Algebraic geometry and Boolean functions

Florian Caullery

Institut de Mathématiques de Marseille Aix-Marseille Université

International Workshop on Boolean Functions and their Applications, Rosendal, September 2nd-7th 2014

Institut de Mathématiques de Marseille

Florian Caullery

Notations and basic recalls

- Let $q = 2^n$ and \mathbb{F}_q be the finite field with q elements
- *f*(*x*) will always denote a function *f* : 𝔽_{*q*} → 𝔽_{*q*} and its associated polynomial
- The set $\mathbb{A}^n(\mathbb{F}_q) := \{(x_1, \dots, x_n) | x_1, \dots, x_n \in \mathbb{F}_q\}$ is the affine space of dimension *n* over \mathbb{F}_q
- Define the projective space of dimension *n* over 𝔽_q by
 𝒫ⁿ(𝔄_q) := 𝔅ⁿ⁺¹(𝔄_q) − 0/𝔅 where 𝔅 is the equivalence relation on 𝔅ⁿ⁺¹(𝔄_q) − 0

$$x\mathcal{R}y \leftrightarrow \exists \lambda \in \mathbb{F}_q, y = \lambda x$$

• For finite geometers : $\mathbb{P}^2(\mathbb{F}_q) \simeq PG(2,q)$

The Boolean functions we will study

To illustrate our approach, we will take two examples

- O-polynomials
- APN functions

Florian Caullery

O-polynomials

A polynomial *f* ∈ 𝔽_{*q*}[*x*] of degree at most *q* − 1 is an o-polynomial if

1)
$$f(0) = 0$$
 and $f(1) = 1$,
2) f induces a permutation of \mathbb{F}_q ,
3) $\begin{pmatrix} 1 & 1 & 1 \\ x & y & z \\ f(x) & f(y) & f(z) \end{pmatrix} \neq 0$ for all distinct $x, y, z \in \mathbb{F}_q$

- Called o-polynomial because they are in 1-1 correspondence with hyperovals of P²(F_q).
- An exceptional o-polynomial of F_q is a polynomial defining an o-polynomial over infinitely many extensions of F_q.

Florian Caullery

O-polynomials in term of algebraic geometry

If *f* is a o-polynomial of \mathbb{F}_q , the polynomial

$$\phi_f(x, y, z) = \frac{x(f(y) + f(z)) + y(f(x) + f(z)) + z(f(x) + f(y))}{(x + y)(y + z)(z + x)}$$

vanishes iff x = y, y = z or z = x.

In terms of algebraic geometry :

If *f* is a o-polynomial of \mathbb{F}_q , the surface X_o in $\mathbb{A}^3(\mathbb{F}_q)$ defined by the equation

$$\phi_f(x,y,z)=0$$

has all its \mathbb{F}_q -rational points on the planes of equation x + y = 0, y + z = 0 and z + x = 0.

Florian Caullery

APN functions

• A polynomial $f \in \mathbb{F}_q[x]$ of degree at most q - 1 is Almost Perfectly Nonlinear if the equation

$$f(x+a)+f(x)=b$$

has at most two solutions for every nonzero *a* and every *b* in \mathbb{F}_q .

• An exceptional APN polynomial of \mathbb{F}_q is a polynomial which is APN over infinitely many extensions of \mathbb{F}_q .

Florian Caullery

APN property in terms of algebraic geometry

f is APN over \mathbb{F}_q if there is no four distinct elements *x*, *y*, *z* and *t* of \mathbb{F}_q such that

$$\begin{cases} x+y=a, & f(x)+f(y)=b\\ z+t=a & f(z)+f(t)=b \end{cases}$$

Equivalently, the polynomial

$$\phi_f(x, y, z) = \frac{f(x) + f(y) + f(z) + f(x + y + z)}{(x + y)(y + z)(z + x)}$$

vanishes iff x = y, y = z or z = x.

	INSTITUT
kк	de MATHÉMATIQUES
	de MARSEILLE

Institut de Mathématiques de Marseille

Florian Caullery

APN property in terms of algebraic geometry

In terms of algebraic geometry :

f is APN over \mathbb{F}_q iff the surface $X_a pn$ in $\mathbb{A}^3(\mathbb{F}_q)$ defined by the equation

$$\phi_f = \mathbf{0}$$

has all its \mathbb{F}_q -rational points on the planes of equation x + y = 0, y + z = 0 and z + x = 0.

Florian Caullery

Institut de Mathématiques de Marseille

Why doing that - The strategy explained

- Compare the number of F_q-rational points of X and the combination of the planes x + y = 0, y + z = 0 and z + x = 0.
- Discard from the list of potential APN or o-polynomials the polynomials defining a surface with too many points.
- Our main tool : the Lang-Weil bound on the number of F_q-rational points of an absolutely irreducible varieties(i.e. curves and surfaces).
- But we need to go into the projective space to apply this result (and other useful ones).

