UNIVERSITY OF BERGEN
 Department of Mathematics and Natural Sciences
 Final Exam, MAT 111: Calculus I-Solutions
 Wednesday 13. May 2015, 9 a.m. to 2 p.m.

Allowed aids: Textbook (Adams \& Essex: Calculus - a complete course) and an approved calculator.

Problem 1.

(a) (10 points) Describe geometrically and sketch the curve given by $2|z|=z+\bar{z}+4$ where z is a complex number.

Solution:
Let $z=x+i y$, thus $|z|=\sqrt{x^{2}+y^{2}}$ and $z+\bar{z}=2 x$. By substituting in the given equation we have $2 \sqrt{x^{2}+y^{2}}=2(x+2)$. Take square of both side and simplify the equation we will find $y^{2}=4 x+4$ which is a sideway parabola at vertex $(-1,0)$.

(b) (10 points) Find x and y so that $\frac{x}{1+i}+\frac{y}{2-i}=2+4 i$.

$$
\begin{aligned}
& \text { Solution: } \\
& \frac{x(1-i)}{2}+\frac{y(2+i)}{5}=2+4 i \rightarrow(5 x+4 y)+(2 y-5 x) i=20+40 i \\
& \left\{\begin{array}{c}
5 x+4 y=20 \\
2 y-5 x=40
\end{array} \rightarrow y=10, \quad x=-4 .\right.
\end{aligned}
$$

(c) (10 points) Find the three cube roots of $1+i$, and sketch the roots in the complex plane.

Solution:
Let $w=1+i$. Since $r_{w}=\sqrt{2}$ and $\arg (1+i)=\frac{\pi}{4}$, the polar representation of $1+i$ is $\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)$. Now we are looking for roots z_{k} which satisfy in equation $z_{k}^{3}=1+i$. Let consider $z_{k}=r e^{i \theta}$ then
$r^{3} e^{3 i \theta}=\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right) \rightarrow r^{3}=\sqrt{2} \rightarrow r=\sqrt[6]{2}$
and $\quad 3 \theta=\frac{\pi}{4}+2 k \pi \quad$ for $k=0,1,2$. Then the solutions are:

$$
\begin{aligned}
z_{0} & =\sqrt[6]{2}\left(\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}\right) \\
z_{1} & =\sqrt[6]{2}\left(\cos \frac{9 \pi}{12}+i \sin \frac{9 \pi}{12}\right) \\
z_{2} & =\sqrt[6]{2}\left(\cos \frac{17 \pi}{12}+i \sin \frac{17 \pi}{12}\right)
\end{aligned}
$$

Problem 2.

(15 points) Find a and b so that $f(x)= \begin{cases}\frac{a(1-\cos x)}{x^{2}} & x>0 \\ a(x+1)+b & x=0 \\ \frac{|x|}{x} \cos x & x<0\end{cases}$ is continuous at $x=0$.

Solution:

Continuity: $\lim _{x \rightarrow 0^{-}} f(x)=f(0)=\lim _{x \rightarrow 0^{+}} f(x)$.
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{|x|}{x} \cos x=\lim _{x \rightarrow 0^{-}} \frac{-x}{x} \cos x=-1$
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{a(1-\cos x)}{x^{2}}=\frac{0}{0} \xlongequal{\text { L'Hopital Rule }} \lim _{x \rightarrow 0^{+}} \frac{a \sin x}{2 x}=\frac{0}{0}$
$\xrightarrow{\text { L'Hopital Rule }} \lim _{x \rightarrow 0^{+}} \frac{a \cos x}{2}=\frac{a}{2}$.
$f(0)=a(0+1)+b=a+b$.

$$
\Rightarrow\left\{\begin{array}{l}
\frac{a}{2}=a+b \rightarrow \frac{a}{2}+b=0 \rightarrow b=1 \\
\frac{a}{2}=-1 \rightarrow a=-2
\end{array}\right.
$$

Problem 3.

Above is the graph of $f^{\prime}(x)$, the derivative of $f(x)$, use any suitable information you can obtain from the graph and answer the following questions.
(a) (15 points) Find the x-value of the critical points of $f(x)$. Determine whether
the critical points are local maximum, local minimum, or neither.

