SOLUTION TO EXAM IN MAT111 - SPRING 2019

EVGUENI DINVAY

Problem 0.1. Find all cubic roots (3-th order roots) of the complex number

$$
z=\frac{2+6 i}{1-2 i} .
$$

Solution. First one finds

$$
z=-2+2 i
$$

and then represents this number in the trigonometric form $z=r(\cos \varphi+i \sin \varphi)$ as

$$
\begin{gathered}
r=2 \sqrt{2} \\
\cos \varphi=-\frac{1}{\sqrt{2}}, \quad \sin \varphi=\frac{1}{\sqrt{2}}
\end{gathered}
$$

and so the angle

$$
\varphi=\frac{3 \pi}{4}
$$

All cubic roots have the form

$$
w_{k}=\sqrt{2}\left(\cos \psi_{k}+i \sin \psi_{k}\right)
$$

where

$$
\begin{gathered}
\psi_{0}=\frac{\pi}{4} \\
\psi_{1}=\frac{\pi}{4}+\frac{2 \pi}{3}=\frac{11 \pi}{12} \\
\psi_{2}=\frac{\pi}{4}+\frac{4 \pi}{3}=\frac{19 \pi}{12} .
\end{gathered}
$$

Thus the cubic roots are

$$
\begin{gathered}
w_{0}=1+i \\
w_{1}=(1+i)\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)=-\frac{1}{2}-\frac{\sqrt{3}}{2}+i\left(\frac{\sqrt{3}}{2}-\frac{1}{2}\right), \\
w_{2}=(1+i)\left(-\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)=-\frac{1}{2}+\frac{\sqrt{3}}{2}-i\left(\frac{\sqrt{3}}{2}+\frac{1}{2}\right) .
\end{gathered}
$$

Problem 0.2. Consider the function

$$
f(x)=\frac{\cos (\pi x)}{x}-1
$$

with domain of definition $D(f)=(0,+\infty)$. Using the formal limit definition, prove that the function f has a limit as x approaches $+\infty$.

Solution. Using the squeeze theorem one can see that $f \rightarrow-1$ at infinity. Taking $\varepsilon>0$ one needs to find $R>0$ such that if $x>R$ then $|f(x)+1|<\varepsilon$.

Note that for any positive R and $x>R$ we have

$$
|f(x)+1|=\left|\frac{\cos (\pi x)}{x}\right| \leqslant \frac{1}{x}<\frac{1}{R}
$$

Thus for any $\varepsilon>0$ number $R=1 / \varepsilon$, for example, suits the problem, i. e. if $x>R$ then $|f(x)+1|<\varepsilon$.
Problem 0.3. Prove that the inequalities

$$
x \geqslant \arctan x \geqslant \frac{x}{1+\frac{2}{\pi} x}
$$

hold for any $x \geqslant 0$. Draw the graphs of the three functions.
Hint: Minimize the functions $\varphi(x)=x-\arctan x$ and $\psi(x)=\arctan x-\frac{x}{1+2 x / \pi}$ on the interval $[0,+\infty)$.

Solution. The proof of the first inequality: One has to show that $\varphi(x) \geqslant 0$ for any $x \geqslant 0$. Firstly, one can notice that $\varphi(0)=0$. It is enough to show that $\varphi(x)$ is an increasing function on $[0,+\infty)$. Indeed, the derivative

$$
\varphi^{\prime}(x)=1-\frac{1}{1+x^{2}}=\frac{x^{2}}{1+x^{2}} \geqslant 0
$$

for any $x \geqslant 0$. Hence $\varphi(x)$ is increasing. Thus for any $x \geqslant 0$ we have $\varphi(x) \geqslant \varphi(0)=0$ giving the first inequality.

The proof of the second inequality: One has to show that $\psi(x) \geqslant 0$ for any $x \geqslant 0$. Its derivative

$$
\psi^{\prime}(x)=\frac{1}{1+x^{2}}-\frac{(\pi / 2)^{2}}{(x+\pi / 2)^{2}}=\frac{\left(1-(\pi / 2)^{2}\right) x^{2}+\pi x}{\left(1+x^{2}\right)(x+\pi / 2)^{2}} .
$$

Equation $\psi^{\prime}(x)=0$ is equivalent to the quadratic equation $\left(1-(\pi / 2)^{2}\right) x^{2}+\pi x=0$ which has two solutions. The first one is $x_{1}=0$. The second one is $x_{2}=\frac{4 \pi}{\pi^{2}-4}>0$. Note that

$$
\begin{gathered}
\psi^{\prime}(x)>0 \text { for } x \in\left(0, x_{2}\right) \\
\psi^{\prime}(x)<0 \text { for } x \in\left(x_{2},+\infty\right) .
\end{gathered}
$$

In other words, $\psi(x)$ increases on $\left(0, x_{2}\right)$, reaches maximum at x_{2} and decreases on $\left(x_{2},+\infty\right)$. Moreover, $\psi(0)=0$ and
$\lim _{x \rightarrow+\infty} \psi(x)=\lim _{x \rightarrow+\infty}\left(\arctan x-\frac{x}{1+2 x / \pi}\right)=\lim _{x \rightarrow+\infty} \arctan x-\lim _{x \rightarrow+\infty} \frac{1}{\frac{1}{x}+\frac{2}{\pi}}=\frac{\pi}{2}-\frac{\pi}{2}=0$.
Hence for any $x \in\left[0, x_{2}\right]$ we have $\psi(x) \geqslant \psi(0)=0$ due to the increase. For any $x \in$ $\left[x_{2},+\infty\right)$ we have $\psi(x) \geqslant \lim _{x \rightarrow+\infty} \psi(x)=0$ due to the decrease. Thus $\psi(x) \geqslant 0$ for all $x \geqslant 0$, which concludes the proof of the second inequality.
Problem 0.4. Find the limit