Going into the projective space

 We have to work with homogeneous polynomials, i.e. polynomials whose nonzero terms all have the same degree :

$$\phi(\lambda x_1,\ldots,\lambda x_k)=\lambda^d\phi(x_1,\ldots,x_k)$$

- Two cases to distinguish :
- 1 f is a monomial
- 2 f is not a monomial

INSTITUT de MATHÉMATIQUES de MARSEILLE

Florian Caullery

The monomial case

- If $f(x) = x^d$, $\phi_{x^d}(x, y, z)$ is already homogenized.
- The equation $\phi_{x^d}(x, y, z) = \phi_d(x, y, z) = 0$ defines a curve in $\mathbb{P}^2(\mathbb{F}_q)$.

Florian Caullery

Institut de Mathématiques de Marseille

The Lang-Weil bound for curves

- Let C be an absolutely irreducible curve over P²(F_q) defined by a polynomial of degree d.
- Its number $\#C(\mathbb{F}_q)$ of \mathbb{F}_q rational points satisfies

$$|\#C(\mathbb{F}_q)-q| < (d-1)(d-2)q^{1/2}+d^2,$$

(this is a slightly different version of the LW bound due to W. Schmidt).

- The intersection of the curve C and the lines x + y = 0, y + z = 0 and z + x = 0 has at most 3d - 2 F_q-rational points.
- *C* has \mathbb{F}_q -rational points not on the above lines for *q* sufficiently large.

de MATHÉMATIQUES

The Lang-Weil bound for curves - 2

Theorem (Janwa-Wilson 1993 (APN), Hernando-McGuire 2010(O-polynomial))

If the curve C defined by $\phi_d = 0$ is absolutely irreducible or has an absolutely irreducible component defined over \mathbb{F}_q , x^d is **not** an exceptional o-polynomial or APN of \mathbb{F}_q .

Florian Caullery

Institut de Mathématiques de Marseille

When is *C* absolutely irreducible?

- If *C* is not irreducible, it is the combination of two curves C_1 and C_2 defined over $\overline{\mathbb{F}}_q$ respectively by u(x, y, z) = 0 and v(x, y, z) = 0.
- Bezout's theorem says

$$\sum_{P} I(P, u, v) = (\deg u)(\deg v)$$

- Call *P* a singular point of *C* if its multiplicity is greater than 1.
- Count the singular points of *C* and apply Bezout's theorem (actually the hard part).

Florian Caullery

Main results - APN

Theorem (Hernando-McGuire, 2009)

Let d be a positive integer. If d is not of the form $2^i + 1$ (Gold exponent) or $2^{2i} - 2^i + 1$ (Kasami exponent), then the curve defined by

$$\frac{x^d + y^d + z^d + (x + y + z)^d}{(x + y)(y + z)(z + x)}$$

has an absolutely irreducible factor defined over \mathbb{F}_2 .

Corollary

The only exceptional APN monomial are Gold and Kasami.

de MATHÉMATIQUES

Florian Caullery

Institut de Mathématiques de Marseille

Main results - O-polynomial

Theorem (Hernando-McGuire, 2010; Zieve 2013)

Let d be a positive integer different from 6 and not a power of 2. The curve defined by

$$\frac{x(y^d + z^d) + y(x^d + z^d) + z(x^d + y^d)}{(x + y)(y + z)(z + x)}$$

has an absolutely irreducible factor defined over \mathbb{F}_2 .

Corollary

The only exceptional o-monomials are x^6 and x^{2^i} .

de MATHÉMATIQUES de MARSEILLE

Florian Caullery

Institut de Mathématiques de Marseille

The polynomial case

- If f(x) is not a monomial, introduce the homogenization variable
 w.
- Write $f(x) = \sum_{i=0}^{d} a_i x^i$. It is readily verified that

$$\phi_f(\mathbf{x},\mathbf{y},\mathbf{z}) = \sum_{i=2}^d a_i \phi_i(\mathbf{x},\mathbf{y},\mathbf{z})$$

and so

$$\bar{\phi_f}(x, y, z, w) = \sum_{i=2}^d a_i \phi_i(x, y, z) w^{d-i}$$

de MATHÉMATIQUES de MARSEILLE

Florian Caullery

Institut de Mathématiques de Marseille

.

The Lang-Weil bound for surfaces

- Let X̄ be an absolutely irreducible surface over P³(F_q) defined by a polynomial of degree d.
- Its number $\#\bar{X}(\mathbb{F}_q)$ of \mathbb{F}_q -rational points satisfies

$$|\#ar{X}(\mathbb{F}_q)-q^2-q-1|\leq (d-1)(d-2)q^{3/2}+18(d+3)^4,$$

(this is a refinement due to Ghorpade and Lachaud).

- The intersection of \overline{X} with the planes x + y = 0, y + z = 0, z + x = 0 and the plane infinity has at most 4((d 3)q + 1) \mathbb{F}_q -rational points.
- \bar{X} has \mathbb{F}_q -rational points not on the above planes for q sufficiently large.

Florian Caullery

The Lang-Weil bound for surfaces - 2

Theorem (Rodier, 2008 (APN) Caullery-Schmidt, 2014 (o-polynomial))

If the surface \overline{X} defined by $\phi_f = 0$ is absolutely irreducible or has an absolutely irreducible component defined over \mathbb{F}_q , f is **not** an exceptional o-polynomial or APN of \mathbb{F}_q .

Florian Caullery

Institut de Mathématiques de Marseille

How to prove that \bar{X} is absolutely irreducible

Theorem (Aubry-McGuire-Rodier, 2010)

Let *S* and *P* be projective surfaces in $\mathbb{P}^3(\mathbb{F}_q)$ defined over \mathbb{F}_q . If $S \cap P$ has a **reduced** absolutely irreducible component defined over \mathbb{F}_q , then *S* has an absolutely irreducible component defined over \mathbb{F}_q .

- Take H_∞ the plane infinity of P³(F_q) (i.e. the plane of equation w = 0).
- The equation of $\bar{X} \cap H_{\infty}$ is given by $\phi_d = 0$!
- We are back to the monomial case with an extra condition...
- We have to differentiate cases according to the degree of the f.

de MATHÉMATIQUES de MARSEILLE

Florian Caullery

Example 1 : Exceptional APN polynomials

- If the degree d of f is odd, X has no repeated component (i.e. it is reduced).
- If *d* is not a Gold or a Kasami exponent X
 ∩ H_∞ has a reduced absolutely irreducible component defined over F₂.

Corollary

Let f be an exceptional APN polynomial of odd degree, then the degree of f is a Gold or a Kasami exponent.

• Still an open problem for degrees a Gold or Kasami exponent.

Florian Caullery

Institut de Mathématiques de Marseille

Exceptional APN polynomials of even degree

- If the degree d of f is even, write $d = 2^{l}e$, e odd.
- It is readily verified that

$$\phi_d = ((x+y)(y+z)(z+x))^{2^l-1} \phi_e^{2^l}.$$

• The absolutely irreducible component of ϕ_e appears 2¹ times in $\bar{X} \cap H_{\infty}$.

Theorem (Aubry-McGuire-Rodier, 2010)

There is no exceptional APN function of degree 2e, e odd.

- The case $l \ge 2$ is much more intricate, only partial results exist for l = 2
- The given method leads to overcomplicated computations.

Example 2 : O-polynomials

- An o-polynomial has only terms of even degree so *d* is even.
- Luckily, ϕ_d is always reduced !
- If *d* is not 6 or a power of 2, X
 ∩ H_∞ has a reduced absolutely irreducible component defined over 𝔽₂.

Corollary

If f is an exceptional o-polynomial, its degree is either 6 or a power of 2.

Florian Caullery

Exceptional o-polynomials of degree 6 or a power of 2

Theorem (Hirschfeld, 1971)

If f is an o-polynomial of degree 6, f is either x^6 or $(x + 1)^6$.

Theorem (Caullery-Schmidt, 2014)

If f is an o-polynomial of degree a power of 2, f is a linearised polynomial.

Theorem (Payne, 1971; Hirschfeld, 1975)

If f is a linearised o-polynomial, then it is of the form x^{2^k} .

Florian Caullery

Institut de Mathématiques de Marseille

Open problems for o-polynomials

Theorem

If f is an o-polynomial of degree less than $\frac{1}{2}q^{1/4}$, then f is either x^6 , $(x + 1)^6$ or x^{2^k} .

Open problem : what if the degree of *f* is greater than $\frac{1}{2}q^{1/4}$?

Florian Caullery

Institut de Mathématiques de Marseille

Open problems

- Can we get a tighter bound than the Lang-Weil bound?
- Can we get a bound which can be applied to not necessarily absolutely irreducible varieties ?
- Can we give a decomposition of φ_d for every d? (This could help for polynomial case)

Florian Caullery

Informations

Florian Caullery Institut de Mathematiques de Marseille Aix Marseille Université www.univ-amu.fr

Contact : fcaullery@gmail.com @presquepartout http ://presquepartout.hypotheses.org

Florian Caullery

Institut de Mathématiques de Marseille