Solution:

Critical points: $f^{\prime}(x)=0 \Rightarrow x=-3,-1,2,4$.

x	$-\infty$	-3		-1		2		4	$+\infty$
f^{\prime}	-	0	+	0	-	0	-	0	+
f	\searrow		\nearrow		\searrow		\searrow		\nearrow

According to the above table
x-coordinates of the local minimum: $x=-3,4$
x-coordinates of the local maximum: $x=-1$
neither minimum nor maximum: $x=2$.
(b) (10 points) Find the equation of the tangent line to $f(x)$ at point $(1,-2)$.

Solution:
Tangent line equation: $y-f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$.
Since $\left(x_{0}, f\left(x_{0}\right)\right)=(1,-2)$ and from the graph of f^{\prime} we find $f^{\prime}(1)=-1$.
Therefore, the tangent line at point $(1,-2)$ is

$$
y+2=-1(x-1) \rightarrow y=-x-1 .
$$

(c) (15 points) Determine the x-value of the inflection points of the curve $y=$ $f(x)$ and the intervals of concavity.
Solution:
Inflection points: $f^{\prime \prime}(x)=0 \rightarrow x=-2.3,0,2,3.5$.

x	$-\infty$	-2.3		0		2		3.5	$+\infty$
$f^{\prime \prime}$	+	0	-	0	+	0	-	0	+
f	\smile		\frown		\smile		\frown		\smile

As we can see in the above table:
$f(x)$ is concave up: $(-\infty,-2.3) \cup(0.2) \cup(3.5,+\infty)$
$f(x)$ is concave down: $(-2.3,0) \cap(2,3.5)$
(d) (10 points) Use the information obtained from the previous parts and sketch a possible graph of $f(x)$, given that $f(-3)=-6, f(-1)=2.5, f(2)=-2.5$ and $f(4)=-5$.
Solution:

(e) (10 points) Calculate $\int_{2}^{-2.3} f^{\prime \prime}(x) d x$.

Solution:

$$
\begin{aligned}
& \int_{2}^{-2.3} f^{\prime \prime}(x) d x=-\int_{-2.3}^{2} f^{\prime \prime}(x) d x=-\left.f^{\prime}(x)\right|_{-2.3} ^{2}=-\left(f^{\prime}(2)-f^{\prime}(-2.3)\right)= \\
& -(0-4)=4 .
\end{aligned}
$$

Problem 4.

(15 points) The equation $e^{-2 x}=3 x^{2}$ has a positive root near $x=0$. By finding a suitable polynomial approximation to $e^{-2 x}$ find an approximation to this root.
Solution:
Maclaurin polynomial for $e^{-2 x}$ is:
$P_{n}(x)=1-\frac{2 x}{1!}+\frac{4 x^{2}}{2!}-\frac{(2 x)^{3}}{3!}+\cdots+\frac{(-2 x)^{n}}{n!}$. So we need to use the first three terms of this polynomial to find the solution of given equation. Thus we have $1-2 x+2 x^{2}=3 x^{2} \Rightarrow x^{2}+2 x-1=0 \Rightarrow x=\frac{-2 \pm \sqrt{8}}{2} \rightarrow x \approx-2.4,0.4$. Since the given equation has a positive root near $x=0$, the approximated solution is $x \approx 0.4$.

Problem 5.

Determine whether each integral is convergent or divergent and justify your answer.
(a) $(15$ points $) \int_{0}^{\infty}(1-x) e^{-x} d x$
(b) (10 points) $\int_{1}^{\infty} \frac{2+\cos x}{x-1} d x$

Solution (a):
$\int_{0}^{\infty}(1-x) e^{-x} d x=\lim _{t \rightarrow \infty} \int_{0}^{t}(1-x) e^{-x} d x \quad$ (integrate by parts)
$\lim _{t \rightarrow \infty} \int_{0}^{t}(1-x) e^{-x} d x=\lim _{t \rightarrow \infty}\left(-(1-t) e^{-t}+e^{-t}\right)-(-1+1)$
$=\lim _{t \rightarrow \infty} t e^{-t}=\frac{\infty}{\infty} \xlongequal{\text { L'Hopital Rule }} \lim _{\rightarrow \infty} \frac{1}{e^{t}}=0 \Rightarrow$ Improper integral converges.
Solution (b):
First rewrite the improper integral as:
$\int_{1}^{\infty} \frac{2+\cos x}{x-1} d x=2 \int_{1}^{\infty} \frac{1}{x-1} d x+\int_{1}^{\infty} \frac{\cos x}{x-1} d x$. The first integral in right-hand side is an improper integral of both types, therefore, we need to rewrite it as:
$2 \int_{1}^{\infty} \frac{1}{x-1} d x=2 \int_{1}^{2} \frac{1}{x-1} d x+2 \int_{2}^{\infty} \frac{1}{x-1} d x$
$\xrightarrow{\text { P-integrals theorem }} \int_{2}^{\infty} \frac{1}{x-1} d x \rightarrow$ diverges, thus $\int_{1}^{\infty} \frac{2+\cos x}{x-1} d x$ also diverges.

