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Plateaued Boolean functions in cryptography

Studying cryptographic criteria for Boolean functions

f : Fn2 7→ F2

and vectorial functions ((n,m)-functions)

F : Fn2 7→ Fm2

and finding constructions are simpler within some classes of functions.
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Considering quadratic functions (Boolean or vectorial) considerably

simplifies the calculation of the Hamming weight and of the Walsh

transform and eases the study of several cryptographic criteria.

A function f (Boolean or vectorial) is quadratic if the function

ϕf(x, y) = f(0) + f(x) + f(y) + f(x+ y) is bilinear.

But the low algebraic degree of quadratic functions hardly allows

resisting the Berlekamp-Massey and Rønjom-Helleseth attacks in the

case of Boolean function, and the higher-order differential attack in

the case of vectorial functions.
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Also, the number of equivalence classes of quadratic functions up

to EA-equivalence (i.e. under composition by an affine permutation

of Fn2 and addition of an affine Boolean function) equals bn/2c only.

Super-classes of functions having the same advantages as quadra-

tic functions and including many more equivalent classes have then

been studied (since 1992).

In the case of Boolean functions, these classes have been suc-

cessively those of :
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1. partially-bent functions (C.C., CRYPTO’92), which are by defini-

tion affinely equivalent to functions of the form :

f(x+ y) = g(x) + h(y), x ∈ Fr2, y ∈ Fn−r2 , r even,

where g is bent, i.e. has maximal nonlinearity (Hamming distance

to affine functions), i.e. whose Walsh transform

Wf(a) =
∑
x∈Fn2

(−1)f(x)+a·x,

(where · is an inner product) has constant magnitude 2n/2, and h

is affine. Such function has algebraic degree at most r/2 ≤ n/2,
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2. plateaued functions (Zheng, Zhang, ICICS’99), whose Walsh trans-

form takes values 0 and ±µ only, where µ = 2k for some k such

that n/2 ≤ k ≤ n is called the amplitude of f . The algebraic

degree is bounded above by dn/2e.

The definition of plateaued functions does not depend on the choice

of the inner product.
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The class of partially-bent functions includes by definition all bent

functions.

Every partially-bent function is plateaued but there exist plateaued

functions which are not partially-bent (Zheng-Zhang, ICICS’99).

The class of plateaued functions also includes all semi-bent func-

tions, but not only bent and semi-bent functions.

The cryptographic criteria are easily studied within these two

classes, but the classes themselves are difficult to study !
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For vectorial (n,m)-functions :

There is no equivalent of partially-bent functions for m > n/2
since we know that no bent (n,m)-function exists when m > n/2
(Nyberg, EUROCRYPT’91).

The most general equivalent of plateaued Boolean functions for

vectorial functions F : Fn2 7→ Fm2 is componentwise plateaued func-

tions, whose component functions u · F , u 6= 0, are plateaued.

These functions are important for block ciphers since all Almost

Bent (AB) (n, n)-functions (achieving maximal nonlinearity nl(F ),

for n odd) are componentwise plateaued, as well as some APN

functions, n even, like the Kasami functions (at least for 6 6 |n).
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Notation : WF (a, u) = Wu·F (a).

Recall that AB implies APN ; that

nl(F ) = min{nl(u · F ) , u ∈ Fn2 , u 6= 0};

that for m = n,

nl(F ) ≤ 2n−1 − 2
n−1

2 ;

and that F is APN if

|{x ∈ Fn2 ; F (x) + F (x+ a) = b}| ≤ 2, ∀a, b ∈ Fn2 , a 6= 0.

Moreover, we know that if an (n, n) APN function is component-

wise plateaued in odd dimension n, then it is AB.
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Little is known on plateaued Boolean functions, except (very

partly) for bent and semi-bent functions. Still less is known on

componentwise plateaued vectorial functions.

On plateaued Boolean functions are known :

– some direct consequences of the definition,

– a characterization by the second order derivatives (C.C.-Prouff,

FSE 2003),

– characterizations by constant ratio of consecutive Walsh power

moments of even orders (Mesnager, SETA 2014, to appear).

On componentwise plateaued vectorial functions, no general charac-

terization is known.
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Characterizations of plateaued Boolean functions
and of componentwise plateaued vectorial functions

I. Characterization by means of derivatives

Daf(x) = f(x) + f(x+ a),

DaDbf(x) = f(x) + f(x+ a) + f(x+ b) + f(x+ a+ b)

C.C.-Prouff, FSE 2003 :

Any Boolean function f is plateaued on Fn2 if and only if the

expression
∑
a,b∈Fn2

(−1)DaDbf(x) does not depend on x ∈ Fn2 .

This constant expression equals then the square of the amplitude.
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Theorem 1. Let F be an (n,m)-function. Then are equivalent :

1. F is componentwise plateaued,

2. for every v ∈ Fn2 , the size of the set

{(a, b) ∈ (Fn2)2 ; DaDbF (x) = v}

does not depend on x ∈ Fn2 .

