English
UNIVERSITY OF BERGEN
The Faculty of Mathematics and Natural Sciences

Exam in MAT121 - Linear algebra
June, 02, 2020, from 09.00 to 15.00

e Allowed help resources: all, except for communication between students

The exam consists of two parts:

The first set of exercises is of type “multiple choice”. You have to choose the correct
answer and mark it. This part assumes that you give answers on the computer.

The second set of exercises requires from you an ability to make a proof of some
statement. If you have difficulty to write it on the computer, just write it by hand
on the additional ark and deliver.

Solutions of exercises.

1.1 Consider the vectors:

1 h 1
71 - O ; ?2 - 1 5 73 - 2h
0 —h 3h+1

The set of all values of h for which {?1, s, ?2} are linearly independent is given
by: (choose the correct answer)

3 points

Solution to 1.1

We construct the matrix A = [2/1 7, 7's]. By the invertible matrix theorem, we
know that the columns of A are linearly independent if and only if the determinant
of A is nonzero.

We therefore compute the determinant of A as a function of h.
1



L on1
A=lo 1 2
0 —h 3h+l
det(A) =1-| L 2" [ (3R 1) = (—h)-2h] = Bh+ 14+ 20% = 2%+ 3h 4+ 1
A =1\ 31| = = =

By using the quadratic formula, we find that det(A) = 0 for h = —1 and h =
—1/2. Hence, the vectors ?1,?2,?3 are linearly independent for h # —1 and

h+—1/2.

Correct answer:

.h#_lvh#_%

2.1 The matrix
11 1
A=11 2 k
1 4 K?
is not invertible if: (choose the correct answer)

3 points

Solution to 2.1

By the invertible matrix theorem, we know that in order for a matrix to be invertible,
the determinant has to be nonzero. Hence, the matrix A is not invertible if the
determinant is 0.

We compute the determinant of A as a function of k, using cofactor expansion along
the first row.

2 k
4 k2

1 k 1 2
1 k2 1 4
=2k? — 4k — kK2 +k+2=k>—3k+2

By using the quadratic formula, we find that the determinant of A is 0 for £ =1
and k = 2. By the IMT, the matrix A is not invertible for these values of k.

det(A) =1- ‘

_1.‘

+1~‘ ‘_(2k2—4k)—(k2—k;)+(4—2)

Correct answer:



o k=1 k=2

3.1 Suppose the following information is known about a (3 x 3) matrix A:

1 1 1 1 2 1
Al2l =6l2|, Aal|-1|=3]|-1|, A|-1|=3|-1],
1 1 1 1 0 1

Then the matrix A has the following eigenvalues: (choose the correct answer)
4 points

Solution to 3.1

From the first equation, we sce that A7 = A% for A = 6. Hence 6 is an cigenvalue
of A.

From the second equation, we see that AW = A7 for A = 3. Hence 3 is also an
eigenvalue of A.

The third equation is not on the form AW = A7, so we can not conclude that
3 is an eigenvalue for more than one ecigenvector. However, since both the second
and the third equation has the same right side, we can use them to look for a third
eigenvalue.

We let 71 = —11 and 72 = —21
1 0
So we have the following equations:
A, =37,
Ay =37,
Equating them gives us:
AT, = AT,
AT — AT, =0
AT -T)=T

We know that if we multiply a vector by 0, we get the zero vector. Hence, we have
the third eigenvalue-eigenvector relation

AT = Ty) =0(T1 — Ty)

So A =0 is also an eigenvalue of A.
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Correct answer:

.)\1:6, )\2:3, )\5:

Then the matrix A has the following eigenvectors: (choose the correct answer)

4 points

Solution to 4.1

These are the same equations that we studied in the last problem.

1 1
From the first equation, we have that A71 = )\71 for 71 = |2]|. Hence [2| is an
1 1
eigenvector of A.
1 1
From the second equation, we have that A72 = )\72 for 72 = |—1|. Hence |—1
1 1

is also an eigenvector of A.

