Note that the pair(H,σ) satisfies con-
ditions (1) and (2) of Theorem 3.3. Then, satisfaction of condition (1) of Theorem 3.3 and of
condition (4) implies satisfaction of condition (1). We prove satisfaction of condition (2) by in-
duction overi ∈ {1, . . . , n}, showing that every arc(u, xi) for u ≺σ xi has the property of
condition (2). The claim obviously holds fori = 1. So, let i ≥ 2. Let (u, xi) be an arc of
G, whereu ≺σ xi , and letP be aσ -monotone-left path starting atxi in G. Let z be the last
vertex of P , let z ≺σ u , and letu be not a vertex onP . Then, P has the spanning-vertexu
property inH , which means thatP contains a vertexw ≺σ u such thatw ∈ Nout

H (u) and the arc
of P with end vertexw spans overu . By the choice ofH , w is an out-neighbour ofu also in
G. Hence, pathP has the spanning-vertexu property also inG. Thus, the pair(G,σ) satisfies
condition (2).

For the second implication, letσ be a vertex ordering forG such that the pair(G,σ) satisfies
conditions (1) and (2). LetH be the graph obtained fromG by adding as many arcs from the
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Figure 1: A partial 1-GDAG without the property required by condition (4) of Lemma 3.4.

set{(u, v) : u ≺σ v} as possible such that(H,σ) still satisfies conditions (1) and (2). Then, the
pair (H,σ) satisfies the two conditions of Theorem 3.3, which means thatH is a k -GDAG with
construction sequenceσ . Furthermore,G is a partial graph ofH and condition (4) is satisfied by
construction ofH . 2

The crucial point of the characterization in Lemma 3.4 is condition (4). Informally, the ques-
tion is whether every partialk -GDAG G can be embedded into ak -GDAG HG whereHG can
be constructed according to the two construction steps suchthat every vertex chooses only parent
vertices that are out-neighbours inG.

For partial 0-GDAGs, the question can immediately be answered positively, since 0-GDAGs
do not choose any parent vertex. Interestingly, already forpartial 1-GDAGs, the answer is neg-
ative. We prove this by giving an example. Consider the graphdepicted in Figure 1; let us call
it G. Observe thatG is a partial 1-GDAG: using construction sequence〈e, c, a, f, b, d〉 , we can
construct a 1-GDAG that containsG as a partial graph. We show that there is no 1-GDAGH and
no vertex orderingσ for H such thatσ is a construction sequence forH and the triple(G,H, σ)
satisfies conditions (3) and (4) of Lemma 3.4. Note that the last vertex of a construction sequence
for a 1-GDAG has at most one out-neighbour, which is its parent vertex. G has exactly three
vertices with out-degree at most 1, namelya , b and d . Furthermore, verticesc and e have out-
degree 5, which means that at least four vertices come afterc ande in every possible construction
sequence. Hence,c ande are the first two vertices in every construction sequence fora 1-GDAG
containingG. We distingusih two cases. Leta be the last vertex. The parent vertex ofa is e ,
andb andd must be in-neighbours ofe . Hence,b andd have a new parent vertex. Letb or d be
the last vertex. Then,a is the parent vertex, anda must be an out-neighbour off . Then,a or d

can be the predecessor vertex in a construction sequence. Ifit is a , e must be an out-neighbour of
f , which makese the parent off . If it is d , eithera or e is the parent off . Hence, there is no
1-GDAG H and construction sequenceσ for H such that(G,H, σ) satisfies conditions (3) and
(4) of Lemma 3.4.

So, for a characterisation of partialk -GDAGs, we have to relax the conditions a little more.

Theorem 3.5 Let k ≥ 0, and letG = (V,A) be a digraph.G is a partial k -GDAG if and only
if there are a vertex orderingσ = 〈x1, . . . , xn〉 and a setF of arcs such that the triple(G,F, σ)
satisfies the following two conditions, where we setG′ =def G ∪ F :

(1) for everyi ∈ {1, . . . , n}, |Nout
G′ (xi) ∩ {x1, . . . , xi−1}| ≤ k
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Figure 2: A partial 2-GDAG, which is proved by the vertex sequence〈a, b, c, d, e, f〉 , without the
property required by condition (2) of Lemma 3.4.

(2) for every pairu, v of vertices ofG where u ≺σ v , if (u, v) is an arc of G then every
σ -monotone-left path starting atv in G′ has the spanning-vertexu property inG′ .

