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Projective polynomials

Projective polynomials

Projective polynomials are polynomials of type (Abhyankar-Cohen-Zieve
2000)

X 2k+1 + AX 2k + BX + C

on F2m [X ].

Applications in finite fields:

Difference sets (Dillon-Dobbertin 2004, Dillon 2002)

Cross-correlation of sequences (Dobbertin-Felke-Helleseth-Rosendahl
2006, Helleseth-Kholosha 2007)

Error-correcting codes (Bracken-Helleseth)

APN functions (Budaghyan-Carlet 2008)

In this talk:

Discrete logarithm problem

APN functions
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The Discrete Logarithm Problem

In a cyclic group G , with given generator g , the DLP is the following
problem:

DLP problem

Given h ∈ G , find i such that h = g i .

In other words, find logg (h).

Remark

The map g i can be computed efficently (Square-and-Multiply) but
(considered as) difficult to invert — one-way function.

In cryptography, the following groups are of interest:

1 The multiplicative group of a finite field Fq

2 The group of Fq-rational points on an elliptic curve, E (Fq)

3 The Jacobian of a hyperelliptic curve over Fq.
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DLP in cryptography

Key exchange: Diffie-Hellman

Encryption: ElGamal

Signature: Schnorr, ElGamal

Homomorphic encryption: Pallier

Pairing-based Cryptography: Joux

Generic algorithms:

Baby Step/Giant Step

Pohlig-Hellmann

Pollard Rho
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Principle of the Index Calculus Method

The computation of logα β in a group consists of three steps.

1 Relation Generation.

Choose a subset S of the group, called factor base, and find
multiplicative relations between factor base elements, which
correspond to linear relations among their discrete logarithms.

2 Linear Algebra.

After sufficiently many relations have been generated, obtain the
DLP for all factor base elements by solving a linear system.

3 Individual Logarithms.

Find an expression of the target element as a product of factor base
elements, e.g., by a descent method.
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Index calculus over a prime field Zp

The factor base S consists of the first t prime numbers. Relations are
generated by computing αk mod p and then using trial division to check
whether this integer is a product of primes in S .

Example. Let p = 229. The element α = 6 is a generator of Z229 of
order n = 228. Choose factor base S = {2, 3, 5, 7, 11}.

1 The following relations are obtained:

6100 mod 229 = 180 = 22 · 32 · 5
618 mod 229 = 176 = 24 · 11

612 mod 229 = 165 = 3 · 5 · 11

662 mod 229 = 154 = 2 · 7 · 11

6143 mod 229 = 198 = 2 · 32 · 11

6206 mod 229 = 210 = 2 · 3 · 5 · 7
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Index calculus over a prime field Zp

The factor base S consists of the first t prime numbers. Relations are
generated by computing αk mod p and then using trial division to check
whether this integer is a product of primes in S .

Example. Let p = 229. The element α = 6 is a generator of Z229 of
order n = 228. Choose factor base S = {2, 3, 5, 7, 11}.

1 These yield the following equations mod 228:

100 ≡ 2 log6 2 + 2 log6 3 + log6 5

18 ≡ 4 log6 2 + log6 11

12 ≡ log6 3 + log6 5 + log6 11

62 ≡ log6 2 + log6 7 + log6 11

143 ≡ log6 2 + 2 log6 3 + log6 11

206 ≡ log6 2 + log6 3 + log6 5 + log6 7
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Index calculus over a prime field Zp

The factor base S consists of the first t prime numbers. Relations are
generated by computing αk mod p and then using trial division to check
whether this integer is a product of primes in S .

Example. Let p = 229. The element α = 6 is a generator of Z229 of
order n = 228. Choose factor base S = {2, 3, 5, 7, 11}.

1 We can write this linear system in matrix form as:
100
18
12
62

143
206

 =


2 2 1 0 0
4 0 0 0 1
0 1 1 0 1
1 0 0 1 1
1 2 0 0 1
1 1 1 1 0

 ·

x1
x2
x3
x4
x5

 .
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Index calculus over a prime field Zp

2 Solving this linear system yields the solutions:

x1 = log6 2 = 21, x2 = log6 3 = 208, x3 = log6 5 = 98,
x4 = log6 7 = 107, and x5 = log6 11 = 162.