In the last problem, we discovered the relation A(71 —72) = 0(71 —72), where 74
1 2 —1
and 72 were defined in that problem. Hence, 71 — 72 =|-1|—-1|-1] =10
1 0 1
is also an eigenvector of A.

Correct answer:

1 1 -1
o |2 -1 0

J )

1 1 1



5.1 Consider the matrix

o 1 2 3
A=1|1 -3 4 5
-3 10 -6 -7

We denote Be the basis of the column space Col (A), Br the basis of the row
space Row (A), and Boy an orthonormal basis of the null space Null (4) of A. The
mentioned above bases are given by: (choose the correct answer)

4 points

Solution to 5.1

We start by row reducing the matrix A to reduced echelon form.

o 1 2 3 100 3/2
A=|1 -3 4 5|~|010 1/2|=8
3 10 -6 -7 00 1 5/4

The first three columns of A are pivot columns, and by theorem 6 chapter 4 they
form a basis for Col(A).

A and B are row equivalent, and B is in echelon form. Thus, by theorem 13 chapter
4, the rows of B, which are all nonzero, form a basis for Row(A).

Finally, we find an orthonormal basis for the null space of A.
3/2 0
1/2 0
5/4 0

%
Solving the equation AZ =0, we get:

x4 is free

z3 = (—=5/4)z4
xo = (—1/2)z4
1 = (—3/2)z4



3/2
—1/2
1

A basis for Null(A) is just ¥. Normalizing this vector, we get

—3/2
v 1 —1/2
7T \/(=3/2)2 + (=1/2)2 + (=542 + 12 —2/4
—3/2 —2/3 —6
_é —1/2 . —2/9 _1 -2
9 |=5/41  |-5/9] 9 |-b
1 4/9 4
Correct answer:
[ ]
0 1 2
Be=<{|1],[-3],14]|3%,
-3 10 —6

—6
1]1-2

BON § 5| >
1

6.1 Suppose the matrix A is diagonalizable and has the characteristic polyno-
mial

det(A — I(N\) = M2\ = 3) (A +2)*(A — 4)°.
Let (m x n) be the size of the matrix A, d is the dimension of the eigenspace
corresponding to the eigenvalue A = 4 and p = dim (Null (A)) Which of the
following numbers correspond to the matrix A? (choose the correct answer)



4 points

Solution to 6.1

If A is diagonalizable, it has to be a square matrix. By theorem 7b chapter 9,
the sum of the eigenspaces has to equal n. We also know that the simension of
the eigenspace for each eigenvalue has to equal the multiplicity of that eigenvalue.
Counting the multiplicities in the characteristic polynomial, we see that A has to
be (9 x 9).

Since the dimension of the eigenspace of an eigenvalue is equal to the multiplicity
of that eigenvalue, we see that d has to be 3.

By looking at the characteristic polynomial, we can also find the dimension of the
null space of A. For the eigenvalue A, the dimension of the eigenspace is equal to
the number of free variables in the equation [A — A/ ]7 — 0. For A = 0, this is just
the equation A7 = 6) We sce that A = 0 has multiplicity 2, which mecans that
AT = 0 has 2 free variables. Hence p=dim(Null(A)) = 2.

Correct answer:

emxn=9x9 d=3, p=2

7.1 Let A, B, C be (n x n) invertible matrices. When you simplify the expres-
sion
Cil(ABil)il(CAil)ilcQ

which matrix do you get? (choose the correct answer)
3 points

Solution to 7.1

We simplify the expression using the properties of matrix multiplication from theo-
rem 2 chapter 2, the properties of invertible matrices from theorem 6 chapter 2, as
well as the fact that M* = M - ... M (k times).