Proof Let G be a partial graph ofk -GDAG H , and letσ be a construction sequence forH . Let
F =def (A(H)\A(G))∩{(u, v) : v ≺σ u}. Let G′ =def G∪F . It holds that the triple(G′,H, σ)
satisfies conditions (3) and (4) of Lemma 3.4, from which follows that the triple(G,F, σ) satisfies
the conditions of the theorem. For the converse, letσ be a vertex ordering forG and F a set of
arcs such that(G,F, σ) satisfies the two conditions of the theorem, where we setG′ =def G∪F .
Hence, the pair(G′, σ) satisfies conditions (1) and (2) of Lemma 3.4, from which follows thatG′

is a partialk -GDAG. SinceG is a partial graph ofG′ , G is a partialk -GDAG. 2

It is clear that in casek = 0 of Theorem 3.5, the setF can be chosen empty. Interestingly, the
counterexample in Figure 1 cannot be chosen as counterexample for partialk -GDAGs for k ≥ 2:
let the graph in Figure 1 beG. For constructing a 2-GDAG containingG as partial graph, we can
use vertex orderingσ = 〈e, c, a, b, d, f〉 . So, the question arises whether the problems for partial
1-GDAGs of satisfying condition (4) in Lemma 3.4 are also problems for partialk -GDAGs for
k ≥ 2. At least for partial 2-GDAGs, Figure 2 gives an example of a graph with problems similar
to G from Figure 1.

3.3 Subgraph characterization

From the characterization result of Theorem 3.5, we derive yet another characterization of digraphs
of bounded Kelly-width. This characterization is not surprising, rather a necessity. It simply says
that “partial graph” in the definition of partialk -GDAGs can be replaced by the more natural term
“subgraph”. This is an analogue to partialk -trees, which are defined as partial graphs ofk -trees
and can be characterised as subgraphs ofk -trees.

Lemma 3.6 Let k ≥ 0, and let G = (V,A) be a k -GDAG. Leta be a vertex ofG. Then,
G′ =def G−a is a partial k -GDAG.

Proof Let σ be a construction sequence forG. Then, the pair(G,σ) satisfies conditions (1)
and (2) of Theorem 3.3. Letσ′ =def σ−a . We show that the triple(G′, ∅, σ′) satisfies the three
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conditions of Theorem 3.5. It is clear that conditions (1) and (2) of Theorem 3.5 are satisfied. So,
let (u, v) be an arc ofG′ whereu ≺σ′ v . Let P be aσ′ -monotone-left path starting atv in G′ .
Let z be the last vertex ofP , and letz ≺σ′ u . Finally, let u be not a vertex onP . Note that,
by construction,P is a σ -monotone-left path inG. Hence, there is a vertexw on P such that
w ∈ Nout

G (u) and the arc ofP with end vertexw spans overu . Sincew 6= a , we conclude that
P has the property of condition (3) of Theorem 3.5 also inG′ . Hence,G′ is a partialk -GDAG.

2

Theorem 3.7 Let k ≥ 0, and letG = (V,A) be a digraph. Then,G is a partial k -GDAG if and
only if G is a subgraph of ak -GDAG.

Proof If G is a partial graph of ak -GDAG H , thenG is also a subgraph ofH . Now, let G be
a subgraph ofk -GDAG H . If G and H have the same vertex sets,G is a partial subgraph of
H , hence a partialk -GDAG. Otherwise, letu be a vertex ofH that is not contained inG. Then,
G is a subgraph also ofH−u . According to Lemma 3.6,H−u is a partialk -GDAG, i.e., partial
graph of ak -GDAG H ′ . By induction, we conclude thatG is a partial graph of ak -GDAG. 2

4 A connection between digraphs of bounded Kelly-width and undi-
rected graphs of bounded treewidth

We argued in the introduction that the notion of Kelly-widthfor digraphs can be considered an
appropriate analogue of the notion of treewidth for undirected graphs. We based our argumentation
on the many similarities in different characterizations between the two notions. In this section, we
illustrate the connection between the two graph notions in aspecial way: we answer the question
whether undirected graphs of bounded treewidth can be embedded into digraphs of bounded Kelly-
width. The embedding relation must be defined, and we choose the most natural approach. It will
turn out that the basic class,k -GDAGs, does not exactly correspond to the class of{0, . . . , k}-
trees but to a reasonable bigger class.

