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The Basic Object

A finite semifield R is a finite algebraic system containing at least
two elements, and possessing two binary operations, addition +
and multiplication ?, which satisfy the following axioms.

I 〈R,+〉 is a group with identity 0.

I There are no zero divisors – if a ? b = 0, then a = 0 or b = 0.

I There is both a left and right distributive law –

a ? (b + c) = a ? b + a ? c

(a + b) ? c = a ? c + b ? c .

I There is unity 1 ∈ R – 1 ? a = a ? 1 = a.

If we do not insist upon the existence of unity, then we talk of a
presemifield.
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Immediate Observations

I Every field is a semifield; the term proper semifield means a
semifield which is not a field – i.e. there exist elements a, b, c
such that (a ? b) ? c 6= a ? (b ? c).

I Existence of proper semifields was resolved in 1906 by
Dickson, who constructed commutative examples of order q2

for any q = pe with p odd and e > 1.

I It is easy to construct commutative presemifields which are
not semifields – take any non-prime finite field Fq and any
non-trivial automorphism σ of Fq. Then the elements of Fq,
along with field addition and the multiplication ? defined by
x ? y = (xy)σ form a presemifield that does not have unity.



Immediate Implication

Theorem
The additive group of a presemifield R is elementary abelian.

Proof: Using the distributive laws in two ways we find

(a + b) ? (c + d) = (a ? c + a ? d) + (b ? c + b ? d)

= (a ? c + b ? c) + (a ? d + b ? d).

Since 〈R,+〉 is a group, we obtain a ? d + b ? c = b ? c + a ? d .
No zero divisors and finiteness together guarantee every element of
R can be written as a product, and so 〈R,+〉 is abelian.
To prove the elementary abelian part, one reverts to the classical
argument proving the characteristic of a finite field is prime.



Immediate Implication of the Immediate Implication

Since 〈R,+〉 is necessarily elementary abelian, the elements of R
can be associated with the elements of a finite field Fq of the
appropriate order.

Under this association, the multiplication ? can be viewed as a
bivariate function over Fq – i.e. x ? y = M(x , y) for some bivariate
polynomial M ∈ Fq[X ,Y ].

Moreover, interpolation, and the left and right distributive laws of
R, force M to take a very specific form:

x ? y = M(x , y) =
e−1∑
i ,j=0

aijx
pi

ypj
,

where q = pe .



Fields vs Semifields

Both algebraic structures must have prime power order and those
of the same order have the same additive structure.

BUT. . .

Finite fields were classified in the 1890s – there is exactly one, up
to isomorphism, for each order.

Semifields are not classified – under isomorphism, there are many
of each order – and we are not remotely close to classifying them,
even under more appropriate forms of equivalence.

This last statement remains true even if we restrict ourselves to
commutative semifields.
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The Nuclei

Consider the following three subsets of a semifield R = (Fq,+, ?):

Nl(R) = {α ∈ R : (α ? x) ? y = α ? (x ? y) for all x , y ∈ R}
Nm(R) = {α ∈ R : (x ? α) ? y = x ? (α ? y) for all x , y ∈ R}
Nr (R) = {α ∈ R : (x ? y) ? α = x ? (y ? α) for all x , y ∈ R}.

These are known as the left, middle and right nucleus, respectively.
We also define

I the nucleus by N = Nl ∩Nm ∩Nr

I the weak nucleus Nw as the subset of R satisfying
(x ? y) ? z = x ? (y ? z) whenever any two of x , y , z are in Nw .

It is easy to show all of these sets are finite fields.

Any semifield can be viewed as a vector space over its nucleus.



There be geometry here!

Given a presemifield R = 〈R,+, ?〉, you can define an affine plane
AR in the following way:

I Points: (x , y) ∈ R×R.

I Lines: [m, b] and [c], with m, b, c ∈ R, defined by

[m, b] = {(x ,m ? x + b) : x ∈ R}
[c] = {(c , y) : y ∈ R}.

The plane AR, or its projective closure PR, is called the semifield
plane coordinatised by R.

When R = Fq, one gets the Desarguesian plane.



Immediate obvious question

Given two semifields R1 and R2, when are A1 and A2 isomorphic?

It is sufficient, but not necessary, for R1 and R2 to be isomorphic
in the ring-theoretical sense.

And this is the tip of the problem iceberg that is the equivalence
problem.

Ring isomorphism turns out not to be the most suitable
equivalence relation between semifields, at least in the geometric
sense – you can have non-isomorphic semifields which coordinatise
isomorphic planes.



Equivalence – Isotopism

Let R1 = 〈Fq,+, ?〉 and R2 = 〈Fq,+, ∗〉 be two presemifields.

Then R1 and R2 are isotopic if and only if there exists three
non-singular linear transformations L,M,N ∈ Fq[X ] such that

∀x , y ∈ Fq : M(x) ? N(y) = L(x ∗ y).

We say that the triple (M,N, L) is an isotopism between R1 and
R2.

