
SOLUTION TO EXAM IN MAT111 – SPRING 2019

EVGUENI DINVAY

Problem 0.1. Find all cubic roots (3-th order roots) of the complex number

z =
2 + 6i

1− 2i
.

Solution. First one finds

z = −2 + 2i

and then represents this number in the trigonometric form z = r(cosϕ+ i sinϕ) as

r = 2
√

2,

cosϕ = − 1√
2
, sinϕ =

1√
2

and so the angle

ϕ =
3π

4
.

All cubic roots have the form

wk =
√

2(cosψk + i sinψk)

where

ψ0 =
π

4
,

ψ1 =
π

4
+

2π

3
=

11π

12
,

ψ2 =
π

4
+

4π

3
=

19π

12
.

Thus the cubic roots are

w0 = 1 + i,

w1 = (1 + i)

(
−1

2
+

√
3

2
i

)
= −1

2
−
√

3

2
+ i

(√
3

2
− 1

2

)
,

w2 = (1 + i)

(
−1

2
−
√

3

2
i

)
= −1

2
+

√
3

2
− i

(√
3

2
+

1

2

)
.

�

Problem 0.2. Consider the function

f(x) =
cos(πx)

x
− 1

with domain of definition D(f) = (0,+∞). Using the formal limit definition, prove that
the function f has a limit as x approaches +∞.
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Solution. Using the squeeze theorem one can see that f → −1 at infinity. Taking ε > 0
one needs to find R > 0 such that if x > R then |f(x) + 1| < ε.

Note that for any positive R and x > R we have

|f(x) + 1| =
∣∣∣∣cos(πx)

x

∣∣∣∣ 6 1

x
<

1

R
.

Thus for any ε > 0 number R = 1/ε, for example, suits the problem, i. e. if x > R then
|f(x) + 1| < ε. �

Problem 0.3. Prove that the inequalities

x > arctanx >
x

1 + 2
π
x

hold for any x > 0. Draw the graphs of the three functions.

Hint: Minimize the functions ϕ(x) = x − arctanx and ψ(x) = arctanx − x
1+2x/π

on the

interval [0,+∞).

Solution. The proof of the first inequality: One has to show that ϕ(x) > 0 for
any x > 0. Firstly, one can notice that ϕ(0) = 0. It is enough to show that ϕ(x) is an
increasing function on [0,+∞). Indeed, the derivative

ϕ′(x) = 1− 1

1 + x2
=

x2

1 + x2
> 0

for any x > 0. Hence ϕ(x) is increasing. Thus for any x > 0 we have ϕ(x) > ϕ(0) = 0
giving the first inequality.

The proof of the second inequality: One has to show that ψ(x) > 0 for any x > 0.
Its derivative

ψ′(x) =
1

1 + x2
− (π/2)2

(x+ π/2)2
=

(1− (π/2)2)x2 + πx

(1 + x2)(x+ π/2)2
.

Equation ψ′(x) = 0 is equivalent to the quadratic equation (1− (π/2)2)x2+πx = 0 which
has two solutions. The first one is x1 = 0. The second one is x2 = 4π

π2−4 > 0. Note that

ψ′(x) > 0 for x ∈ (0, x2),

ψ′(x) < 0 for x ∈ (x2,+∞).
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In other words, ψ(x) increases on (0, x2), reaches maximum at x2 and decreases on
(x2,+∞). Moreover, ψ(0) = 0 and

lim
x→+∞

ψ(x) = lim
x→+∞

(
arctanx− x

1 + 2x/π

)
= lim

x→+∞
arctanx− lim

x→+∞

1
1
x

+ 2
π

=
π

2
− π

2
= 0.

Hence for any x ∈ [0, x2] we have ψ(x) > ψ(0) = 0 due to the increase. For any x ∈
[x2,+∞) we have ψ(x) > limx→+∞ ψ(x) = 0 due to the decrease. Thus ψ(x) > 0 for all
x > 0, which concludes the proof of the second inequality. �

Problem 0.4. Find the limit

lim
x→0

e−2x + 2 sin(x)− cos(2x)

x2
.