For the results in this section, we need further definitions.Let G = (V,A) be a digraph. Two
verticesu and v of G are calledstrongly adjacent, if (u, v) and (v, u) are arcs ofG. If u and
v are strongly adjacent, we call{u, v} a bi-directional arcof G. Otherwise, ifu and v are not
strongly adjacent,{u, v} is called auni-directional arc. By bi-dir(G) , we denote the undirected
graph on vertex setV where two vertices are adjacent if and only if they are strongly adjacent in
G. Let G′ = (V,E) be an undirected graph.G′ is chordal, if G′ does not contain an induced
cycle of length greater than 3. A vertex ofG′ is calledsimplicial, if its neighbourhood is a clique
in G′ . Every chordal graph has a simplicial vertex [3]. Using these definitions, we can modify
Theorem 3.1 to obtain a characterization of chordal graphs of bounded treewidth.

Theorem 4.1 (folklore) Let k ≥ 0, and letG = (V,E) be an undirected graph. Then,G is a
chordal graph of treewidth at mostk if and only if G can be reduced to a graph on one vertex by
repeatedly reducing by a simplicial vertex of degree at mostk .

Since chosen vertices in Theorem 4.1 are simplicial, no new edge is added during the elimi-
nation process. Vertex orderings for chordal graphs definedby the elimination process are called
perfect elimination schemes, and the first (leftmost) vertex in the ordering is the first vertex to be
eliminated.
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Theorem 4.2 Let k ≥ 0. An undirected graphG is a chordal graph of treewidth at mostk if and
only if there is ak -GDAG H such thatG = bi-dir(H) .

Proof Let G be a chordal graph with treewidth at mostk , and letσ = 〈x1, . . . , xn〉 be a perfect
elimination scheme forG. Let Gi =def G[{xi, . . . , xn}] for every i ∈ {1, . . . , n}. We show by
induction that we can construct ak -GDAG H with construction sequence〈xn, . . . , x1〉 (reverse
order!) such thatGi = bi-dir(H[{xi, . . . , xn}]) for every i ∈ {1, . . . , n}. Let Xi =def NG(xi)∩
{xi+1, . . . , xn} for every i ∈ {1, . . . , n}. Let Hn be the digraph on vertexxn . Obviously,
Gn = bi-dir(Hn) andHn is ak -GDAG. Let i < n . Let Hi emerge fromHi+1 by addingxi and
choosingXi as the parent vertices set ofxi . Due to Theorem 4.1,Xi contains at mostk vertices,
so thatHi is ak -GDAG. By definition ofσ , Xi is a clique inGi+1 , and by induction hypothesis,
Xi induces a complete graph inHi+1 . In particular, every vertex inXi is in-neighbour inHi+1

of every other vertex inXi , so thatxi is strongly adjacent with every vertex inXi in Hi . Hence,
Xi ∪ {xi} induces a complete subgraph inHi andGi , i.e., Gi = bi-dir(Hi) .

For the converse, letH = (V,A) be ak -GDAG. Let σ = 〈x1, . . . , xn〉 be a construction
sequence forH , and letXi be the parent vertices set ofxi with respect toσ , i ∈ {1, . . . , n}.
We first show that bi-dir(H) = bi-dir(H ′) whereH ′ is a k -GDAG with construction sequenceσ
and the following parent vertices sets:X ′

i =def {u ∈ Xi : u andxi are strongly adjacent inH}.
With these definitions, it is an easy induction over the construction steps forH and H ′ to prove
that {(u, v) ∈ A : u ≺σ v} ⊆ {(u, v) ∈ A(H ′) : u ≺σ v}. Then, two vertices ofH are strongly
adjacent inH if and only if they are strongly adjacent inH ′ , i.e., bi-dir(H) = bi-dir(H ′) .
Furthermore,X ′

i induces a complete subgraph inH ′ , i.e., X ′

i is a clique in bi-dir(H ′) . Then,
〈xn, . . . , x1〉 is a perfect elimination scheme for bi-dir(H ′) = bi-dir(H) , from which follows that
bi-dir(H) is chordal, and since every setX ′

i does not contain more thank vertices, bi-dir(H) has
treewidth at mostk due to Theorem 4.1. 2

Let us mention that fork -DAGs the statement analogous to Theorem 4.2 becomes:an undi-
rected graphG is a chordal graph of treewidthk−1 or k if and only if there is ak -DAG H such
that G = bi-dir(H) .

Corollary 4.3 Let k ≥ 0. An undirected graphG has treewidth at mostk if and only if there is
a partial k -GDAG H such thatG = bi-dir(H) .