In other words, the value distribution of DaDbF (x) when (a, b)
ranges over (Fn2)2 is independent of x ∈ Fn2 .

Moreover, the value distribution of DaDbF (x) equals the value

distribution of DaF (b) +DaF (x) when (a, b) ∈ (Fn2)2.
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Examples

1. Let F be AB (n odd), it is known that :
– |{(a, b) ∈ (Fn2)2 ; DaDbF (x) = 0}| = 3 · 2n− 2 (i.e. F is APN),

– |{(a, b) ∈ (Fn2)2 ; DaDbF (x) = v 6= 0}| = 2n − 2.

2. Let n be even and F (x) = x2i+1 be a Gold APN function,

|{(a, b) ∈ (Fn2)2 ; DaDbF (x) = v}| equals :
3 · 2n − 2 for v = 0,
2n ± 2

n
2+1 − 2 for v a nonzero cube (2n−1

3 cases)
2n ± 2

n
2 − 2 for v a non-cube (2 · 2

n−1
3 cases).

Moreover, among the two “±” above, one is “+” and one is “−”.
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Remark 1. Let F be CCZ-equivalent to a Gold APN function

G(x) = x2i+1 (i.e. if its graph corresponds to that of the Gold

function by an affine permutation) or to a Kasami APN function

G(x) = x4i−2i+1.

The graph GF of F satisfies GF = L(GG) and we can consider

w.l.o.g. L linear. Then :

WF (a, u) = WG(L∗(a, u)), where L∗ is the adjoint operator of L.

If n is odd, F is AB and then plateaued.

If n is even (and 3 6 |n if G is Kasami), then, for every a :
– if u is a nonzero cube, then WG(a, u) ∈ {0,±2

n
2+1},

– if u is not a cube then WG(a, u) = ±2
n
2 .

It is then easily seen that F is componentwise plateaued if and only

if it is EA-equivalent to G.
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Note that this gives a new proof that the Gold and Kasami APN

functions are CCZ-inequivalent.

Remark 2. F is componentwise plateaued if and only if : ∀x ∈ Fn2 ,
∃φx : (a, b) 7→ (a′, b′) bijective such that DaDbF (x) = Da′Db′F (0).

Corollary 1. Let F be a componentwise plateaued function. Let :

φx : (a, b) 7→ (a′, b′) be such that DaDbF (x) = Da′Db′F (0).

Let Q be a quadratic function such that, for every (a, b) :

DaDbQ = Da′Db′Q.
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Then F +Q has plateaued components.

This set of quadratic functions Q is a vector space.

For every componentwise plateaued function F , the set of F +Q is

then an affine space of componentwise plateaued functions.
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Corollary 2. Let F (x) = xd be any power function. Then :

∀v ∈ F2n,∀x ∈ F2n,∀λ ∈ F∗2n,

|{(a, b) ∈ F2
2n ; DaF (b) +DaF (x) = v}| =

|{(a, b) ∈ F2
2n ; DaF (b) +DaF (x/λ) = v/λd}|.

In particular, |{(a, b) ∈ F2
2n ; DaF (b) + DaF (0) = v}| is invariant

when v is multiplied by any d-th power in F∗2n.

Then F is componentwise plateaued if and only if, for every v ∈ F2n :

|{(a, b) ∈ F2
2n ; DaF (b) +DaF (1) = v}| =

|{(a, b) ∈ F2
2n ; DaF (b) +DaF (0) = v}|.
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A necessary condition is then that

|{(a, b) ∈ F2
2n ; DaF (b) +DaF (1) = v}|

is invariant when v is multiplied by any d-th power in F∗2n.

This condition is necessary and sufficient in the case of APN power

permutations.

The case of unbalanced components :

When u · F is unbalanced and plateaued, its amplitude equals

|WF (0, u)|.
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F is then componentwise plateaued if and only if :

∀u, x,
∑
a,b∈Fn2

(−1)u·DaDbF (x) = W 2
F (0, u).

By applying the Fourier transform, we obtain :

Theorem 2. Let F be any (n,m)-function whose component func-

tions are all unbalanced. Then F is componentwise plateaued if and

only if, for every v, x ∈ Fn2 :∣∣{(a, b) ∈ (Fn2)2 ; DaDbF (x) = v}
∣∣ =∣∣{(a, b) ∈ (Fn2)2 ; F (a) + F (b) = v}
∣∣ .
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II. Characterization by means of autocorrelation functions

∆f(a) =
∑
x∈Fn2

(−1)f(x)+f(x+a)

Proposition 1. A Boolean function f is plateaued of amplitude µ

if and only if
∑
a∈Fn2

∆2
f(a) = µ2∆f(0) = µ22n.

It is plateaued (whatever is its amplitude) if and only if, for every

x ∈ Fn2 , we have

2n
∑
a∈Fn2

∆f(a)∆f(a+ x) = [
∑
a∈Fn2

∆2
f(a)]∆f(x).
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An (n,m)-function F is componentwise plateaued if and only if,

for every x ∈ Fn2 and every u ∈ Fm2 , we have

2n
∑
a∈Fn2

∆u·F (a)∆u·F (a+ x) = [
∑
a∈Fn2

∆2
u·F (a)]∆u·F (x).