C’_l(AB_l)_l(CA_l)_lc’Q
=Y BHtalahH)teteoe
=C 'BAtACCC
=C'B(ATA)(CTO)C
=C 'BIIC
=C'BC
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Correct answer:

e C'BC

8.1 Let P3 be the vector space of all polynomials of degree 3 or less. Let
S =A{pi(t),p2(t),p3(t), s(t)}, Q= span{pi(t), p2(t), ps(t), pa(t)},

where
pi(t) =143z +22% — 2% po(t) =2+ 2°,

p3(t) =x+a* — 2 py(t) =3+ 8x + 82°.

The coordinates of the polynomials {p1(t), p2(t), ps(t), p4(t)} in the standard basis
E ={1,t,12,t*} of P3 are: (choose the correct answer)

3 points

Solution to 8.1

By the first definition in chapter 2.9, when a vector is written as a linear combination
of a set of basis vectors, the coordinates are given by the coefficients in front of the
basis vectors. If one or more of the basis vectors are not included in the linear
combination (i.e. for ps(%)), the coefficient corresponding to that basis vector is just
0.

Correct answer:

N W o=
e )

[pl(t)}e = ) [p2(t)]5 = [p:&(t)]é: = ) [p4(t)]5 =

— O = O
o O o W

9.1 Let P; be the vector space of all polynomials of degree 3 or less. Let
S ={p:1(t),p2(t),ps(t), pa(t)}, @ = span{pi(t), p2(t), p3(t), pa(t)},

where
p(t) =143+ 22 — 23, pe(t) = x + z3,



p3(t) =x+ 2% — 2, py(t) =3+ 8v + 8.
The basis B of @) chosen from the set S is given by: (choose the correct answer)

3 points

Solution to 9.1

The coordinate mapping is a one-to-one correspondence between @ and R*. (@ is
isomorphic to R*, which means that linear dependence is conserved when we apply
the coordinate mapping p(t) — [p(t)]e.

We construct the matrix A where the columns are the coordinate vectors we found
in the last problem. Then we row reduce A to reduced echelon form. We only
need the echelon form here, but the reduced echelon form will be useful in the next
problem.

1 0 0 3 100 3
A 3 1 1 8 1010 5
2 0 1 O 001 —6
-1 1 -1 8 000 O

The first three columns are pivot columns, and therefore linearly independent. Since
the coordinate mapping conserves linear dependence, this means that p;(t), po(f) and
ps(t) are linearly independent.

In order for a set to be a basis for a given subspace, it needs to be linearly in-
dependent and span that subspace. The four polynomials in S span @, but only
p1(t), p2(t) and ps(t) are linearly independent in Q). Hence, {p;(t), p2(t), p3(t)} form
a basis for Q.

Correct answer:

pi(t), pa(t), ps(t)

10.1 Let P35 be the vector space of all polynomials of degree 3 or less. Let
S =A{pi(t), p2(t), p3(t), pa(t)}, Q= span{pi(t), p2(t), ps(t), pa(t) },

where
pi(t)=1+3x+ 2% — x3, po(t) =z + x3,
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p3(t) =x+ 2% — 2, py(t) =3+ 8x + 8a°.
The polynomials in S has the following coordinates in the basis B of @: (choose
the correct answer). Remember that the basis B is chosen from the polynomial
belonging to the set S.

4 points

Solution to 10.1

Recall that the basis B of @ was {p1(t), p2(t), ps(t)}. We need to find [p;(t)]s for
1 =1,2,3,4, that is, finding the coefficients such that

pi(t) = aipi(t) + bipa(t) + cips(t)

Then [p;(t)]g = | bi

&

This is casy for the first three polynomials in .S, as they are basis vectors themselves.
For example,

pi(t) = 1-pu(t) +0-pa(t) + 0 - p3(t)

Thus,
1 0 0
p1(W)]s = [0],[p2(t)ls= [1]|,[ps(t)]z= |0
0 0 1

For p,(t), we return to the matrix of coordinate vectors that we constructed in the
last problem. From the reduced echelon form, we see that py(t) is linearly dependent
of the other vectors, in the sense that

pa(t) = 3p1(t) + 5pa(t) + (—6)ps(t).