Proof Let G be an undirected graph of treewidth at mostk . Then, there is ak -treeG′ containing
G as partial graph.G′ is a chordal graph of treewidth at mostk , so there is ak -GDAG H ′

such thatG′ = bi-dir(H ′) due to Theorem 4.2. Hence,H ′ has a partial graphH such that
G = bi-dir(H) . The converse is analogous. 2

Combining the result of Corollary 4.3 and the characterization of Theorem 3.5 provides the
following characterization of undirected graphs of bounded treewidth. The definitions ofσ -mono-
tone-left paths and spanning-vertexu property for undirected graphs are obtained just by replacing
‘arc’ by ‘edge’. Note that the end vertex of an edgeuv with respect to a vertex ordering then is
the one vertex preceding the other.

Theorem 4.4 Let k ≥ 0, and letG = (V,E) be an undirected graph.G has treewidth at mostk
if and only if there are a vertex orderingσ = 〈x1, . . . , xn〉 for G and a setF of additional edges
such that the triple(G,F, σ) satisfies the following two conditions, where we setG′ =def G∪F :
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(1) for everyi ∈ {1, . . . , n}, |NG′(xi) ∩ {x1, . . . , xi−1}| ≤ k

(2) for every pairu, v of vertices ofG where u ≺σ v , if uv is an edge ofG then every
σ -monotone-left path starting atv in G′ has the spanning-vertexu property inG′ .

Proof Let G have treewidth at mostk . Due to Corollary 4.3, there is a partialk -GDAG H

such thatG = bi-dir(H) . Applying Theorem 3.5, there are a vertex orderingσ for H and a
setF ′ of arcs such that the triple(H,F ′, σ) satisfies the two conditions of Theorem 3.5. Without
loss of generality, if(u, v) ∈ F ′ then v ≺σ u . Let F =def {uv : (u, v) ∈ F ′}. We show
that the triple(G,F, σ) satisfies the two conditions. Condition (1) is clearly satisfied, since every
neighbour ofx precedingx with respect toσ in G ∪ F is a preceding out-neighbour ofx in
H ∪ F ′ . For satisfaction of condition (2), note that ifuv , u ≺σ v , is an edge ofG then (u, v) is
an arc ofH , and everyσ -monotone-left path starting atv in G ∪ F is a σ -monotone-left path
starting atv in H ∪ F ′ . Thus, satisfaction of condition (2) follows from Theorem 3.5.

For the converse, letσ be a vertex ordering forG and F a set of additional edges such that
the triple (G,F, σ) satisfies conditions (1) and (2). LetH be an arc-minimal digraph such that
bi-dir(H) = G. Let F ′ =def {(v, u) : uv ∈ F andu ≺σ v}. Then, it is easy to verify that the
triple (H,F ′, σ) satisfies conditions (1) and (2) of Theorem 3.5, which means that H is a partial
k -GDAG. Applying Corollary 4.3, we conclude thatG has treewidth at mostk . 2

The concept of aσ -monotone-left path having the spanning-vertexu property is unambigu-
ously translated between undirected graphs and directed graphs. Thus, apart from the binary
choice of translating ‘neighbours’ to either ‘in-neighbours’ or ‘out-neighbours’, all undirected
graph concepts used in Theorem 4.4 to characterize treewidth are unambiguously translated to
give Theorem 3.5 characterizing Kelly-width. In our opinion this constitutes a weighty argument
that Kelly-width is indeed the natural directed analogue oftreewidth.

5 A fast algorithm for recognition of digraphs of Kelly-widt h 2

Theorem 3.2 gives an algorithm for recognition of digraphs of bounded Kelly-width: a graph has
Kelly-width at mostk+1 if and only if it can be reduced to a graph on a single vertex by repeatedly
reducing by a vertex of out-degree at mostk (Theorem 3.2). A polynomial-time algorithm does
not evolve directly from this result, since it is not clear which of the possible vertices to choose.
However, in this section we show that it does give a polynomial-time algorithm for Kelly-width 2.
In fact, we will show that every choice of a vertex is then a good choice.

For graphs of Kelly-width 2, vertices of out-degree 0 and 1 can be chosen. We treat the two
cases separately. The main difference between both cases isthat reducing a graph by a vertex of
out-degree 0 does not change the remaining graph, whereas reducing by a vertex of out-degree 1
may add new arcs between vertices in the remaining graph. At first, we consider the out-degree 0
case. We can even show a general result: the Kelly-width of a digraph is not influenced by vertices
of out-degree 0.