3 Consider β = 13. Then log6 13 is computed as follows.

We find for k = 77 that

β · αk = 13 · 677 mod 229 = 147 = 3 · 72 ,

hence it follows that

log6 13 = (log6 3 + 2 log6 7− 77) mod 228

= (208 + 214− 77) mod 228 = 117 .
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The Function Field Sieve (Joux-Lercier ’06)

In the FFS, we work on polynomials over Fq[X ]. Factor base is
small degree (degree 1) polynomials.

Choose g1, g2 ∈ Fq[X ] of degrees d1, d2 ≈
√
n such that

X − g1(g2(X )) has a degree n irreducible factor f (X ) over Fq, and
represent Fqn as Fqn ∼= Fq(x) ∼= Fq[X ]/〈f (X )〉. For y := g2(x) we
then have g1(y) = x .

We set the factor base as S = {x + a | a ∈ Fq} ∪ {y + b | b ∈ Fq}.
Relation generation:

We consider elements xy + ay + bx + c for a, b, c ∈ Fq to obtain
two expressions for an element of Fqn

xg2(x) + ag2(x) + bx + c = yg1(y) + ay + bg1(y) + c .
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The Function Field Sieve (Joux-Lercier ’06)

If for some (a, b, c) triple, the corresponding polynomials

Xg2(X ) + ag2(X ) + bX + c ,Yg1(Y ) + aY + bg1(Y ) + c

both split, one obtains a relation by evaluating the polynomials at x
and y respectively. That is,∏

i

(x + αi ) =
∏
j

(y + βj)

gives us a relation.

In the original Joux-Lercier approach, the probability of either
polynomial

Xg2(X ) + ag2(X ) + bX + c ,Yg1(Y ) + aY + bg1(Y ) + c .

splitting is 1/(d2 + 1)! and 1/(d1 + 1)! respectively.

Can we choose g1, g2 such that we can control the splitting
behaviour?
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Projective polynomials

Let q = 2m, m = kk ′. Consider the family of polynomials

x2
k+1 + ax2

k

+ bx + c .

If ab 6= c and ba2
k 6= b, this may be transformed into

fB(y) = y2k+1 + By + B

via x = ab+c

a2k+b
y + a.

Theorem (Bluher; Helleseth-Kholosha)

The number of elements B ∈ F∗q such that the polynomial fB(x) splits
completely over Fq equals

2m−k − 1

22k − 1
if k ′ is odd ,

2m−k − 2k

22k − 1
if k ′ is even .
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Recall the polynomials

Xg2(X ) + ag2(X ) + bX + c ,Yg1(Y ) + aY + bg1(Y ) + c .

Choose g2(X ) = X 2k

LHS becomes
X 2k+1 + aX 2k + bX + c

LHS splits with a probability 1/23k which is much better then
1/(2k + 1)!.

Of course choosing g2 imposes a condition on g1, but one can
choose 2k >> d1 making splitting probability very high.

One can even get more greedy and choose g1(X ) = γX then RHS
become quadratic and splits with probability 1/2!.
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Relation generation

The irreducible factor then becomes X 2k−1 + γ, an example of a
Kummer extension.

Our setting: k ′ = 3 and k = 8. Therefore our field is:
F28·3·28−1 = F26120 .

This setting guarantees existence of splitting projective polynomials.

Our method is the first polynomial time relation generation
method. The relation generation was the bottleneck before.

Faruk Göloğlu Projective polynomials in cryptography



Factor base preserving automorphisms

The linear algebra step (we use Lanczos) requires matrix-vector
multiplications Ax where A is an |S | × |S | matrix.

The automorphisms which preserves the factor base helps us shrink
the size of A.

Choice of g2(X ) = X 2k implies y = x2
k

and

(y + b) = (x + b2
−k

)2
k

=⇒ log(y + b) = 2k log(x + b2
−k

)

which halves the factor base size.

α 7→ αq is another automorphism which preserves the factor base,
shrinking A further, all thanks to properties of projective
polynomials.
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Other niceties implied by projective polynomials

The matrix-vector multiplications normally is too expensive (lots of
finite fields multiplications)

A property of projective polynomials is that when they split,
repeated roots have multiplicity powers of 2.

This implies entries in A are all powers of 2.

Therefore instead of field multiplications, we have “rotations”.
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The descent

Now, given a random polynomial in Fq[X ] (e.g. an element in Fqn

whose logarithm is to be found) we use standard methods to
represent it by a product of smaller degree polynomials, hence the
descent – a recursive algorithm.