Thus,
3
[pa(t)]s= | 5
—6
Correct answer:
[ ]
1 0 0 3

1))z = 10|, [p2(B)ls=[1|, [ps(W]s= 0|, [pa(t)lz=1]5
0 0 1 —6
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11.1 Let T: R? — R? be a linear transformation such that

o) @[

The standard matrix A of T, rank r of T', and d = dim(ker(7")) are given by: (choose
the correct answer)

4 points

Solution to 11.1

Since T: R? — R?, we know that the standard matrix A of T has to be a (3 x 2)
matrix.

a b
A= lc d
e f

However since T is linear, we also know that the standard matrix is given by

A= [T(?l) T(?z)}

So instead of computing each element of A, we can compute each column directly
using the given information.

— 4 . .
Let @ = B] and b = {3} . We want to express the unit vectors in terms of @ and

—

b
_)
a b = ¢,

T - +y.

3 41 10 3
230 01 -2

%
So we know that ?1 =37 -2V.
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_>
Thus, we find that €5 = —447 +3 b .

By using these relations and the fact that T' is linear, we can find the columns of
the standard matrix.

. 1 0 3
T(e¢)=T@Bd —-2b)=3T(d)—-2T(b)=3|2| —2|-5| = |16
3 1 7
. R 1 0 —4
T(€y) =T(—4d +3b)=—4T(d)+3T(b)=—4 (2| +3|-5| = | -23
3 1 —9

Hence the standard matrix A of T is given by
]
A= {16 —-23

R

The rank r of T is the dimension of the range of T, which is the same as the
dimension of the column space of A, or the rank of A. The dimension d of the
kernel of T is just the same as the dimension of the null space of A. See chapter
4.2.

We row reduce A:

3 —4 1 —4/3
A= (16 —23| ~ |0 1
7 -9 0 0

A has two pivot columns. Hence the rank of A is 2, which means that the rank r of
T is 2.

Finally, by the rank theorem dim(Null(A)) = n — rank(A) = 2 -2 = 0. So
d = dim(Ker(T)) = 0. This just means that T is one-to-one.

Correct answer:

3 —4
A= |16 —23|, r=2 d=0.
7 -9
12.1 Let
1 —14 4 4
A=1|-1 6 =2 and o =|-1

-2 24 -7 -7
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Then A7 equals to the vector: (choose the correct answer).

You can use the following information without proving it: the eigenvalues of A are

A= —1, Ay =0, A3 = 1, and the corresponding eigenspaces are
3 —2 —4
span —1 , span 1 , span 2
-5 4 7
4 points

Solution to 12.1

The three given eigenvectors correspond to different eigenvalues, and are therefore
linearly independent. Then A is a (3 x 3 matrix with 3 lincarly independent eigen-
vectors, and therefore it is diagonalizable.

We construct P and D from the given information.

3 -2 —4 ~10 0
P=|-1 1 2|, D=]0 00
-5 4 7 0 0 1

We then find the inverse of P, using the algorithm in chapter 2.2.
3 =2 —4 1 00 100 1 2 0

Pll=|-1 1 2 01 0[~{010 3 -1 2

-5 4 7 0 0 1 o01 -1 2 -1
1 2 0
This means that P"' = [ 3 -1 2
-1 2 -1

We know that A = PDP~1. Then,
AV = (PDPHY = (PDP Y)Y (PDPY)..(PDP ") (PDP™)
= PD(P~'P)D(P~'P)..(P~'P)DP~' = pD"P!