Theorem 5.1 Let k ≥ 0, and letG = (V,A) be a digraph on at least two vertices. Leta be a
vertex ofG of out-degree 0. Then,G is a partial k -GDAG if and only if the graph obtained from
reducingG by a is a partial k -GDAG.
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Proof Let G′ be the graph obtained from reducingG by a . Sincea does not have any out-
neighbours, the reduction operation does not add any new arcs to G′ . So, G′ is a subgraph of
G, which means thatG′ is a partialk -GDAG due to Theorem 3.7. For the converse, letG′ be
a partial graph ofk -GDAG H ′ . Let H emerge fromH ′ by addinga according to construction
step (2) choosing no parent vertices. By definition,H is a k -GDAG and a is an in-universal
vertex inH . Hence,G is a partial graph ofH , i.e., a partialk -GDAG. 2

The proof of the out-degree 1 case is more complicated. The most natural approach to prove
an upper bound for the Kelly-width of a graph is to use the subgraph characterization. Consider
the following situation: given a digraphG and ak -GDAG H containingG. Let G′ be the result
of reducingG by a vertexx of out-degree 1. Certainly,G′ does not have to be a subgraph ofH .
To show thatG′ still has Kelly-width k , anotherk -GDAG has to be found that containsG′ as
subgraph. Such a graph is obtained by performing an operation on H that definitely produces a
supergraph ofG′ and does not increase the Kelly-width. We cannot just perform a reduction on
H , sincex may have more than one out-neighbour inH . We choose a more selective form of
reduction. LetG = (V,A) be a digraph, and let(a, b) be an arc ofG. The graph obtained from
in-contracting arc(a, b) in G, denoted asG⊳i(a, b) , is defined as

(G−a) ∪ {(x, b) : x 6= b andx ∈ N in
G (a)} .

Informally spoken, arc(a, b) is in-contracted by deleting vertexa and making every in-neighbour
of a an in-neighbour ofb . If a has out-degree 1, in-contracting arc(a, b) is exactly what we
mean by reducing by vertexa .

Lemma 5.2 Let k ≥ 0, and let G = (V,A) be a k -GDAG. Letσ be a construction sequence
for G, and let (b, a) be an arc ofG where a ≺σ b . Then,G⊳i(b, a) is a partial graph of a
k -GDAG H with construction sequenceσ−b .

Proof Let σ = 〈x1, . . . , xn〉 , and letσ′ =def σ−b . Let Xi =def Nout
G (xi)∩ {x1, . . . , xi−1}. We

define the following sets:

X ′

i =def

{

Xi , if b 6∈ Xi

(Xi \ {b}) ∪ {a} , if b ∈ Xi .

Let H be thek -GDAG with construction sequenceσ′ and parent vertices setsX ′

i . Note that
this can be done, since we assumeda ≺σ b . We show thatG′ =def G⊳i(b, a) is a partial graph
of H . By definition of H , A(H) ∩ {(v, u) : u ≺σ′ v} = A(G′) ∩ {(v, u) : u ≺σ′ v}. Note
that there may be arcs(u, b) for a ≺σ u ≺σ b in G, which become arcs(u, a) in G′ , i.e., that
change direction with respect toσ . Let (u, b) be such an arc ofG. Since(b, a) is an arc ofG
there is aσ -monotone-left pathP starting atb in G that does not containu and z ≺σ u for z

the last vertex ofP . Due to condition (2) of Theorem 3.3 and since(b, a) spans overu , a is an
out-neighbour ofu . Hence,(u, a) is an arc ofH by definition.

Now, let u ≺σ′ v and let(u, v) be an arc ofG′ . Let P be aσ′ -monotone-left path starting at
v in H that does not containu andz ≺σ′ u for z the last vertex ofP . If P is aσ -monotone-left
path starting atv in G, let Q =def P . Assume thatP is not aσ -monotone-left path starting atv
in G. This can only be the case, ifP in H contains an arc that is not an arc inG. By definition
of H , P then containsa and the arc(x, a) for some vertexx ∈ N in

G (b) . Then, “adding” b
betweenx and a gives aσ -monotone-left pathQ starting atv in G. Note that we denote both
possible paths byQ . We distinguish two cases. Let(u, v) be an arc ofG. Due to condition (2)
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of Theorem 3.3,u has an out-neighbourw ≺σ u on Q and the arc with end vertexw spans over
u . If w = b , then a is an out-neighbour ofu in H , a is a vertex onQ (by the second case
of the definition ofQ), a ≺σ′ u and the arc ofQ with end vertexa spans overu . If w 6= b ,
then w is a vertex onQ , and the path has the property of condition (2). Let(u, v) be not an
arc of G, i.e., (u, v) = (u, a) and (u, b) is an arc ofG. But such arcs do not exist, since every
in-neighbourw ≺σ a of b is an in-neighbour also ofa according to construction step (2). Hence,
G′ is a partial graph ofH , thus a partialk -GDAG. 2

The second lemma that we need for our result above reducing a graph by a vertex of out-
degree 1 is stated only for 1-GDAGs.

