UNIVERSITY OF BERGEN Faculty of Mathematics and Natural Sciences

Exam in MAT220 - Algebra

Exam available Friday May 21. Deadline for handing in written solution Wednesday May 26 at 09:00 Oral exam in the period May 26 to Friday May 28.

Exercise 1

1. Decide if the quotient ring

 $\mathbb{Q}[x]/(x^6+250x^4+35x+15)$

 $\mathbb{Q}[x]/(x^6 + x^3 + x^2 + x)$

is an integral domain.

2. Decide if the quotient ring

is an integral domain.

3. Find a prime ideal in \mathbb{Z}_{120} .

4. Give an example of an integral domain R and a unit u in R such that 3u = 0.

Exercise 2

We consider the dihedral group D_6 consisting of the symmetries by rotation and reflection of the regular hexagon.

Write s for clockwise rotation by 60 degrees. We consider s as the 6-cycle s = (1, 2, 3, 4, 5, 6) rotating the corner marked B from the position 1 to the position 2. Here the letters are fixed to the corners of the hexagon while the numbers from 1 to 6 are painted on a fixed wall.

- 1. Let $\sigma = (2,6)(3,4) \in S_6$. Is σ an element of D_6 ? Justify your answer.
- 2. List all the elements of ${\cal D}_6$ written as products of transpositions.
- 3. Let $\tau = (2,6)(3,5)$ considered as an element of D_6 and let

$$\lambda_{\tau} \colon S_6 \to S_6$$

be the function given by $\lambda_{\tau}(\sigma) = \tau \sigma$. Explain how the function λ_{τ} gives a bijection $f: D_6 \to D_6$.

- 4. Let $f: D_6 \to D_6$ be the bijection described in question 3. Let R be the set of rotations in D_6 and let S be the set of reflections in D_6 (speilinger in Norwegian). Explain how and why f gives a bijection between R and S. Is S a subgroup of D_6 ? Justify your answer.
- 5. Find a subgroup H of D_6 of order 6. Is this subgroup normal?

Exercise 3

- 1. List all abelean groups of order 72 up to isomorphism. In each case give both the elementary divisors and the invariant factors.
- 2. Find an element of every possible order in the group \mathbb{Z}_{72} .
- 3. Give an example of an injective group homomorphism from \mathbb{Z}_{12} to \mathbb{Z}_{72} . Does there exist an injective group homomorphism from \mathbb{Z}_{16} to \mathbb{Z}_{72} ?
- 4. Find a non-abelian group of order 72.

Exercise 4

Let u be the complex number $u = (1 + i\sqrt{3})/2$ and let F be the field $F = \mathbb{Q}(u)$.

- 1. Describe an injective group homomorphism from \mathbb{Z}_6 to the group of units in F.
- 2. Find the minimal polynomial of u over \mathbb{Q} .
- 3. What is the degree of the field extension $\mathbb{Q} \subseteq \mathbb{Q}(u, \sqrt{2})$?

Exercise 5

Let M_3 be the ring of all real 3×3 -matrices and let G_3 be the group of units in M_3 .

1. Show that the function

$$\varphi \colon S_3 \to G_3$$

taking $\sigma \in S_3$ to the matrix $\varphi(\sigma) = (a_{ij})$ where a_{ij} is the number in the *i*-th row and *j*-th column and

$$a_{ij} = \begin{cases} 1 & \text{if } i = \sigma(j) \\ 0 & \text{otherwise} \end{cases}$$

is a group homomorphism.

2. Use that the determinant det: $G_3 \to \mathbb{R}^*$ is a group homomorphism and that

$$\det \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = -1$$

to show that if σ is an even permutation then $\det(\varphi(\sigma)) = 1$ and that if σ is an odd permutation, then $\det(\varphi(\sigma)) = -1$.

3. Explain why the subgroup of G_3 consisting of matrices with positive determinant is a normal subgroup.

Exercise 6

Let $F \subseteq K$ be a field extension.

- 1. Explain why [K:F] = 1 if and only if K = F.
- 2. Let $u \in K$ be a transcendental element. Describe an injective ring homomorphism from F[x] to K.
- 3. Given $z \in \mathbb{C}$, what can you say about the degree of the field extension $\mathbb{R} \subseteq \mathbb{R}(z)$?
- 4. Given a field extension $\mathbb{C} \subseteq K$, what can you say about K?
- 5. Does there exist a field extension $\mathbb{R} \subseteq K$ of degree 4?