For degree 2 elimination we try to equate a given quadratic
polynomial

Q(x) = x2 + A1x + A0 = x2
k+1 + ax2

k

+ bx + c

where RHS splits (again high probability).

Since x2
k−1 = γ, RHS becomes

γ

(
x2 +

(
a +

b

γ

)
x +

c

γ

)
and using Bluher-parametrization we get

(a2
k

+ γa + γA1)2
k+1 + B(γa2 + γA1a + γA0)2

k

= 0

which we solve via a Gröbner basis computation.
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Algorithmic optimizations

Matrix-Vector multiplication

Matrix of size 1000000× 1000000, each entry 1000s of bits.
If entries are powers of 2 – shift instead of multiplication.

GMP - GNU Multi-Precision Library

Parallelization and Vectorization

Some algorithms embarassingly parallel

Lanczos (finding a solution to a linear system) – parallelisation (not
very good) depends on parameters

OpenMP and MPI

Registers up to 512 bits

Vectorization means exploit the length of the registers
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Solving the DLP in F26120

Let F28 = F2[T ]/ < T 8 + T 4 + T 3 + T + 1 >,

Let F224 = F28 [W ]/ <W 3 + t >,

Let F26120 = F224 [X ]/ < X 255 + w + 1 >.

We took as generator α = x + w and target

βπ =
254∑
i=0

τ(bπqi+1c mod q) x i .

The computation took:

15 seconds for relation generation using Magma

60.5 core-hours for the parallelized C/GMP Lanczos implementation
on four of the Intel (Westmere) Xeon E5650 hex-core processors
ICHEC’s SGI Altix ICE 8200EX Stokes cluster

689 core-hours for the descent, giving a total of 750 core-hours.

Faruk Göloğlu Projective polynomials in cryptography



Solving the DLP in F26120

On 11/4/13 we announced that logα(βπ) =

138587598363978692625475711283123171009236361503896992366495931704517700280127178022234894098617

581360131441835074256363730624426814293233474272521598166126957928116825443110965404253837938808

595404111035238027107772178822939281873403451999731815140073481766513715358449279314556797352446

246860317946750124475689474406274942356035936501674050933448909201029834522226732247771897083223

217282051573645013603613042367782716361877817938374393824313019073624786387618414037541681120284

044659383192907436852526392087724304775451631271825250968111451400502733404381769675255289127346

639350098221570844400380788516332496583882522436381918008200167032186350245107751346979596314696

153666716168951481948091060066730184766758137773944303875429830867205463918144256843911730747265

146154193438041627833661739775057161236346096236566875251277843062329973044475486561062204356908

568471471279383781038538818884463796989906076079843248127252020839705886436071213650575186707456

948584072378916942925369140868417196479573481032711481021729162865973588174096389913305607677858

033996361734905537150362024720515772660781208855505434331055766570014211875602940633575763850457

503079087074376585304470520411320246292255375711457573555286060236699317039454479326718281128961

423275142787569425690532833283344049635521302596000897192512036695298807294032964530959691377087

204546348960132760095544105980198255245493202412831593891984788152417957691939817112366182063687

529915365150361180214451234387656883256149355994405051149585969163075307026647956035683671589546

448539955132726112034938655961291856203422247680387029078473520951160334472525475071680672623661

587292720329606182512044312194357156139201340952037872975243254476081554937002122953415949407262

137232099852298394838422907643191397673290238344183046040975859915928536530445697145317668044973

7096483324156185041
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World record progress:

bitlength who/when running time
127 Coppersmith 1984 N/A
. . .
521 Joux-Lercier 2001 > 3000 core hours
607 Thomé 2001 > 800000 core hours
. . .
923 Hayashi et al. 2010 > 800000 core hours

1175 Joux Dec. 2012 > 30000 core hours
1425 Joux Jan. 2013 > 30000 core hours
1778 Joux 11/2/2013 215 core hours

1971 GGMZ 19/2/2013 3132 core hours
4080 Joux 22/3/2013 14100 core hours
6120 GGMZ 11/4/2013 750 core hours
6168 Joux 21/5/2013 550 core hours (subgroup)
9234 GKZ 31/01/2014 400000 core hours
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Theoretical breakthrough and open problems

Barbulescu, Gaudry, Joux and Thome 2014: A heuristic quasi-polynomial
time algorithm. Theoretically much better than any previous algorithm
for smalll characteristic fields.