Lemma 5.3 Let G = (V,A) be a 1-GDAG with construction sequenceσ . Let (a, b) be an arc of
G wherea ≺σ b . Then,G⊳i(a, b) is a partial 1-GDAG.

Proof Let σ = 〈x1, . . . , xn〉 , and letXi be the parent vertices sets. LetG′ =def G⊳i(a, b) . Let
P be the maximalσ -monotone-left path starting atb in G. We distinguish three cases. Leta be
a vertex onP . Let c be the predecessor ofxs = a on P . We define the following sets:

X ′

i =def















Xi , if a 6∈ Xi

{c} , if a ∈ Xi andxi ≺σ c

{b} , if a ∈ Xi andc ≺σ xi

Xs , if xi = c ,

i ∈ {1, . . . , n}. Let F be the digraph on vertex setV ′ =def {x1, . . . , xs−1, xs+1, . . . , xn}
and with the arcs(xi, y) for xi ∈ V ′ and y ∈ X ′

i . Let T1, . . . , Tk be the (weakly) connected
components ofF , and let r1, . . . , rk be the uniquely defined vertices inT1, . . . , Tk with out-
degree 0, respectively. Without loss of generality, we can assumer1 ≺σ · · · ≺σ rk . For every
connected component ofF , we define a vertex ordering. Letσ′

i , i ∈ {1, . . . , k}, be a vertex
ordering onV (Ti) satisfying the following two conditions:

(1) if x ∈ X ′

j thenx ≺σ′

i

xj

(2) if X ′

j = X ′

j′ thenxj ≺σ′

i
xj′ ⇔ xj ≺σ xj′ .

Note that these orderings exist. We obtain vertex orderingσ′ by concatenation:σ′ =def σ′

1 ◦
· · · ◦ σ′

k . Let H ′ be the 1-GDAG obtained fromσ′ and the parent vertices setsX ′

1, . . . ,X
′

n ;
condition (1) and the partition into the connected components of F ensure thatH ′ can be con-
structed correctly. We show thatG′ is a partial graph ofH ′ . By construction, for every pairu, v

of vertices ofG′ , u ≺σ′ v , if (v, u) is an arc ofG′ then (v, u) is an arc ofH ′ : we added new
such arcs only for vertices that are child vertices ofa in G (and σ′ satisfies condition (1) and
the concatenation ofσ′

1, . . . , σ
′

k respects the ordering ofr1, . . . , rk with respect toσ ). Now, let
(u, v) be an arc ofG′ whereu ≺σ′ v . Let P ′ be aσ′ -monotone-left path starting atv in H ′ , and
let P ′ strictly passu . Note that this means thatu and v are in the same connected component
of F by definition of σ′ . Let P ′ do not containc . Then,P ′ is a σ -monotone-left path starting
at v in G. Let w ≺σ u be the out-neighbour ofu on P ′ in G, that exists due to Theorem 3.3.
Let w′ be the predecessor ofw on P ′ ; due to Theorem 3.3;w ≺σ u ≺σ w′ . Hence, according
to condition (2) of the definition ofσ′ , w ≺σ′ u ≺σ′ w′ , and the arc(w,w′) spans overu , i.e.,
(u, v) is an arc ofH ′ . Let P ′ containc . Then, the maximalσ -monotone-left pathQ starting at
v in G containsa . Let x be the predecessor ofa in Q in G. We distinguish the following three
cases:
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• x ≺σ c : then x is the predecessor ofc on P ′ in H ′ , and Q is obtained fromP ′ by
replacingc by a . Furthermore,Q does not containu , so contains an out-neighbourw ≺σ u

of u . Then,P ′ containsw , and the arc ofP ′ with end vertexw spans overu , i.e., (u, v)
is an arc ofH ′ .

• c ≺σ x : then x is a child vertex ofb in H ′ , andQ is obtained fromP ′ by replacing the
subpath ofP ′ from b to c by a . If u is a child vertex ofa in G, thenu is a child vertex of
b or c in H ′ , and according to condition (2) of the definition ofσ′ , we conclude that(u, v)
is an arc ofH ′ .