Since D is a diagonal matrix,

(=D 0 0 100
DY = 0 0O 0l=1000
0 0 1% 00 1

Now we are ready to compute A7 .
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AVY = pDP'Y

1 2 0 4 2
= PDO(P'F)=PD* |3 —1 2| |-1|=PD" |1
-1 2 =1| -7 1
1 00 2 2 3 -2 —4| (2 2
0 0 1 1 1 -5 4 7 1 -3
Correct answer:
[}

2

0

-3

13.1 The quadratic form
Q = 2% — 4wz + 5y + 422

is: (choose the correct answer)
3 points

Solution to 13.1

x
First, we construct the vector 7= y|. Now we can write () on the form (7)TA7,
x
using the method presented in the beginning of chapter 7.2.

1 0 =2| |z
Q(T) = [y 2] [0 5 0|y
-2 0 4 z

We determine the definiteness of ) by studying the eigenvalues of the matrix
A.

92 1-x 0 -2
0|, A=X=] 0 5-X 0
4 2 04—\
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Calculating the characteristic polynomial using cofactor expansion along the second
row of A — A, we get:

det(A — ) = MV[A =)A= A) = (=2)(=2)]
— A4 =X —4N+ 2 —4)
— N (A2 = 5))

A2 — 25\ — A3 4+ 5)?

= —\% 4+ 10\% — 25\

= —A(\* — 10\ + 25)

= -\ —-5)?

= (
= (
= (
=5

The roots of the characteristic polynomial, and thus the eigenvalues of A, are Ay =0
and )\2 = 5.

The eigenvalues of A are greater than or equal to zero, which means that Q(Y) >0
for all 7. Hence, Q is positive semidefinite.

Correct answer:

e positive semidefinite

14.1 Tet

The value ¢ for which the vectors
il + ¥ and W + v

are orthogonal is: (choose the correct answer)
3 points

Solution to 14.1

We define the two vectors

1
Ti=ch+T=c| |+
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1 —3 1— 3¢

1 0 1
To=U+cV = ol telol=1 o

-2 1 —2+4c

The two vectors are orthogonal to each other if and only if their inner product is 0.
We calculate the inner product as a function of c:

2 Ty=(c—3)1-3¢)+c-140-04 (=2c+1)(=2+¢)
=c—3"-3+9+ct+dc—2—-2+c
= —5¢> +16c — 5
Using the quadratic formula, we get that the inner product is 0 for ¢ = @. Hence
the two vectors are orthogonal to each other for these values of c.
Correct answer:

P 8i5\/39

15.1 Lot
31
A= {1 3}.

The spectral decomposition of A is given by: (choose the correct answer)
3 points

Solution to 15.1

The spectral decomposition of A is given by its eigenvalues and eigenvectors. We con-
struct A— AI and calculate the eigenvalues from the characteristic polynomial.

AN = {3—/\ 1 }

1 3-A
det(A=A)=B-XN)B-A)—-1-1=9—-6A+X—-1=X\—-6\+38

Using the quadratic formula, we get that the roots of the characteristic polynomial
are \y = 2 and Ay = 4, so these are the eigenvalues of A.

Next, we find the corresponding eigenvectors by solving the system AW, =\
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[A—Qf\ﬁ]ZF 1 O}N{l 1 0]

X9 18 free, x1 = —x5. We choose u; = [_11}

S [-1 1 0] [-11 0
[A_M’O]_{l 1 0]“{0 0 o}

Ty is free, x1 = x5. We choose uy = [1}

The two eigenvectors are orthogonal since their inner product is one, so to make
them orthonormal we only have to normalize them by dividing them with their
length.