$$
\lim _{x \rightarrow 0} \frac{e^{-2 x}+2 \sin (x)-\cos (2 x)}{x^{2}} .
$$

Solution. Note that

$$
\begin{gathered}
\exp (-2 x)=1-2 x+2 x^{2}+O\left(x^{3}\right) \\
\sin (x)=x+O\left(x^{3}\right) \\
\cos (2 x)=1-2 x^{2}+O\left(x^{4}\right)
\end{gathered}
$$

as $x \rightarrow 0$. Thus

$$
\lim _{x \rightarrow 0} \frac{e^{-2 x}+2 \sin (x)-\cos (2 x)}{x^{2}}=\lim _{x \rightarrow 0} \frac{4 x^{2}+O\left(x^{3}\right)}{x^{2}}=\lim _{x \rightarrow 0}(4+O(x))=4 .
$$

Problem 0.5. Consider the function

$$
f(x)=x e^{-x^{2} / 2}
$$

with the domain $D(f)=\mathbb{R}$. Find extreme values for this function, and determine where $f(x)$ is convex or concave. Find the limits at $+\infty$ and $-\infty$. Does the function have any asymptotes? Sketch the graph of $f(x)$.
Solution. Firstly, one can notice that f is symmetric with respect to the origin, i.e. $f(-x)=-f(x)$. Secondly, $f(0)=0, f(x)>0$ for $x>0$ and $f(x) \rightarrow 0$ as $x \rightarrow+\infty$. At this point one can already depict an approximate graph of this function.

To make the graph more precise, calculate the derivatives

$$
f^{\prime}(x)=\left(1-x^{2}\right) e^{-x^{2} / 2}
$$

$$
f^{\prime \prime}(x)=x\left(x^{2}-3\right) e^{-x^{2} / 2} .
$$

Function $f(x)$ has a global minimum at $x=-1$ and a global maximum at $x=1$. It is concave on the intervals $(-\infty,-\sqrt{3}],[0, \sqrt{3}]$. It is convex on the intervals $[-\sqrt{3}, 0]$, $[\sqrt{3},+\infty)$.
Problem 0.6. Calculate the integral

$$
\int_{0}^{\pi / 2} \sin (2 x) \cos ^{2019}(x) d x
$$

Solution. Note that $\sin (2 x)=2 \sin x \cos x$ and so

$$
\int_{0}^{\pi / 2} \sin (2 x) \cos ^{2019}(x) d x=2 \int_{0}^{\pi / 2} \sin (x) \cos ^{2020}(x) d x=-2 \int_{1}^{0} y^{2020} d y=\frac{2}{2021}
$$

where the change $\cos x=y$ of variables was used.
Problem 0.7. Calculate the improper integral

$$
\int_{0}^{+\infty} x^{3} e^{-x^{2}} d x
$$

Solution. Changing variables $\left(y=x^{2}\right)$ and then integrating by parts obtain

$$
\int_{0}^{+\infty} x^{3} e^{-x^{2}} d x=\frac{1}{2} \int_{0}^{+\infty} y e^{-y} d y=\frac{1}{2}
$$

To justify these calculations one has to check convergence of the given integral. Consider

$$
J(\beta)=\int_{0}^{\beta} x^{3} e^{-x^{2}} d x
$$

as a function of $\beta \in[0,+\infty)$. The integrand is obviously non-negative and so J is an increasing function. By the theorem about limit of monotone function one concludes that there exists the limit of $J(\beta)$ at infinity. It is left to check that this limit is finite. Indeed, we have

$$
-x^{2} \leqslant-2 x+1
$$

since $(x-1)^{2} \geqslant 0$, and

$$
\frac{x^{3}}{3!} \leqslant e^{x}
$$

following from the Taylor expansion for $x \geqslant 0$ (or one can instead integrate $1 \leqslant e^{x}$ from 0 to x three times, to get the same inequality). Thus

$$
J(\beta) \leqslant \int_{0}^{\beta} 6 e^{-x+1} d x \leqslant 6 e
$$

and so $\lim _{\beta \rightarrow+\infty} J(\beta)$ is finite.
Problem 0.8. Let Γ be the graph of the function $f(x)=\sin (2 x)$ with domain of definition $D(f)=[0, \pi]$. Find the volume of the solid of revolution generated by rotating the curve Γ about the x-axis.

Hint: The formula $\sin ^{2} \alpha=\frac{1-\cos 2 \alpha}{2}$ might be of help.
Solution. The volume is $\pi \int_{0}^{\pi} f^{2}(x) d x=\pi / 2 \int_{0}^{\pi}(1-\cos (4 x)) d x=\frac{\pi^{2}}{2}$.

Problem 0.9. Find all solutions of the differential equation

$$
y^{\prime} \sin x-y \cos x=0
$$

Then find the solution that satisfies the initial-value problem $y(\pi / 2)=-1$.
Solution. Rewrite the equation in the form

$$
\frac{y^{\prime}}{y}=\frac{\cos x}{\sin x}
$$

and then integrate

$$
\int \frac{d y}{y}=\int \frac{y^{\prime}(x) d x}{y(x)}=\int \frac{\cos x}{\sin x} d x
$$

and so

$$
\ln |y|+C_{1}=\ln |\sin x|+C_{2} .
$$

Thus the general solution has the form

$$
y=C \sin x, \text { with } C \in \mathbb{R} .
$$

The initial-value problem associated with $y(\pi / 2)=-1$ has the following solution

$$
y=-\sin x
$$