• c = x : then,Q is obtained fromP ′ by addinga as the successor ofc on Q . We conclude
that (u, v) is an arc ofH ′ .

In particular, N in
G (a) ⊆ N in

H′(b) . Hence,G′ is a partial graph ofH ′ , and therefore a partial
1-GDAG.

Let P passa . Let w be the out-neighbour ofa on P in G such thatw ≺σ a and the arc ofP
with end vertexw spans overa . ConsiderG′′ =def G⊳i(a,w) . According to Lemma 5.2, there
is a 1-GDAGH with construction sequenceσ−a that containsG′′ as partial graph. In particular,
N in

G (a) ⊆ N in
H (w) ⊆ N in

H (b) , where the second inclusion is an immediate consequence of the
characterization of Theorem 3.3. Hence,G′ is a partial graph of 1-GDAGH , i.e., a partial 1-
GDAG.

Let P do not containa and do not passa . Reconsider the definition of graphF above. Using
the parent vertices setsX1, . . . ,Xn , we construct an analogous graph and define an analogous
1-GDAG H ′ . It holds thata andb are not contained in the same connected component ofF , and
by definition of 1-GDAGs, the vertices in the same connected component ofF with b are out-
neighbours of every vertex in the same connected component of F asa . Hence,G′ is a subgraph
of H ′ , i.e., a partial 1-GDAG due to Theorem 3.7. 2

Theorem 5.4 Let G = (V,A) be a partial 1-GDAG, and let(a, b) be an arc ofG. Then,
G⊳i(a, b) is a partial 1-GDAG.

Proof Let G be a partial graph of 1-GDAGH , and letσ be a construction sequence forH . Let
G′ =def G⊳i(a, b) and H ′ =def H⊳i(a, b) . Obviously,G′ is a partial graph ofH ′ . If b ≺σ a ,
thenH ′ is a partial graph of a 1-GDAG due to Lemma 5.2. Ifa ≺σ b , thenH ′ is a partial graph
of a 1-GDAG due to Lemma 5.3. Hence,G′ is a partial 1-GDAG. 2

Corollary 5.5 Let G = (V,A) be a digraph, and leta be a vertex of out-degree 1 ofG. Then,G
is a partial 1-GDAG if and only if the graph obtained from reducing G by a is a partial 1-GDAG.

Proof Let G′ be the digraph obtained from reducingG by a . Let b be the out-neighbour ofa in
G. Then,G′ = G⊳i(a, b) , andG′ is a partial 1-GDAG due to Theorem 5.4. For the converse, let
G′ be a partial graph of 1-GDAGH ′ . We add vertexa to H ′ according to construction step (2)
choosingb as the parent vertex ofa and obtain 1-GDAGH . SinceN in

G (a) ⊆ N in
G′(b) ⊆ N in

H′(b) ,
N in

G (a) ⊆ N in
H (a) , which means thatG is a partial graph ofH , i.e., a partial 1-GDAG. 2

The result of Theorem 5.4 is stronger than the correspondingimplication of Corollary 5.5:
reducing a graph by a vertex of out-degree 1 can be simulated by an appropriate in-contraction
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operation. Equivalence only holds, if the start vertex of the in-contracted arc has out-degree 1. It
is a natural question to ask whether Corollary 5.5 holds for partial k -GDAGs for k ≥ 2, which
means to ask whether a generalised version of Lemma 5.3 can beproved. The comparison with
reduction results for undirected graphs of bounded treewidth shows that there is little hope to
generalise Corollary 5.5 to reducing vertices of out-degree more than 2.

Using the two main results about reducing a graph, we obtain acharacterization of graphs of
Kelly-width 2 that is stronger than Theorem 3.2.

Theorem 5.6 Let G = (V,A) be a digraph. Then,G is a partial 1-GDAG if and only ifG can
be reduced to a graph on one vertex by repeatedly reducing by an arbitrary vertex of out-degree
at most 1.