Problem

What are the implications in medium prime case?

Problem

A heuristic-free algorithm for small characteristic.
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APN functions

Let

n = 2m, q = 2m, F = Fq2 , K = Fq

Pq−1 = {X q−1 : X ∈ F}

T1 = {X ∈ F : X + X q = 1}

Budaghyan and Carlet proved:

Theorem

Let C ∈ F and A ∈ F \K. If

PC ,k(X ) = X 2k+1 + CX 2k + C qX + 1 = 0

has no solutions X ∈ Pq−1, then the polynomial

gC ,k(X ) = X (X 2k + X q + CX 2kq) + X 2k (C qX q + AX 2kq) + X (2k+1)q

is differentially 2gcd(k,m)-uniform on F. Thus, gC ,k is APN if and only if
gcd(k,m) = 1.

Faruk Göloğlu Projective polynomials in cryptography



When does PC ,k have no solutions in Pq−1

Bracken, Tan and Tan (2014): constructed some elements C when
m ≡ 2 or 4 (mod 6) such that PCk

has no roots in P2m−1 (in the
gcd(m, k) = 1 case).

Qu, Tan and Li (2014): constructed some elements when m ≡ 0
(mod 6) (in the gcd(m, k) = 1 case).

Bluher (2013): characterized those (m, k) pairs for which such a
PC ,k exists for any gcd(m, k).
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A Trace-0/Trace-1 decomposition

Recall that

Pq−1 = {X q−1 : X ∈ F∗}

T1 = {X ∈ F : X + X q = 1}

We have the following decompositions:

Polar coordinate decomposition: Any X ∈ F∗ can be written as
X = xu where x ∈ K and u ∈ Pq−1.

Trace-0/Trace-1 decomposition: Any X ∈ F∗ can be written as
X = xg where x ∈ K and g ∈ T1 ∪ {1}.

Observe that xg = yh implies Trnm(xg) = Trnm(yh) implies x = y and
g = h.
Notice that Pq−1 = {gq−1 : g ∈ T1 ∪ {1}}.
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Characterization of PC ,k

Let

Γk :K→ K

Γk :x 7→ x2
k+1 + x .

Write
g (q−1)(2k+1) + Cg (q−1)2k + C qgq−1 + 1

instead of
u2

k+1 + Cu2
k

+ C qu + 1

and after some steps you get
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Theorem

Let C ∈ F and 1 ≤ k < n. The polynomial

PC ,k(X ) = X 2k+1 + CX 2k + C qX + 1

has no solutions X ∈ Pq−1 if and only if each of the three following
conditions holds

k 6= m,

C 6∈ K, and

Trnm(h3) + 1 + 1
b

Trnm(h2k+1)2n−k+1
6∈ Im(Γk)

where C q + 1 = bh with b ∈ K∗ and h ∈ T1 \ Zk,1.
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This is not that cumbersome.

Equivalent to
1

b
6= Ah(y2k+1 + y) + Bh.

The image set of Γk(y) = y2k+1 + y is well-studied (Bluher 2007,
Helleseth-Kholosha, Bracken-Tan-Tan 2014).

Even the counts are given (HK), helping to prove:

Theorem

If gcd(k,m) = 1 (i.e., gC ,k is APN), then the number of elements C ∈ F
for which the polynomial PC ,k(X ) has no solutions X ∈ Pq−1 is

Nm,k =

{
(q − 2) q+1

3 if m is odd,

q q−1
3 if m is even.
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APN permutations

There are many APN permutations on F22m+1 , e.g. monomials

The only known APN permutation (up to equivalence) on F22m is
(when m = 3) CCZ-equivalent to

κ(X ) = X 3 + X 10 + AX 24,

where A is a generator of F∗26 . (Browning-Dillon-McQuistan-Wolfe
2009)

Does there exist another APN permutation on even dimensions?

Why not mimic the behaviour of κ?
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Properties of κ

An APN function f on F2n is CCZ-equivalent to a permutation if
the Walsh zeroes of f contains two subspaces of dimension n
intersecting only trivially.

The Walsh transform of f

f̂ (A,B) =
∑
X∈F

χ (Af (X ) + BX )

and Walsh zeroes WZf of f is

WZf = {(X ,Y ) : f̂ (X ,Y ) = 0} ∪ {(0, 0)}.

