NTNU - Trondheim Norwegian University of Science and Technology

Department of Mathematical Sciences

Examination paper for
 MA0003 Mathematical Methods for Computer Science

Academic contact during examination: Daniel Oliveira da Silva
Phone: 73592021

Examination date: 9. December 2014
Examination time (from-to): 9:00-13:00
Permitted examination support material: C: Specified printed and handwritten materials allowed. Selected, basic calculators allowed.

1. One yellow A4-sized sheet stamped "Institutt for matematiske fag", on which you can write as much as you like by hand.
2. Matematisk formelsamling, by Rottmann.
3. Simple calculator: Citizen SR-270X, Citizen SR-270X College or Hewlett Packard HP30S, or similar.

Language: English
Number of pages: 7
Number pages enclosed: 0
Checked by:

Problem 1 Compute the following limits.
a) $\lim _{x \rightarrow 2}\left(x^{2}+2 x-1\right)$
b) $\lim _{h \rightarrow 0}\left(\frac{\cos (x+h)-\cos (x)}{h}\right)$

Solution: a) Since $x^{2}+2 x-1$ is continuous, we have

$$
\lim _{x \rightarrow 2}\left(x^{2}+2 x-1\right)=(2)^{2}+2(2)-1=7 .
$$

b) Note that the limit in the question is of the form

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

where $f(x)=\cos (x)$. But this is just the definition of the derivative of $f(x)$. Thus

$$
\lim _{h \rightarrow 0}\left(\frac{\cos (x+h)-\cos (x)}{h}\right)=\frac{d}{d x}(\cos (x))=-\sin (x) .
$$

Problem 2 Determine if the following matrices have inverses. Explain why or why not. Do not compute the inverses.
a) $A=\left[\begin{array}{ll}0 & 1 \\ 2 & 3\end{array}\right]$
b) $B=\left[\begin{array}{lll}1 & 0 & 1 \\ 2 & 2 & 3\end{array}\right]$
c) $C=\left[\begin{array}{lll}1 & 0 & 1 \\ 2 & 2 & 3 \\ 2 & 2 & 3\end{array}\right]$

Solution: a) The determinant of A is

$$
\operatorname{det} A=0 \cdot 3-1 \cdot 2=-2 .
$$

Therefore the matrix has an inverse.
b) Since B is not a square matrix, it does not have an inverse.
c) The determinant of C is

$$
\operatorname{det} C=1 \cdot \operatorname{det}\left[\begin{array}{ll}
2 & 3 \\
2 & 3
\end{array}\right]-0 \cdot \operatorname{det}\left[\begin{array}{ll}
2 & 3 \\
2 & 3
\end{array}\right]+1 \cdot \operatorname{det}\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right] .
$$

Each of the smaller determinants is zero, and so the determinant of C is zero. Thus, C does not have an inverse.

Problem 3 Differentiate the function

$$
g(x)=x^{2} e^{x}+\cos (\ln |x|) .
$$

Solution: We apply the product rule to the first term, and the chain rule to the second term to obtain

$$
g^{\prime}(x)=2 x e^{x}+x^{2} e^{x}-\sin (\ln |x|) \cdot \frac{1}{x} .
$$

Problem 4 Solve the matrix equation $A \boldsymbol{x}=\boldsymbol{b}$, where

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right], \quad \boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{c}
2 \\
-2 \\
2
\end{array}\right] .
$$

Solution: The solution to the equation $A \boldsymbol{x}=\boldsymbol{b}$ is given by $\boldsymbol{x}=A^{-1} \boldsymbol{b}$, where A^{-1} is the inverse of A. Using the procedure discussed in lecture, the inverse is given by

$$
A^{-1}=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2}
\end{array}\right] .
$$

Multiplying by b then gives

$$
A^{-1} b=\left[\begin{array}{c}
-1 \\
-1 \\
3
\end{array}\right] .
$$

Problem 5 Compute the matrices corresponding to the following linear transformations.
a) $T\binom{x_{1}}{x_{2}}=\binom{x_{2}}{2 x_{1}}$
b) $T\binom{x_{1}}{x_{2}}=\left(\begin{array}{c}2 x_{1}-x_{2} \\ x_{1}+4 x_{2} \\ -2 x_{1}+3 x_{2}\end{array}\right)$

Solution a) We have

$$
T\binom{1}{0}=\binom{0}{2}
$$

and

$$
T\binom{0}{1}=\binom{1}{0}
$$

and so the matrix corresponding to T is

$$
\left(\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right) .
$$

b) As before, we compute

$$
T\binom{1}{0}=\left(\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right)
$$

and

$$
T\binom{0}{1}=\left(\begin{array}{c}
-1 \\
4 \\
3
\end{array}\right)
$$

so the matrix for T is

$$
\left(\begin{array}{cc}
2 & -1 \\
1 & 4 \\
-2 & 3
\end{array}\right) .
$$

Problem 6 Compute the following integrals.
a) $\int_{0}^{1} x+x^{2}+x^{10} d x$
b) $\int x \sin x d x$
c) $\int_{0}^{\frac{\pi}{2}} \cos (x) e^{\sin (x)} d x$

Solution: a) By the power rule, we have

$$
\begin{aligned}
\int_{0}^{1} x+x^{2}+x^{10} d x & =\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\left.\frac{1}{11} x^{11}\right|_{0} ^{1} \\
& =\frac{1}{2}(1)^{2}+\frac{1}{3}(1)^{3}+\frac{1}{11}(11)^{11}-\left(\frac{1}{2}(0)^{2}+\frac{1}{3}(0)^{3}+\frac{1}{11}(0)^{11}\right) \\
& =\frac{61}{66} .
\end{aligned}
$$

b) We use integration by parts.