Proof We show the statement by induction over the set of vertices. Clearly, a digraph on one
single vertex is a partial 1-GDAG (construction step (1)). Let G have n ≥ 2 vertices, and let
the statement be true for all digraphs onn − 1 vertices. Letu be a vertex ofG of out-degree
at most 1, and letG′ be the digraph obtained from reducingG by u . Due to Theorem 5.1 and
Corollary 5.5,G′ is a partial 1-GDAG if and only ifG is a partial 1-GDAG, and due to induction
hypothesis,G′ is a partial 1-GDAG if and only ifG′ can be reduced to a digraph on one vertex
by always choosing an arbitrary vertex of out-degree at most1. Sinceu was chosen arbitrarily,
we conclude the statement. 2

The result of Theorem 5.6 implies a fast algorithm for recognition of graphs of Kelly-width at
most 2. The reduction sequence can even be used to construct awitness for being a Kelly-width-
2 graph: a1-GDAG containing the input graphG. In the negative case, our algorithm outputs
a graphH ′ and a vertex sequenceσ′ = 〈xr, . . . , xn〉 of the following kind: let Gn =def G,
and let Gi be obtained fromGi+1 by reducing byxi+1 , i ∈ {r, . . . , n − 1}. Then, xi+1 ,
i ∈ {r, . . . , n − 1}, has out-degree at most 1 inGi+1 , and Gr does not contain any vertex of
out-degree at most 1. Due to Theorem 5.6,G can therefore not be a partial 1-GDAG. The output
witnessH ′ is defined as follows: letH ′

r =def Gr , and obtainH ′

i+1 from H ′

i by addingxi+1

according to construction step (2) of Definition 2.1 choosing as parent vertex the out-neighbour
of xi+1 in Gi+1 , if there is one. Then,H ′ =def H ′

n . Using σ′ it is easy to verify by the user of
the algorithm thatH ′ arises fromG and thus the algorithm worked correctly. Moreover,H ′ is
independent ofσ′ in the sense that on inputH ′ any reduction sequence on vertices of out-degree
at most 1 will result inGr .

Theorem 5.7 There is an algorithm that, given a digraphG, decides whetherG has Kelly-width
at most 2, and if so, outputs a 1-GDAGH that containsG as partial graph. IfG has Kelly-width
at least 3, the algorithm outputs a witness for this case, which is a graph containingG as partial
graph and a vertex sequence. The running time and the workingspace of the algorithm are linear
in the size of the output graph.

Proof The algorithm is simple: choose an arbitrary vertex of out-degree at most 1 and reduce
the graph by this vertex. This elimination process can be carried out until the graph contains only
one vertex if and only ifG has Kelly-width at most 2 (Theorem 5.6). Furthermore, the proofs
of Theorem 5.1 and Corollary 5.5 show that the reverse order in which vertices are eliminated
is a construction sequence of a 1-GDAGH that containsG as partial graph, andH can be
constructed in time linear in its size. IfG is not a graph of Kelly-width at most 2, there will be
an elimination step in which no vertex of out-degree at most 1can be chosen. So, letH ′ be the
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obtained reduced graph, and let〈xi, . . . , xn〉 be the already generated construction sequence. We
add the verticesxi, . . . , xn to H ′ in the sense of construction step (2) fork -GDAGs choosing one
or no parent vertex. We obtain a graph that containsG as subgraph, and we output this graph and
the sequence〈xi, . . . , xn〉 .

For the running time of the reduction algorithm, it is first tonote that, after every reduction
step, the resulting graph is a subgraph ofH . Reducing by a vertex takes time linear in the number
of is neighbours, since the in-neighbours of the reduced vertex become in-neighbours of the single
out-neighbour, if there is one. Leta be eliminated and letb be its only out-neighbour. The crucial
point is to find the in-neighbours ofa that are in-neighbours also ofb . These are exactly the
vertices whose out-degree is decreased by 1. We assume that the adjacency lists of the vertices are
ordered with respect to some ordering. The intersection of the two in-neighbourshoods is com-
puted by just scanning the two lists. The reason that this is linear time even if the in-neighbourhood
list of b is larger than that ofa is that the in-degree ofa in H is not smaller than the in-degree of
b . This gives linear running time and working space in the sizeof input and output graph. 2

For deciding whether a graph has Kelly-width exactly 2, it suffices to run the algorithm only
for non-acyclic graphs. Acyclic graphs are exactly the graphs of Kelly-width 1.

6 Final remarks

Since Kelly-width of a directed graph is a new concept, a lot of problems can still be solved. The
most important question, however, affects the status of Kelly-width: does it really capture the
notion of treewidth for undirected graphs in the directed setting? We gave good reasons to answer
positively: we presented two new characterizations of digraphs of bounded Kelly-width, and we
gave an easy algorithm for recognition of digraphs of Kelly-width 2. This recognition algorithm
can be considered a directed version of the undirected counterpart: a reduction algorithm for
graphs of treewidth at most 1. Recognition algorithms for graphs of bounded Kelly-width are
of great interest, since one can expect that they also compute a Kelly-decomposition, which is
important for the design of algorithms solving optimization problems on digraphs of bounded
Kelly-width.
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