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Notations and basic recalls

Let q = 2n and Fq be the finite field with q elements
f (x) will always denote a function f : Fq 7→ Fq and its associated
polynomial
The set An(Fq) := {(x1, . . . , xn)|x1, . . . , xn ∈ Fq} is the affine
space of dimension n over Fq

Define the projective space of dimension n over Fq by
Pn(Fq) := An+1(Fq)− 0/R where R is the equivalence relation
on An+1(Fq)− 0

xRy ↔ ∃λ ∈ Fq, y = λx

For finite geometers : P2(Fq) ' PG(2,q)
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The Boolean functions we will study

To illustrate our approach, we will take two examples
O-polynomials
APN functions

Florian Caullery Institut de Mathématiques de Marseille

Algebraic geometry and Boolean functions



O-polynomials

A polynomial f ∈ Fq[x ] of degree at most q − 1 is an
o-polynomial if

1) f (0) = 0 and f (1) = 1,
2) f induces a permutation of Fq ,

3)

 1 1 1
x y z

f (x) f (y) f (z)

 6= 0 for all distinct x , y , z ∈ Fq

Called o-polynomial because they are in 1-1 correspondence
with hyperovals of P2(Fq).
An exceptional o-polynomial of Fq is a polynomial defining an
o-polynomial over infinitely many extensions of Fq.
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O-polynomials in term of algebraic geometry

If f is a o-polynomial of Fq, the polynomial

φf (x , y , z) =
x(f (y) + f (z)) + y(f (x) + f (z)) + z(f (x) + f (y))

(x + y)(y + z)(z + x)

vanishes iff x = y , y = z or z = x .

In terms of algebraic geometry :

If f is a o-polynomial of Fq, the surface Xo in A3(Fq) defined by the
equation

φf (x , y , z) = 0

has all its Fq-rational points on the planes of equation x + y = 0,
y + z = 0 and z + x = 0.
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APN functions

A polynomial f ∈ Fq[x ] of degree at most q − 1 is Almost
Perfectly Nonlinear if the equation

f (x + a) + f (x) = b

has at most two solutions for every nonzero a and every b in Fq.
An exceptional APN polynomial of Fq is a polynomial which is
APN over infinitely many extensions of Fq.
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APN property in terms of algebraic geometry

f is APN over Fq if there is no four distinct elements x , y , z and t of Fq
such that {

x + y = a, f (x) + f (y) = b
z + t = a f (z) + f (t) = b

Equivalently, the polynomial

φf (x , y , z) =
f (x) + f (y) + f (z) + f (x + y + z)

(x + y)(y + z)(z + x)

vanishes iff x = y , y = z or z = x .
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APN property in terms of algebraic geometry

In terms of algebraic geometry :

f is APN over Fq iff the surface Xapn in A3(Fq) defined by the
equation

φf = 0

has all its Fq-rational points on the planes of equation x + y = 0,
y + z = 0 and z + x = 0.
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Why doing that - The strategy explained

Compare the number of Fq-rational points of X and the
combination of the planes x + y = 0, y + z = 0 and z + x = 0.
Discard from the list of potential APN or o-polynomials the
polynomials defining a surface with too many points.
Our main tool : the Lang-Weil bound on the number of
Fq-rational points of an absolutely irreducible varieties(i.e.
curves and surfaces).
But we need to go into the projective space to apply this result
(and other useful ones).
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Going into the projective space

We have to work with homogeneous polynomials, i.e.
polynomials whose nonzero terms all have the same degree :

φ(λx1, . . . , λxk ) = λdφ(x1, . . . , xk )

Two cases to distinguish :
1 f is a monomial
2 f is not a monomial
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The monomial case

If f (x) = xd , φxd (x , y , z) is already homogenized.
The equation φxd (x , y , z) = φd (x , y , z) = 0 defines a curve in
P2(Fq).
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The Lang-Weil bound for curves

Let C be an absolutely irreducible curve over P2(Fq) defined
by a polynomial of degree d .
Its number #C(Fq) of Fq rational points satisfies

|#C(Fq)− q| < (d − 1)(d − 2)q1/2 + d2,

(this is a slightly different version of the LW bound due to W.
Schmidt).
The intersection of the curve C and the lines x + y = 0,
y + z = 0 and z + x = 0 has at most 3d − 2 Fq-rational points.
C has Fq-rational points not on the above lines for q sufficiently
large.
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The Lang-Weil bound for curves - 2

Theorem (Janwa-Wilson 1993 (APN), Hernando-McGuire
2010(O-polynomial))
If the curve C defined by φd = 0 is absolutely irreducible or has an
absolutely irreducible component defined over Fq, xd is not an
exceptional o-polynomial or APN of Fq.
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When is C absolutely irreducible ?

If C is not irreducible, it is the combination of two curves C1 and
C2 defined over F̄q respectively by u(x , y , z) = 0 and
v(x , y , z) = 0.
Bezout’s theorem says∑

P

I(P,u, v) = (deg u)(deg v)

Call P a singular point of C if its multiplicity is greater than 1.
Count the singular points of C and apply Bezout’s theorem
(actually the hard part).
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Main results - APN

Theorem (Hernando-McGuire, 2009)

Let d be a positive integer. If d is not of the form 2i + 1 (Gold
exponent) or 22i − 2i + 1 (Kasami exponent), then the curve defined
by

xd + yd + zd + (x + y + z)d

(x + y)(y + z)(z + x)

has an absolutely irreducible factor defined over F2.

Corollary
The only exceptional APN monomial are Gold and Kasami.
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Main results - O-polynomial

Theorem (Hernando-McGuire, 2010 ; Zieve 2013)
Let d be a positive integer different from 6 and not a power of 2. The
curve defined by

x(yd + zd ) + y(xd + zd ) + z(xd + yd )

(x + y)(y + z)(z + x)

has an absolutely irreducible factor defined over F2.

Corollary

The only exceptional o-monomials are x6 and x2i
.
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The polynomial case

If f (x) is not a monomial, introduce the homogenization variable
w .
Write f (x) =

∑d
i=0 aix i . It is readily verified that

φf (x , y , z) =
d∑

i=2

aiφi(x , y , z)

and so

φ̄f (x , y , z,w) =
d∑

i=2

aiφi(x , y , z)wd−i .
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The Lang-Weil bound for surfaces

Let X̄ be an absolutely irreducible surface over P3(Fq) defined
by a polynomial of degree d .
Its number #X̄ (Fq) of Fq-rational points satisfies

|#X̄ (Fq)− q2 − q − 1| ≤ (d − 1)(d − 2)q3/2 + 18(d + 3)4,

(this is a refinement due to Ghorpade and Lachaud).
The intersection of X̄ with the planes x + y = 0, y + z = 0,
z + x = 0 and the plane infinity has at most 4((d − 3)q + 1)
Fq-rational points.
X̄ has Fq-rational points not on the above planes for q sufficiently
large.
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The Lang-Weil bound for surfaces - 2

Theorem (Rodier, 2008 (APN) Caullery-Schmidt, 2014
(o-polynomial))

If the surface X̄ defined by φf = 0 is absolutely irreducible or has an
absolutely irreducible component defined over Fq, f is not an
exceptional o-polynomial or APN of Fq.
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How to prove that X̄ is absolutely irreducible

Theorem (Aubry-McGuire-Rodier, 2010)

Let S and P be projective surfaces in P3(Fq) defined over Fq. If S ∩ P
has a reduced absolutely irreducible component defined over Fq,
then S has an absolutely irreducible component defined over Fq.

Take H∞ the plane infinity of P3(Fq) (i.e. the plane of equation
w = 0).
The equation of X̄ ∩ H∞ is given by φd = 0 !
We are back to the monomial case with an extra condition...
We have to differentiate cases according to the degree of the f .
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Example 1 : Exceptional APN polynomials

If the degree d of f is odd, X̄ has no repeated component (i.e. it
is reduced).
If d is not a Gold or a Kasami exponent X̄ ∩ H∞ has a reduced
absolutely irreducible component defined over F2.

Corollary
Let f be an exceptional APN polynomial of odd degree, then the
degree of f is a Gold or a Kasami exponent.

Still an open problem for degrees a Gold or Kasami exponent.
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Exceptional APN polynomials of even degree

If the degree d of f is even, write d = 2le, e odd.
It is readily verified that

φd = ((x + y)(y + z)(z + x))2l−1 φ2l

e .

The absolutely irreducible component of φe appears 2l times in
X̄ ∩ H∞.

Theorem (Aubry-McGuire-Rodier, 2010)
There is no exceptional APN function of degree 2e, e odd.

The case l ≥ 2 is much more intricate, only partial results exist
for l = 2.
The given method leads to overcomplicated computations.
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Example 2 : O-polynomials

An o-polynomial has only terms of even degree so d is even.
Luckily, φd is always reduced !
If d is not 6 or a power of 2, X̄ ∩ H∞ has a reduced absolutely
irreducible component defined over F2.

Corollary
If f is an exceptional o-polynomial, its degree is either 6 or a power of
2.
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Exceptional o-polynomials of degree 6 or a power of 2

Theorem (Hirschfeld, 1971)

If f is an o-polynomial of degree 6, f is either x6 or (x + 1)6.

Theorem (Caullery-Schmidt, 2014)
If f is an o-polynomial of degree a power of 2, f is a linearised
polynomial.

Theorem (Payne, 1971 ; Hirschfeld, 1975)

If f is a linearised o-polynomial, then it is of the form x2k
.
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Open problems for o-polynomials

Theorem

If f is an o-polynomial of degree less than 1
2q1/4, then f is either x6,

(x + 1)6 or x2k
.

Open problem : what if the degree of f is greater than 1
2q1/4 ?
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Open problems

Can we get a tighter bound than the Lang-Weil bound ?
Can we get a bound which can be applied to not necessarily
absolutely irreducible varieties ?
Can we give a decomposition of φd for every d ? (This could help
for polynomial case)

Florian Caullery Institut de Mathématiques de Marseille

Algebraic geometry and Boolean functions



Informations

Florian Caullery
Institut de Mathematiques de Marseille
Aix Marseille Université
www.univ-amu.fr

Contact : fcaullery@gmail.com
@presquepartout http ://presquepartout.hypotheses.org

Florian Caullery Institut de Mathématiques de Marseille

Algebraic geometry and Boolean functions