Problem 6.

(a) (5 points) Find the exact value of the definite integral $\int_{0}^{1} \frac{1}{1+x^{2}} d x$.

Solution:

$\int_{0}^{1} \frac{1}{1+x^{2}} d x=\left.\arctan x\right|_{0} ^{1}=\frac{\pi}{4}$.
(b) (15 points) How large should we take n, the number of subintervals, in order to guarantee that the Trapezoid Rule approximation for the value of π is accurate to within 10^{-2}.
Solution:
There are many ways to compute π. A nice one is:

$$
\pi=4 \arctan (1)=4 \int_{0}^{1} \frac{1}{1+x^{2}} d x
$$

Thus we need to evaluate $\int_{0}^{1} \frac{1}{1+x^{2}} d x$ to within an error of $\frac{1}{4} \cdot 10^{-2}$. To estimate the error in the Trapezoid rule, we need an upper bound on the second derivative of $f(x)=\frac{1}{1+x^{2}}$. Compute:

$$
f^{\prime}(x)=\frac{-2 x}{\left(1+x^{2}\right)^{2}} \quad \text { and } \quad f^{\prime \prime}(x)=\frac{\left(6 x^{2}-2\right)}{\left(1+x^{2}\right)^{3}} .
$$

A rough estimate is $f^{\prime \prime}(x) \leq 4$ for x in $[0,1]$. Thus

$$
\left|E_{T}\right| \leq \frac{4.1^{3}}{12 n^{2}} \leq \frac{1}{4} 10^{-2}
$$

Then $\frac{400}{3} \leq n^{2} \rightarrow n \approx 11.54$. Thus $n=12$ will do.
(c) (10 points) Show that Simpson's Rule gives an exact value for

$$
\int_{a}^{b}\left(A x^{3}+B x^{2}+C x+D\right) d x
$$

Solution:
To estimate the error in Simpson rule, we need an upper bound on the fourth derivative of $f(x)=A x^{3}+B x^{2}+C x+D$. Compute:

$$
f^{\prime}(x)=3 A x^{2}+2 B x+C, f^{\prime \prime}(x)=6 A x+2 B, f^{\prime \prime \prime}(x)=6 A, f^{(4)}(x)=0 .
$$

Thus

$$
\left|E_{S}\right| \leq \frac{0 .(b-a)^{5}}{180 n^{4}}=0 \rightarrow E_{S}=0
$$

therefore, Simpson rule is exact.

Problem 7.

(a) (10 points) Find the general solution of $x y^{\prime}-2 y=x^{2}$.

Solution:
We first need to put this equation into standard form. If we divide the differential equation on both sides by x then

$$
y^{\prime}-\frac{2}{x} y=x
$$

Hence $p(x)=\frac{-2}{x}$. An integrating factor is

$$
\mu(x)=\exp \left(\int-\frac{2}{x} d x\right)=\exp (-2 \ln |x|)=x^{-2} .
$$

Multiplying the differential equation, in standard form, through by $\mu(x)$,

$$
x^{-2}-\frac{2}{x^{3}} y=\frac{1}{x} \rightarrow\left(x^{-2} y\right)^{\prime}=\frac{1}{x}
$$

Now integrating $x^{-2} y=\ln |x|+c \rightarrow y=x^{2} \ln |x|+c x^{2}$.
(b) (15 points) Solve the initial value problem

$$
y^{\prime} \sin x+y \ln y=0, \quad y\left(\frac{\pi}{2}\right)=e
$$

$\xrightarrow[{\text { Rewrite it as } \frac{d y}{d x}=-y \frac{\ln y}{\sin x} \xrightarrow{\text { Solution: }} \text { separate variable }}]{y \ln y}=-\frac{d y}{\sin x} \xrightarrow{\text { integrate }}$
$\ln (\ln y)=\ln |\csc x-\cot x|+c \xrightarrow{\text { impose initial value }} c=0 \Rightarrow y=e^{\ln |\csc x-\cot x|}$