Vi !gi\ - (—11)2+12 {_11] - {_\/\/;/22}
o g; — = |1] - L@ﬂ

Now we can compute the two terms of the spectral decomposition of A, using the
representation presented in chapter 7.1.

w2 [ v i =21 =4 7]

it =a (g e e =iy ] -2

The spectral decomposition of A is given by A = A17171T + )\2727;
Correct answer:
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3
16.1. The distance from b = | 5 € R3 to a subspace
-9

W = {(z1, 72, 23) € R®: 1 + 25 + 13 = 0}

is equal to: (choose the correct answer)
4 points

Solution to 16.1

The Best Approximation Theorem (theorem 9 chapter 6) tells us that the shortest
distance from a vector to a subspace is along a vector that is perpendicular to that
subspace. We therefore want to find a vector that is perpendicular to W.

al
Any vector 7 = Zo | in W has the property that x1+xo+x3 = 0 = 3 = —x1 — 29,
x3
and can thus be written as
T 1 0
7 = i) = 0 —+ X9 1 = I171 + I272
—T1 — T2 —1 —1

Hence, W = spa % 1, 72} A vector that is perpendicular to W therefore has to

be orthogonal to v/ and U
a

Let us denote this vector as @ = |b|. Then we know that:
c

7-71:O:>a—c:O:>a:c
7‘72:O:>b—c:O:>b:c
a

So any vector U= lal| is perpendicular to W, and we choose U =
a

—_ = =

— —
Thus, the distance frgm b to W is the length of the component of b along spand,
which i projgangay b -

1
, 3-1+45-14+(-9)-1
d= ||pr0]span{7} H_||ﬁ7||_ H 12 + 12 + 12 1 H
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1 1

1 2 _ 2 _ 2 —
=ll-3 } 1= V(=1/3) + (=1/3)2 + (=1/3) =7

Correct answer:

Sl

17.1 The certain experiment produces the data

{(Oa 2)7 (_1’ _1)a (270)7 (1’ 1)}

The least square curve y = 1z + Box? is given by: (choose the correct answer)
3 points

Solution to 17.1

Here we use the method presented in chapter 6.6. We want to find the least squares
solution of the equation X ? e 7 We will do this by solving the normal equation
XTXF = X7,

First we construct the design matrix X, the observation vector 7 and the parameter
vector F using the given data. Keep in mind that since we do not want the 3y
term in the expression for our curve, our design matrix will only contain the x and
22 columns, and not the first columns of 1s that we usually include when solving
problems of this type.

s
I
o |
—_
— s = O
=]
I
o |
—_
=l
I
- _ 1
S
| |

=
I
— 1
o O
—_
—
> DN
—_ =
| IS |
ro |
—_
— s = O
I
1
o O
—
0o ©
| I |
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— [0 =1 2 1] |-1] |2
X7_{0 1 41} 0 _M

Now we can solve the normal equation for ? and find the coefficients for our curve.
X7TX is a square matrix with linearly independent columns and thus invertible, so
we can write:

pRresoRsesm—— e | N RN

This means that §; = 9/11 and f = —4/11.

Correct answer:

- 9,._ 4
*Y=7L -t

2

18.1 The following equation
272 — 6111y — 623 =T

defines: (choose the correct answer)
3 points

Solution to 18.1

We can write this quadratic form as Z7AZ in the following way:

2 =3
23:% — 6x12T9 — 6:6% =71 = [:cl l’z} {_3 —6} [ij

The geometric shape of the quadratic form will not change if we use a change of
variable. We find the eigenvalues of A.

det(A — \I) = det ({2__; 2 AD — (2= M\)(=6— ) — (=3)(=3)

= 122246 A+ XN —9=)224+4)—21
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Using the quadratic formula, we find that A has eigenvalues \; = 3 and A\, = —T7.
Since A is symmetric, it is orthogonally diagonalizable, and can be written as A =

3 0
T _
PDP*, where D = {0 _7} .