Theorem (Albert)
Two presemifields coordinatise isomorphic planes if and only if they
are isotopic.



How many?

Kantor’s Conjecture
The number of pairwise non-isotopic presemifields of order q is not
bounded above by a polynomial in q.

Problem #1
Determine non-trivial bounds, lower or upper, for the number of
pairwise non-isotopic presemifields of order q.

If you restrict the problem to characteristic 2, then Kantor has
provided a suitable construction.
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Planar functions

Let f ∈ Fq[X ].

When q is odd, we say f is planar if for every a ∈ F?q, the
difference/derivative polynomial ∆f ,a defined by

∆f ,a(X ) = f (X + a)− f (X )

is a permutation polynomial.

When q is even, we say f is planar if for every a ∈ F?q, the
polynomial ∆′f ,a defined by

∆′f ,a(X ) = f (X + a)− f (X ) + aX

is a permutation polynomial.
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DO polynomials. . .

Fix q = pe , p a prime.

A polynomial f ∈ Fq[X ] is a Dembowski-Ostrom (DO) polynomial
if

f (X ) =
∑
i ,j

aijX
pi+pj

.

Also called “quadratic” in some circles.

Apart from one class of examples in characteristic 3, all known
planar functions are DO polynomials – for characteristic at least 5,
it is conjectured that DO polynomials are the only examples.



The Dembowski-Ostrom Conjecture

Problem #2

– Coulter version

Prove there are no other non-DO polynomial examples of planar
functions in odd characteristic.

Problem #2 – Pott version
Prove there are other non-DO polynomial examples of planar
functions in odd characteristic.
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The Dembowski-Ostrom Conjecture
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Prove there are no other non-DO polynomial examples of planar
functions in odd characteristic.
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Commutative semifields and Planar DO polynomials

Fix f ∈ Fq[X ] and define a “multiplication” ? on Fq by

x ? y = f (x + y)− f (x)− f (y).

Theorem
The algebraic object Rf consisting of the elements of Fq along
with field addition and the multiplication ? is a commutative
presemifield if and only if f is a planar DO polynomial.

Theorem
There is a one-to-one correspondence between commutative
presemifields of odd order and (reduced) planar DO polynomials.

With a suitable tweak to the multiplication above, both of these
results can be extended to characteristic 2.



Bilinear forms and Presemifields

A bilinear form B on Fn
q is a map from Fn

q × Fn
q to Fq satisfying

B(x1 + x2, y) = B(x1, y) + B(x2, y)

B(x, y1 + y2) = B(x, y1) + B(x, y2)

B(ax, y) = B(x, ay) = aB(x,y)

for all xi , yi ∈ Fn
q and a ∈ Fq.

Compare with a presemifield R = 〈Fq,+, ?〉 with nucleus N ,
where we have

(x1 + x2) ? y = x1 ? y + x2 ? y

x ? (y1 + y2) = x ? y1 + x ? y2

(ax) ? y = x ? (ay) = a(x ? y)

for all xi , yi ∈ Fq and a ∈ N .



Quadratic forms and planar DO polynomials

A quadratic form Q on Fn
q is a map from Fn

q to Fq satisfying

I Q(ax) = a2Q(x) for all x ∈ Fn
q and a ∈ Fq.

I B(x, y) = Q(x + y)− Q(x)− Q(y) is a symmetric bilinear
form.

Compare with a planar DO polynomial
f (X ) =

∑
aijX

pi+pj ∈ Fq[X ]:

I f (ax) = a2f (x) for all x ∈ Fq and a ∈ Fp.

I x ? y = f (x + y)− f (x)− f (y) is the multiplication of a
commutative presemifield.



So close

Problem #3
Can a reasonable theory be developed for the commutative
semifield/planar DO polynomial duality along similar lines to the
bilinear form/quadratic form duality?

More specifically, can any of the enumeration techniques developed
for counting inequivalent forms be adapted to obtain non-trivial
bounds for the number of inequivalent commutative semifields?
(see Problem #1)



The MAIN problem with the theory

Problem #4
Classify presemifields.

If that’s too hard, classify commutative presemifields.

If that’s too hard. . . maybe find an intelligent person to help?
Or even a whole room full of them?

The situation is not completely hopeless – orders p, p2 and p3 are
done.
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Isotopism for Commutative presemifields

Let R1 = 〈Fq,+, ?〉 and R2 = 〈Fq,+, ∗〉 be two commutative
presemifields.

Then R1 and R2 are isotopic if and only if there exists three
non-singular linear transformations L,M,N ∈ Fq[X ] such that, for
all x , y ∈ Fq, we have

M(x) ? N(y) = L(x ∗ y)

= L(y ∗ x) = M(y) ? N(x).