$$
\begin{array}{rlrl}
u & =x & d v & =\sin x d x \\
d u & =d x & v & =-\cos x
\end{array}
$$

Applying the IBP formula, we get

$$
\begin{aligned}
\int x \sin x d x & =-x \cos x-\int-\cos x d x \\
& =\sin x-x \cos x+C
\end{aligned}
$$

c) We apply u-Substitution. Let $u=\sin x$. Then $d u=\cos x d x$. This allows us to rewrite the integral as

$$
\int \cos x e^{\sin x} d x=\int e^{u} d u=e^{u}+C=e^{\sin x}+C
$$

Thus, the definite integral is

$$
\int_{0}^{\frac{\pi}{2}} \cos (x) e^{\sin (x)} d x=\left.e^{\sin x}\right|_{0} ^{\pi / 2}=e^{\sin \left(\frac{\pi}{2}\right)}-e^{0}=e^{1}-1=e-1
$$

Problem 7 Let

$$
A=\left[\begin{array}{lll}
1 & 2 & -1 \\
0 & 3 & -2
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
0 & 1
\end{array}\right]
$$

Compute the following matrices, if they are defined. If they are not defined, explain why not.
a) 2 A
b) $A+B$
c) $A B$
d) $B A$

Solution: a) We have

$$
\begin{aligned}
2 A & =2\left[\begin{array}{lll}
1 & 2 & -1 \\
0 & 3 & -2
\end{array}\right] \\
& =\left[\begin{array}{lll}
2 \cdot 1 & 2 \cdot 2 & 2 \cdot(-1) \\
2 \cdot 0 & 2 \cdot 3 & 2 \cdot(-2)
\end{array}\right] \\
& =\left[\begin{array}{lll}
2 & 4 & -2 \\
0 & 6 & -4
\end{array}\right]
\end{aligned}
$$

b) Addition and subtraction of matrices is only defined for matrices of the same size. So this sum is not defined.
c) This product is defined, and is given by

$$
\begin{aligned}
A B & =\left[\begin{array}{lll}
1 & 2 & -1 \\
0 & 3 & -2
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
5 & 3 \\
6 & 1
\end{array}\right]
\end{aligned}
$$

d) This product is also defined, and is given by

$$
\begin{aligned}
B A & =\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & -1 \\
0 & 3 & -2
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 8 & -5 \\
2 & 7 & -4 \\
0 & 3 & -2
\end{array}\right]
\end{aligned}
$$

Problem 8 A spherical balloon is being inflated in such a way that its radius is increasing at a rate of $3 \mathrm{~cm} / \mathrm{min}$. If the radius of the balloon is initially 5 cm , how fast is the volume increasing after the balloon has been inflated for 2 minutes? (Hint: You will need that the volume of a sphere is $V=\frac{4}{3} \pi r^{3}$.)

Solution: We can solve this using implicit differentiation. The idea is that the question is asking for the rate of change of V, as a function of time. However, the formula given to you in the question tells you the volume as a function of radius. In addition, you are given the rate of change of the radius. Thus, we can think of the formula in the hint as

$$
V(r(t))=\frac{4}{3} \pi(r(t))^{3} .
$$

Differentiating implicitly, we get

$$
\begin{aligned}
\frac{d V}{d t} & =\frac{d V}{d r} \frac{d r}{d t} \\
& =4 \pi(r(t))^{2} \frac{d r}{d t} .
\end{aligned}
$$

If the balloon starts with a radius of 5 cm and increases by 3 cm every minute, then when $t=2, r=11$. Thus

$$
\begin{aligned}
\frac{d V}{d t} & =4 \pi(r(t))^{2} \frac{d r}{d t} \\
& =4 \pi(11)^{2}(3) \\
& =1452 \pi \mathrm{~cm}^{3} / \mathrm{min} .
\end{aligned}
$$

Problem 9 Solve the following initial value problems.
a) $\frac{d y}{d x}=x^{2}+2 x-5, y(0)=-4$
b) $\frac{d y}{d x}=\frac{y^{2}}{x}, y(1)=5$

Solution: a) This is a Type I problem, and so we solve it by integrating:

$$
y=\int x^{2}+2 x-5 d x=\frac{1}{3} x^{3}+x^{2}-5 x+C .
$$

Applying the initial condition, we get

$$
-4=\frac{1}{3}(0)^{3}+(0)^{2}-5(0)+C=C
$$

Thus

$$
y=\int x^{2}+2 x-5 d x=\frac{1}{3} x^{3}+x^{2}-5 x-4
$$

b) This is a Type II problem, and we solve it by separating the variables:

$$
\frac{1}{y^{2}} \frac{d y}{d x}=\frac{1}{x}
$$

Next, we integrate both sides:

$$
\int \frac{1}{y^{2}} \frac{d y}{d x} d x=\int \frac{1}{x} d x
$$

Using the definition of the differential, we can write the left side as

$$
\int \frac{1}{y^{2}} \frac{d y}{d x} d x=\int \frac{1}{y^{2}} d y
$$

Thus

$$
\int \frac{1}{y^{2}} d y=\int \frac{1}{x} d x
$$

The integrals become

$$
-\frac{1}{y}=\ln |x|+C
$$

Applying the initial condition, we get

$$
-\frac{1}{5}=\ln |1|+C=C
$$

So $C=-1 / 5$. Thus

$$
y=\frac{1}{\frac{1}{5}-\ln |x|}
$$