Thus by finding two orthonormal eigenvectors of A and constructing P, we could
write the quadratic form as Y7 D7, using the change of variable 7 = P7 = 7 =
P

The quadratic form can then be written as:

YIDY = [y v [g _07] [Z/j =32 Tyi=n

We recognize this as the equation of a hyperbola.
Correct answer:

e a hyperbola

19.1 Let
3 -5 1
1 1 1
?1 — —11 72 - 5 ) 73 - —9
3 -7 8

The orthogonal basis of V = span{ @, @3, 73} is given by the following vectors:
(choose the correct answer)

3 points

Solution to 19.1

Here we will use the Gram-Schmidt algorithm to produce an orthogonal basis for

V. Note that there are multiple orthogonal bases for V', depending on which vector

we use as our U';. However since all of our options contain 71, we choose this as
ﬁ

our v'y.

Then we use the Gram-Schmidt algorithm to find Uy and U3 as described in theo-
rem 11 chapter 6.
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71:?1— _11
3
[—5] 3
7_?_?2?17_ 1| (-5):3+1-145-(-)+(-7)-3 | 1
A T 7 324+124 (—1)2+ 32 —1
_—7 3
—5] 3 1
1 1 3
=152 |2 3
_—7_ 3 -1
Ty Ty U
Vo= Ty - S, - 22 g,
1° U1 2 Usg
1 3 1
1 134114 (=2)- (=D +8-3 1| 1-1+1-34+(-2)-3+8-(=1) |3
=2 32+12+(_1)2+32 -1 12+32+32+(_1)2 3
8 3 -1
1 3 1 -3
|1 _§ 1 +1 3| |1
=2 2 | —1 213 |1
8 3 -1 3
Correct answer:
[}
3 1 -3
1 3 1
71: —11|> 72: 3 ; 73_ 1
3 -1 3
20.1. Let
3 -5 1
1 1 1
A=1_1 5 -9
3 -7 8

The matrix R in the QR factorisation of A is given by: (choose the correct answer)
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4 points

Solution to 20.1

By theorem 12 chapter 6, the ) R-factorisation of A is given by A = QR. Q@ is
a matrix whose columns form an orthonormal basis for Col(A), and hence is an
orthogonal matrix. We then know that Q7 Q = I.

A=QRe QTA=QTQR = QTA=IR= R=QTA

We need to construct ). In the previous problem we found an orthogonal basis for
V = span{ @'y, 7’5, 7’3}, which we recognize as Col(A). In order to find the columns
of ), we just need to normalize 71, Uy and U 5.

e e
2 v 1 1| 1 |1
T B (-3 |l 2vE |-
3 3

e e

7 . 72 . 1 3 _L 3
UV VErR (0|3 253
~1 ~1

g i

7= Uy 1 1| 1 |1
TN VP ey | 1 205 | 1
3 3

3 1 =3
1 1 3 1
3 -1 3
Now we can calculate R using () and A.
R N N
R=Q"A=——1|1 3 3 -1

25|31 1 3| |7t 5 2
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20 —40 30 . [0 =20 15
—— |0 20 -10l=——1]0 10 =5
2500 0 20 V5o 0 10

Correct answer:

10 20 15
R=—10 10 -5
V5lo 0 10

21.1. Let

Y

- = =
A:{71,72,73}, B:{bl,bg,bg}

be two bases of a vector space V. Suppose that

- = - = = —
71:4[)1—[)2, 72:—1714—62—63, E)gzb

2 — 2b3
Let also
T =30, +4dy+ s
Then the matrix P4 .5 of the change of coordinates from the basis A to the basis
B and [7']3 are given by: (choose the correct answer)

3 points

Solution to 21.1

The change of coordinates matrix P4 .5 is given by

Pass = [[T1]s [Tols [@s]s]

We find the B-coordinate vectors of the basis A using the definition in chapter 2.8.
Later we also find the A-coordinate vector of Z in the same way.
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By theorem 15 in chapter 4.7, the coordinate vector of 7 relative to B is

4 -1 O 3 8
[7}3 = 7’A—>B[7]A = (-1 1 1 41 = | 2
0 -1 -2/ |1 —6
Correct answer:
[ J
4 -1 0 8
0 -1 -2 -6
22.1. Let

= [2] = 1
s-{71= 4] 7L}
be a basis in R? and T': R? — R? is the lincar transformation given by @ — A7,
where _
3 4
a4 _J .

Then the B-matrix Mg for the linear transformation 7' in the basis B is given by:
(choose the correct answer)

4 points

Solution to 22.1

The B-matrix My is the matrix that takes us from [#]s to [T(Z)]s. By the section
”Linear transformations from V into V” in chapter 5.4, it is given by:
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g g -
bg)zclbl—l—cgbg.

- = — 2 1 11 1 0 5
e T(bZ)]_{—l 2 —3}”{0 1 1}

2)]s = [ﬂ , and the matrix Mjp is given by:

We need to find the coefficients ¢; and ¢, such that T'(

Hence [T(E>

Jls [T(82ls] = g 5

Correct answer:

1 5
Ma= g 1)

23.1. Suppose that {¥'1, U5} are linear independent in 5-dimensional vector space

V. Prove that
(U =V1+ Vs, Uy=11—- U3}

are also linear independent in V.
8 points

Solution to 23.1

By the definition of linear independence, W1 and Wy are linearly inependent if and

only if R
0171 + 0272 =90

only for ¢; = ¢3 = 0.

0171 + 0272 = 6>
01(71 + 72) + 02(71 - 72) = 6>

—
6171 + 6172 + 6271 — 62?2 =0

ﬁ
(Cl + Cg)?l + (Cl — 02)72 =0
We know that 77 and 75 are linearly independent in V. So a linear combination

of them can only equal the zero vector if the coefficients in front of the vectors are
all 0.
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Hence, the above equation is true only for ¢; + ¢ = 0 and ¢; — ¢ = 0. These
equations are fulfilled only for ¢; = ¢, = 0.

Thus, we have proved that R
C1 71 + 0272 =0
only for ¢; = ¢ = 0. Then, 71 and 72 must also be linearly independent in V.

24.1. Let A be a (5 x 3) matrix. Suppose that there is a (3 x 5) matrix B such
that
BA = 1I;.

_>
Suppose further that the system A7 = b has at least one solution. Prove that this
solution is actually unique solution.

8 points

Solution to 24.1

%
In order to show that the solution of AZ = b is unique, we assume by contrary,
that there are two different solutions

A71 = 7 and A?z = ?, and 71 # 72
Subtracting from the first equation the second one we obtain
AT —Ta) =10
We multiply both sides by B from the left, and use the given relation between A

and B.
B(A(@ — 7)) = BO
(BA)(T1— T)
I3(Z) — 7o) =
Tr—Ta=0
=T

Hence, the vectors 71 and 7o are equal that contradict to the assumption that
they were different.

We have thus proved that the solution of the equation is unique.

A:{Z g}.

25.1. Let
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The sum of the diagonal entries tr A = a + d in A is called the trace of the matrix
A. Show that the characteristic polynomial of A can be written as

det(A — X)) = A\? — (tr A)X + det A.

Hence give the condition for A to have real eigenvalues.
8 points

Solution to 25.1

We first construct the matrix A — Al and find the characteristic polynomial in the
usual way.

det(A=M) = (a—\)(d— ) —c-b = ad—a\—d\+\* —bc = N> — (a+d) X+ (ad — be)

We recognize a + d as the trace of A, and ad — bc as the determinant of A. Hence,
the characteristic polynomial is given by

det(A — M) = X2 — (trA)X\ + det(A)

The eigenvalues of A are the roots of the characteristic polynomial. Using the
quadratic formula, we get

—(—trA) + /(—trA)2 —4-1- det(A)
2.1

In order for the eigenvalues to be real, the discriminant has to be greater than or
equal to 0. We then have the condition:

(—trA)*> —4-1-det(A) >0
(trA)* — 4det(A) > 0

Ao =

Hence, A has real eigenvalues when (trA)* — 4det(A) > 0.