Is it reasonable to expect that, in the case of commutative
presemifields, isotopism implies strong isotopism (i.e. M = N)?
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Not quite Reasonable, but still Respectable

Theorem
Let R1 = 〈Fq,+, ?〉 and R2 = 〈Fq,+, ∗〉 be isotopic commutative
semifields with d = [Nm : N ] the dimension of the middle nucleus
over the nucleus.

I If d is odd, then R1 and R2 are strongly isotopic.

I If d is even, then either R1 and R2 are strongly isotopic or
the only isotopisms between them are of the form
(α ? N,N, L) where α is a non-square element of Nm(R1).

In particular, if q = pe with p = 2 or e odd, then R1 and R2 are
strongly isotopic.

The result can be extended to commutative presemifields.



Limitations of the Second Part of the Theorem

If d is even, then either R1 and R2 are strongly isotopic
or the only isotopisms between them are of the form
(α ? N,N, L) where α is a non-square element of
Nm(R1).

The 2nd possibility does occur – examples are known for order 38,
the smallest possibility.

When it does, the isotopy class containing R1 and R2 splits into
exactly two strong isotopy classes.

Thus the number of pairwise non-isotopic commutative
presemifields of order q is less than 2 times the number of pairwise
non-strongly isotopic commutative presemifields.
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Another problem. . .

This splitting of isotopism classes is not well understood.

Problem #5
Find a key property or an efficient test that determines when the
isotopy class of a given commutative presemifield splits into two
strong isotopy classes.

Maybe not hard? I know of no work done on trying to tie this
down.
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Strong Isotopy via Planar DO polynomials

Now let Rf and Rh be two commutative presemifields generated
by planar DO polynomials f , h ∈ Fq[X ], respectively.

Theorem
Rf and Rh are strongly isotopic, with strong isotopy (M,M, L), if
and only if

L(f (X )) ≡ h(M(X )) (mod X q − X ).

The similarity with EA-equivalence will be immediately apparent to
everyone here.

The inherent difficulties with using the equivalence relation are also
similar!
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More Problems

– I have many!

Problem #6
Find some technique from the use of EA-equivalence on boolean
functions that can be exploited to obtain some sort of result on the
numbers of non-isotopic commutative presemifields.

Hard, and (it must be acknowledged) some of you here have
already tried this!

Problem #7
Find a better way to resolve the equivalence issue, possibly even
through the introduction of a new equivalence relation.

Hard; there may not even be one! One can try CCZ-equivalence,
but as with EA-equivalence, similar difficulties arise.
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One Approach – restrict the form

Theorem (odd characteristic p only)
Let e, k , d be natural numbers with ek = 1 and d = 2 or ek > 1
and d arbitrary.
Set s = pe , v = rk , q = vd and t(X ) = X v − X .
If R is a commutative semifield with Fs ⊆ N and Fv ⊆ Nw , then
R ≈ Rf where f is a planar DO polynomial of the form

f (X ) = L(t2(X )) + D(t(X )) +
1

2
X 2

with L ∈ Fq[X ] a s-polynomial and D ∈ Fq[X ] a DO polynomial of
a specific form.



Restrictions lead to restrictions

, but not enough restrictions

When dealing exclusively with planar DO polynomials of the form

L(t2(X )) + D(t(X )) +
1

2
X 2,

isotopic examples must be connected via isotopisms of restricted
form too – i.e. the shape of the non-singular transformations
involved are dependent on the N and Nw also.

We have had little success with this approach, though it might be
strong enough to deal with p4 order, when D(X ) = 0 is forced.

Problem #8
Find other, more useful, restrictions on the forms of planar DO
polynomials which can be used to study all commutative semifields
of specified type.
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A Second Approach – illustrated by a specific example. . .

Theorem
For any non-zero a ∈ F3e , the polynomial

fa(X ) = X 10 + aX 6 − a2X 2

is a planar DO polynomial over F3e if and only if

I e is odd, or

I e = 2 and a = ±1.

Further, for e ≥ 3 odd, fa(X ) and fb(X ) generate isotopic
commutative presemifields if and only if ab is a square.



An example with a quirk

Now fix e ≥ 3 odd, set q = 3e and choose a, b ∈ Fq so that ab is a
non-square.

I Then fa(X ) and fb(X ) are not isotopic – in practical terms, for
all linearized permutation polynomials L,M ∈ Fq[X ], we have

L(fa(X )) 6≡ fb(M(X )) (mod X q − X ).

I Over Fq2 we do not get presemifields – there are zero divisors
– but the polynomials are strongly isotopic via linear
polynomials:

d10fa(X ) = fb(dx),

where d ∈ Fq2 satisfies d4 = ba−1.
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Two Final Problems

Problem #9
What does this relationship mean for the respective commutative
semifields?
Is there a deeper relation between the two affine planes than
presently understood?
Are there other examples of this phenomena, either within the
study of commutative semifields, or in similar fields (APN
functions come to mind) and can they be classified?

Problem #10
Does this relationship point towards some generalisation of the
equivalence relation which can be handled more neatly than
current techniques?



I’m done.

Thank you.