Solution. Note that
exp(−2x) = 1− 2x+ 2x2 +O(x3),

sin(x) = x+O(x3),

cos(2x) = 1− 2x2 +O(x4)

as x→ 0. Thus

lim
x→0

e−2x + 2 sin(x)− cos(2x)

x2
= lim

x→0

4x2 +O(x3)

x2
= lim

x→0
(4 +O(x)) = 4.

�

Problem 0.5. Consider the function

f(x) = xe−x
2/2

with the domain D(f) = R. Find extreme values for this function, and determine where
f(x) is convex or concave. Find the limits at +∞ and −∞. Does the function have any
asymptotes? Sketch the graph of f(x).

Solution. Firstly, one can notice that f is symmetric with respect to the origin, i.e.
f(−x) = −f(x). Secondly, f(0) = 0, f(x) > 0 for x > 0 and f(x) → 0 as x → +∞. At
this point one can already depict an approximate graph of this function.

To make the graph more precise, calculate the derivatives

f ′(x) = (1− x2)e−x2/2,
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f ′′(x) = x(x2 − 3)e−x
2/2.

Function f(x) has a global minimum at x = −1 and a global maximum at x = 1. It
is concave on the intervals (−∞,−

√
3], [0,

√
3]. It is convex on the intervals [−

√
3, 0],

[
√

3,+∞). �

Problem 0.6. Calculate the integral∫ π/2

0

sin(2x) cos2019(x)dx.

Solution. Note that sin(2x) = 2 sinx cosx and so∫ π/2

0

sin(2x) cos2019(x)dx = 2

∫ π/2

0

sin(x) cos2020(x)dx = −2

∫ 0

1

y2020dy =
2

2021

where the change cosx = y of variables was used. �

Problem 0.7. Calculate the improper integral∫ +∞

0

x3e−x
2

dx.

Solution. Changing variables (y = x2) and then integrating by parts obtain∫ +∞

0

x3e−x
2

dx =
1

2

∫ +∞

0

ye−ydy =
1

2
.

To justify these calculations one has to check convergence of the given integral. Consider

J(β) =

∫ β

0

x3e−x
2

dx

as a function of β ∈ [0,+∞). The integrand is obviously non-negative and so J is an
increasing function. By the theorem about limit of monotone function one concludes that
there exists the limit of J(β) at infinity. It is left to check that this limit is finite. Indeed,
we have

−x2 6 −2x+ 1

since (x− 1)2 > 0, and
x3

3!
6 ex

following from the Taylor expansion for x > 0 (or one can instead integrate 1 6 ex from
0 to x three times, to get the same inequality). Thus

J(β) 6
∫ β

0

6e−x+1dx 6 6e

and so limβ→+∞ J(β) is finite. �

Problem 0.8. Let Γ be the graph of the function f(x) = sin(2x) with domain of definition
D(f) = [0, π]. Find the volume of the solid of revolution generated by rotating the curve
Γ about the x-axis.

Hint: The formula sin2 α = 1−cos 2α
2

might be of help.

Solution. The volume is π
∫ π
0
f 2(x)dx = π/2

∫ π
0

(1− cos(4x))dx = π2

2
. �
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Problem 0.9. Find all solutions of the differential equation

y′ sinx− y cosx = 0.

Then find the solution that satisfies the initial-value problem y(π/2) = −1.

Solution. Rewrite the equation in the form

y′

y
=

cosx

sinx

and then integrate ∫
dy

y
=

∫
y′(x)dx

y(x)
=

∫
cosx

sinx
dx

and so
ln |y|+ C1 = ln | sinx|+ C2.

Thus the general solution has the form

y = C sinx, with C ∈ R.
The initial-value problem associated with y(π/2) = −1 has the following solution

y = − sinx.

�


