Algebraic geometry and Boolean functions

Florian Caullery

Institut de Mathématiques de Marseille
Aix-Marseille Université

International Workshop on Boolean Functions and their Applications, Rosendal, September 2nd-7th 2014

Notations and basic recalls

- Let $q=2^{n}$ and \mathbb{F}_{q} be the finite field with q elements
- $f(x)$ will always denote a function $f: \mathbb{F}_{q} \mapsto \mathbb{F}_{q}$ and its associated polynomial
- The set $\mathbb{A}^{n}\left(\mathbb{F}_{q}\right):=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{1}, \ldots, x_{n} \in \mathbb{F}_{q}\right\}$ is the affine space of dimension n over \mathbb{F}_{q}
- Define the projective space of dimension n over \mathbb{F}_{q} by $\mathbb{P}^{n}\left(\mathbb{F}_{q}\right):=\mathbb{A}^{n+1}\left(\mathbb{F}_{q}\right)-0 / \mathcal{R}$ where \mathcal{R} is the equivalence relation on $\mathbb{A}^{n+1}\left(\mathbb{F}_{q}\right)-0$

$$
x \mathcal{R} y \leftrightarrow \exists \lambda \in \mathbb{F}_{q}, y=\lambda x
$$

- For finite geometers : $\mathbb{P}^{2}\left(\mathbb{F}_{q}\right) \simeq P G(2, q)$

The Boolean functions we will study

To illustrate our approach, we will take two examples

- O-polynomials
- APN functions

O-polynomials

- A polynomial $f \in \mathbb{F}_{q}[x]$ of degree at most $q-1$ is an o-polynomial if

1) $f(0)=0$ and $f(1)=1$,
2) f induces a permutation of \mathbb{F}_{q},
3) $\left(\begin{array}{ccc}1 & 1 & 1 \\ x & y & z \\ f(x) & f(y) & f(z)\end{array}\right) \neq 0$ for all distinct $x, y, z \in \mathbb{F}_{q}$

- Called o-polynomial because they are in 1-1 correspondence with hyperovals of $\mathbb{P}^{2}\left(\mathbb{F}_{q}\right)$.
- An exceptional o-polynomial of \mathbb{F}_{q} is a polynomial defining an o-polynomial over infinitely many extensions of \mathbb{F}_{q}.

O-polynomials in term of algebraic geometry

If f is a o-polynomial of \mathbb{F}_{q}, the polynomial

$$
\phi_{f}(x, y, z)=\frac{x(f(y)+f(z))+y(f(x)+f(z))+z(f(x)+f(y))}{(x+y)(y+z)(z+x)}
$$

vanishes iff $x=y, y=z$ or $z=x$.
In terms of algebraic geometry :
If f is a o-polynomial of \mathbb{F}_{q}, the surface X_{o} in $\mathbb{A}^{3}\left(\mathbb{F}_{q}\right)$ defined by the equation

$$
\phi_{f}(x, y, z)=0
$$

has all its \mathbb{F}_{q}-rational points on the planes of equation $x+y=0$, $y+z=0$ and $z+x=0$.

APN functions

- A polynomial $f \in \mathbb{F}_{q}[x]$ of degree at most $q-1$ is Almost Perfectly Nonlinear if the equation

$$
f(x+a)+f(x)=b
$$

has at most two solutions for every nonzero a and every b in \mathbb{F}_{q}.

- An exceptional APN polynomial of \mathbb{F}_{q} is a polynomial which is APN over infinitely many extensions of \mathbb{F}_{q}.

APN property in terms of algebraic geometry

f is APN over \mathbb{F}_{q} if there is no four distinct elements x, y, z and t of \mathbb{F}_{q} such that

$$
\left\{\begin{array}{rr}
x+y=a, & f(x)+f(y)=b \\
z+t=a & f(z)+f(t)=b
\end{array}\right.
$$

Equivalently, the polynomial

$$
\phi_{f}(x, y, z)=\frac{f(x)+f(y)+f(z)+f(x+y+z)}{(x+y)(y+z)(z+x)}
$$

vanishes iff $x=y, y=z$ or $z=x$.

APN property in terms of algebraic geometry

In terms of algebraic geometry :
f is APN over \mathbb{F}_{q} iff the surface $X_{a} p n$ in $\mathbb{A}^{3}\left(\mathbb{F}_{q}\right)$ defined by the equation

$$
\phi_{f}=0
$$

has all its $\mathbb{F}_{q^{-}}$-rational points on the planes of equation $x+y=0$, $y+z=0$ and $z+x=0$.

Why doing that - The strategy explained

- Compare the number of \mathbb{F}_{q}-rational points of X and the combination of the planes $x+y=0, y+z=0$ and $z+x=0$.
- Discard from the list of potential APN or o-polynomials the polynomials defining a surface with too many points.
- Our main tool : the Lang-Weil bound on the number of \mathbb{F}_{q}-rational points of an absolutely irreducible varieties(i.e. curves and surfaces).
- But we need to go into the projective space to apply this result (and other useful ones).

Going into the projective space

- We have to work with homogeneous polynomials, i.e. polynomials whose nonzero terms all have the same degree :

$$
\phi\left(\lambda x_{1}, \ldots, \lambda x_{k}\right)=\lambda^{d} \phi\left(x_{1}, \ldots, x_{k}\right)
$$

- Two cases to distinguish :
$1 f$ is a monomial
$2 f$ is not a monomial

The monomial case

- If $f(x)=x^{d}, \phi_{x^{d}}(x, y, z)$ is already homogenized.
- The equation $\phi_{x^{d}}(x, y, z)=\phi_{d}(x, y, z)=0$ defines a curve in $\mathbb{P}^{2}\left(\mathbb{F}_{q}\right)$.

The Lang-Weil bound for curves

- Let C be an absolutely irreducible curve over $\mathbb{P}^{2}\left(\mathbb{F}_{q}\right)$ defined by a polynomial of degree d.
- Its number $\# C\left(\mathbb{F}_{q}\right)$ of \mathbb{F}_{q} rational points satisfies

$$
\left|\# C\left(\mathbb{F}_{q}\right)-q\right|<(d-1)(d-2) q^{1 / 2}+d^{2}
$$

(this is a slightly different version of the LW bound due to W. Schmidt).

- The intersection of the curve C and the lines $x+y=0$, $y+z=0$ and $z+x=0$ has at most $3 d-2 \mathbb{F}_{q}$-rational points.
- C has \mathbb{F}_{q}-rational points not on the above lines for q sufficiently large.

The Lang-Weil bound for curves - 2

Theorem (Janwa-Wilson 1993 (APN), Hernando-McGuire 2010(O-polynomial))

If the curve C defined by $\phi_{d}=0$ is absolutely irreducible or has an absolutely irreducible component defined over \mathbb{F}_{q}, x^{d} is not an exceptional o-polynomial or $A P N$ of \mathbb{F}_{q}.

When is C absolutely irreducible?

- If C is not irreducible, it is the combination of two curves C_{1} and C_{2} defined over $\overline{\mathbb{F}}_{q}$ respectively by $u(x, y, z)=0$ and $v(x, y, z)=0$.
- Bezout's theorem says

$$
\sum_{P} I(P, u, v)=(\operatorname{deg} u)(\operatorname{deg} v)
$$

- Call P a singular point of C if its multiplicity is greater than 1.
- Count the singular points of C and apply Bezout's theorem (actually the hard part).

Main results - APN

Theorem (Hernando-McGuire, 2009)

Let d be a positive integer. If d is not of the form $2^{i}+1$ (Gold exponent) or $2^{2 i}-2^{i}+1$ (Kasami exponent), then the curve defined by

$$
\frac{x^{d}+y^{d}+z^{d}+(x+y+z)^{d}}{(x+y)(y+z)(z+x)}
$$

has an absolutely irreducible factor defined over \mathbb{F}_{2}.

Corollary

The only exceptional APN monomial are Gold and Kasami.

Main results - O-polynomial

Theorem (Hernando-McGuire, 2010 ; Zieve 2013)

Let d be a positive integer different from 6 and not a power of 2. The curve defined by

$$
\frac{x\left(y^{d}+z^{d}\right)+y\left(x^{d}+z^{d}\right)+z\left(x^{d}+y^{d}\right)}{(x+y)(y+z)(z+x)}
$$

has an absolutely irreducible factor defined over \mathbb{F}_{2}.

Corollary

The only exceptional o-monomials are x^{6} and $x^{2^{i}}$.

The polynomial case

- If $f(x)$ is not a monomial, introduce the homogenization variable w.
- Write $f(x)=\sum_{j=0}^{d} a_{i} x^{i}$. It is readily verified that

$$
\phi_{f}(x, y, z)=\sum_{i=2}^{d} a_{i} \phi_{i}(x, y, z)
$$

and so

$$
\bar{\phi}_{f}(x, y, z, w)=\sum_{i=2}^{d} a_{i} \phi_{i}(x, y, z) w^{d-i}
$$

The Lang-Weil bound for surfaces

- Let \bar{X} be an absolutely irreducible surface over $\mathbb{P}^{3}\left(\mathbb{F}_{q}\right)$ defined by a polynomial of degree d.
- Its number $\# \bar{X}\left(\mathbb{F}_{q}\right)$ of \mathbb{F}_{q}-rational points satisfies

$$
\left|\# \bar{X}\left(\mathbb{F}_{q}\right)-q^{2}-q-1\right| \leq(d-1)(d-2) q^{3 / 2}+18(d+3)^{4}
$$

(this is a refinement due to Ghorpade and Lachaud).

- The intersection of \bar{X} with the planes $x+y=0, y+z=0$, $z+x=0$ and the plane infinity has at most $4((d-3) q+1)$ \mathbb{F}_{q}-rational points.
- \bar{X} has \mathbb{F}_{q}-rational points not on the above planes for q sufficiently large.

The Lang-Weil bound for surfaces - 2

Theorem (Rodier, 2008 (APN) Caullery-Schmidt, 2014 (o-polynomial))

If the surface \bar{X} defined by $\phi_{f}=0$ is absolutely irreducible or has an absolutely irreducible component defined over \mathbb{F}_{q}, f is not an exceptional o-polynomial or $A P N$ of \mathbb{F}_{q}.

How to prove that \bar{X} is absolutely irreducible

Theorem (Aubry-McGuire-Rodier, 2010)

Let S and P be projective surfaces in $\mathbb{P}^{3}\left(\mathbb{F}_{q}\right)$ defined over \mathbb{F}_{q}. If $S \cap P$ has a reduced absolutely irreducible component defined over \mathbb{F}_{q}, then S has an absolutely irreducible component defined over \mathbb{F}_{q}.

- Take H_{∞} the plane infinity of $\mathbb{P}^{3}\left(\mathbb{F}_{q}\right)$ (i.e. the plane of equation $w=0$).
- The equation of $\bar{X} \cap H_{\infty}$ is given by $\phi_{d}=0$!
- We are back to the monomial case with an extra condition...
- We have to differentiate cases according to the degree of the f.

Example 1 : Exceptional APN polynomials

- If the degree d of f is odd, \bar{X} has no repeated component (i.e. it is reduced).
- If d is not a Gold or a Kasami exponent $\bar{X} \cap H_{\infty}$ has a reduced absolutely irreducible component defined over \mathbb{F}_{2}.

Corollary

Let f be an exceptional APN polynomial of odd degree, then the degree of f is a Gold or a Kasami exponent.

- Still an open problem for degrees a Gold or Kasami exponent.

Exceptional APN polynomials of even degree

- If the degree d of f is even, write $d=2^{\prime} e$, e odd.
- It is readily verified that

$$
\phi_{d}=((x+y)(y+z)(z+x))^{2^{\prime}-1} \phi_{e}^{2^{\prime}} .
$$

- The absolutely irreducible component of ϕ_{e} appears 2^{\prime} times in $\bar{X} \cap H_{\infty}$.

Theorem (Aubry-McGuire-Rodier, 2010)

There is no exceptional APN function of degree $2 e$, e odd.

- The case $I \geq 2$ is much more intricate, only partial results exist for $I=2$.
- The given method leads to overcomplicated computations. \nVdash

Example 2 : O-polynomials

- An o-polynomial has only terms of even degree so d is even.
- Luckily, ϕ_{d} is always reduced!
- If d is not 6 or a power of $2, \bar{X} \cap H_{\infty}$ has a reduced absolutely irreducible component defined over \mathbb{F}_{2}.

Corollary

If f is an exceptional o-polynomial, its degree is either 6 or a power of 2.

Exceptional o-polynomials of degree 6 or a power of 2

Theorem (Hirschfeld, 1971)

If f is an o-polynomial of degree $6, f$ is either x^{6} or $(x+1)^{6}$.

Theorem (Caullery-Schmidt, 2014)

If f is an o-polynomial of degree a power of 2, f is a linearised polynomial.

Theorem (Payne, 1971 ; Hirschfeld, 1975)
If f is a linearised o-polynomial, then it is of the form $x^{2^{k}}$.

Open problems for o-polynomials

Theorem

If f is an o-polynomial of degree less than $\frac{1}{2} q^{1 / 4}$, then f is either x^{6}, $(x+1)^{6}$ or $x^{2^{k}}$.

Open problem : what if the degree of f is greater than $\frac{1}{2} q^{1 / 4} ?$

Open problems

- Can we get a tighter bound than the Lang-Weil bound ?
- Can we get a bound which can be applied to not necessarily absolutely irreducible varieties ?
- Can we give a decomposition of ϕ_{d} for every d ? (This could help for polynomial case)

Informations

Florian Caullery
Institut de Mathematiques de Marseille
Aix Marseille Université
www.univ-amu.fr

Contact : fcaullery@gmail.com
@presquepartout http ://presquepartout.hypotheses.org