III. Characterization by means of Walsh power moments

Theorem 3. An n-variable Boolean function f is plateaued if and

only if, for every nonzero α ∈ Fn2 , we have∑
w∈Fn2

W 3
f (w)Wf(w + α) = 0.
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An (n,m)-function F is componentwise plateaued if and only if :

∀u ∈ Fm2 ,∀α ∈ Fn2 , α 6= 0,
∑
w∈Fn2

W 3
F (w, u)WF (w + α, u) = 0.

Proposition 2. An n-variable Boolean function f is plateaued if

and only if, for every b ∈ Fn2 :∑
a∈Fn2

W 4
f (a) = 2n(−1)f(b)

∑
a∈Fn2

(−1)a·bW 3
f (a).
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An (n,m)-function F is componentwise plateaued if and only if,

for every b ∈ Fn2 and every u ∈ Fm2 :∑
a∈Fn2

W 4
F (a, u) = 2n(−1)u·F (b)

∑
a∈Fn2

(−1)a·bW 3
F (a, u).

Theorem 4. For every n-variable Boolean function f we have :∑
a∈Fn2

W 4
f (a)

2

≤ 22n

∑
a∈Fn2

W 6
f (a)

 ,

with equality if and only f is plateaued.
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For every (n,m)-function F , we have :

∑
u∈Fm2

∑
a∈Fn2

W 4
F (a, u)

2

≤ 22n
∑
u∈Fm2

∑
a∈Fn2

W 6
F (a, u)

 ,

with equality if and only if F is componentwise plateaued.

For every n-variable Boolean function we have also :∑
u∈Fm2

∑
a∈Fn2

W 4
F (a, u) ≤ 2n

∑
u∈Fm2

√∑
a∈Fn2

W 6
F (a, u)

with equality if and only if F is componentwise plateaued.
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Characterizations of the APNness of
componentwise plateaued vectorial functions

Characterization by the derivatives :

We first extend a well-known result on quadratic functions :

Theorem 5. Any componentwise plateaued (n, n)-function F is

APN if and only if, for every a 6= 0 in Fn2 , the equation

F (x) + F (x+ a) = F (0) + F (a)

has the 2 solutions 0 and a only.
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Characterization by the Walsh transform :

Known :
∑
a∈Fn2 ,u∈Fn2 ,u 6=0W

4
F (a, u) = 23n+1(2n − 1).

Proposition 3. Let F be any componentwise plateaued (n, n)-

function such that F (0) = 0. Then F is APN if and only if the

set {(a, b) ∈ F2
2n |F (a) + F (b) + F (a + b) = 0} has size 3 · 2n − 2.

Equivalently : ∑
a∈F2n,u∈Fn2 ,u 6=0

W 3
F (a, u) = 22n+1(2n − 1).

This necessary and sufficient condition was known until now only for

quadratic functions (and it is necessary for general functions).
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Proposition 4. Let F be a componentwise plateaued (n, n)-

function. Let, for every u, 2λu be the amplitude of u · F . Then

F is APN if and only if :∑
u∈Fn2 ,u 6=0

22λu ≤ 2n+1(2n − 1).

There is then equality and the set

{(x, y) ∈ (Fn2)2 |F (x) = F (y);x 6= y}

has size at most 2 · (2n − 1).
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The case of unbalanced component functions

Theorem 6. Let F be any componentwise plateaued (n, n)-function

having all its component functions unbalanced, then∣∣{(a, b) ∈ (Fn2)2 , a 6= b ; F (a) = F (b)}
∣∣ ≥ 2 · (2n − 1),

with equality if and only if F is APN.

Corollary 3. Let n be even and F (x) = xd be any componentwise

plateaued power function. Then F is APN if and only if gcd(d, 2n −
1) = 3.

This applies to the Kasami functions for n even not divisible by 3.
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From Theorem 2, we also obtain :

Corollary 4. For every componentwise plateaued (n, n)-function,

with n even, whose value distribution is the same as for the APN

Gold functions, the value distribution of DaDbF (x) is the same as

for the Gold functions. Consequently, the function is APN and the

extended Walsh spectrum is the same as well.

Dobbertin proved that if F is a power APN function then it is 3-to-1

over F∗2n. Hence, this corollary applies to every power APN function

F .
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Open problems and further work

Open problems :

1. Find constructions of numerous plateaued Boolean functions

which are neither bent nor semi-bent.

2. Find general constructions of componentwise plateaued (n, n)-

functions.

3. Find a proof using the charaterizations above, that the Kasami

APN (n, n)-functions are componentwise plateaued for n even not

divisible by 3.
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4. Determine whether the Kasami APN (n, n)-functions are com-

ponentwise plateaued for n even divisible by 3.

5. Find new APN componentwise plateaued functions by using the

characterizations above.

6. Determine whether CCZ-equivalence of componentwise pla-

teaued functions reduces to EA-equivalence.

Further work : generalize these results to p-ary functions.
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