Walsh zeroes of κ has more structure with respect to some
subspaces, i.e.,

{(u1x , v1y) : x , y ∈ K}, {(u2x , v2y) : x , y ∈ K} ⊆WZf

for some u1, u2, v1, v2 ∈ P7.
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Subspace property

The function κ satisfies the subspace property, which is defined as

f (aX ) = a2
k+1f (X ), ∀a ∈ K. (1)

for some integer k.

According to Browning-Dillon-McQuistan-Wolfe this explained some
of the simplicity of why κ is equivalent to a permutation, viz.

f̂ (au, bv) =
∑
X∈F

χ (au f (X ) + bv X )

=
∑
X∈F

χ
(
ac2

k+1u f (X ) + bcv X
)

= f̂ (ac2
k+1u, bcv).
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Which functions satisfy the subspace property

κ

Gold exponents

Remark

If the exponents of f are in {2k + 1, q + 2k , (2k + 1)q, 2kq + 1} then f
satisfies subspace property.

gC ,k necessarily has exponents {q + 1, 2kq} which disturbs the
subspace property.

Carlet 2011 and Zhou-Pott 2013 has bivariate constructions which
necessitates the exponents {2, q + 1, 2q}. These constructions have
also close connections to projective polynomials

Quoting Browning-Dillon-McQuistan-Wolfe

[T]he highly structured decomposition of the κ code raise the
hope that much of the structure, if not all, should generalize
to higher dimensions. Does it?
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New APN family satisfying the subspace property

Theorem

Let fk(X ) = X 2k+1 + (Trnm(X ))2
k+1. Then fk is APN if and only if m is

even and gcd(k , n) = 1.

Proof.

Use Trace-0/Trace-1 decomposition.
Write X = xg + y .

Derivatives Lag (X ) = a2
k+1(A(x , y)g + B(x , y)).

L(X ) are two-to-one maps.

Remark

Unfortunately fk are not equivalent to permutations on F28 and does not
seem to be on F212 .
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Hyperplane spectrum

Crooked functions

For a crooked function f , the hyperplane spectrum Hf is defined by the
multiset

Hf = {∗ β ∈ F∗ : Im(DAf ) = Hβ ∗} .

where Hβ = {X ∈ F : Tr (βX ) = 0}

For Gold exponents X 2k+1

HfGold = {∗ β2k+1 : β ∈ F∗ ∗}

Theorem

Let A = ag where a ∈ K∗ and g ∈ T1. Then the derivatives DAfk of fk
satisfy

Im(DAfk) = HβA

where

βA =
1

a2k+1

Trnm(g2k+1)

Trnm(g3)2k+1

(
g + 1 +

Trnm(g3)

Trnm(g2k+1)

)
.
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Corollary

We have

(i) The Walsh spectrum Wfk of fk satisfies Wfk = {0,±2m,±2m+1},

(ii) If A ∈ F∗ and A−1 6∈ Hf , then the binomial (monomial if A ∈ K∗)
Boolean function Tr

(
AX 2k+1 + (Aq + A)X q2k+1

)
is bent. The

number of such bent functions is 2 q2−1
3 .

Remark

If k = 1 then βA = g
a3Trnm(g

3)2 becomes very simple.

This also tells us finding zeroes of Walsh transform of fk is rather
easy.

The functions fk are not CCZ-equivalent to any known functions on
F212 .

Faruk Göloğlu Projective polynomials in cryptography



More functions with subspace property?

Let g = X 3

Consider L1(g(L2(X ))) = h(X ) where

Li (X ) = AX + BX q

Difficult to check with computers

It does not seem to exist on F210 and F214

Restriction to odd dimension subfield important?
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Switching construction

Recall the similarity to the infinite family of
Budaghyan-Carlet-Leander

X 3 + Tr
(
X 9
)

Adding a Boolean function to a known family is a highly exploited
method (Dillon, Budaghyan-Carlet-Leander, Edel-Pott, ...)

New family can be seen as adding a “vectorial Boolean function” to
the Gold family.
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Some problems

Problem

Find an infinite family of APN functions which includes the Kim function
and which satisfies the subspace property.

Problem

Show that the Gold functions (or any existing family) are not equivalent
to permutations.

Problem

Describe the zeroes of the Walsh transform of known APN families.

Problem

Are there APN permutations on F22m for m > 3?
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Thanks for your attention.

Faruk Göloğlu Projective polynomials in cryptography


