Projective polynomials in cryptography

Faruk Göloğlu

University of Tartu

BFA Workshop, Rosendal September 3, 2014

イロン イヨン イヨン イヨン

크

Projective polynomials

Projective polynomials

Projective polynomials are polynomials of type (Abhyankar-Cohen-Zieve 2000)

$$X^{2^{k}+1} + AX^{2^{k}} + BX + C$$

on $\mathbb{F}_{2^m}[X]$.

Applications in finite fields:

- Difference sets (Dillon-Dobbertin 2004, Dillon 2002)
- Cross-correlation of sequences (Dobbertin-Felke-Helleseth-Rosendahl 2006, Helleseth-Kholosha 2007)
- Error-correcting codes (Bracken-Helleseth)
- APN functions (Budaghyan-Carlet 2008)

In this talk:

- Discrete logarithm problem
- APN functions

・ 同 ト ・ 三 ト ・ 三 ト

The Discrete Logarithm Problem

In a cyclic group G, with given generator g, the DLP is the following problem:

DLP problem

Given $h \in G$, find *i* such that $h = g^i$.

In other words, find $\log_g(h)$.

Remark

The map g^i can be computed efficently (Square-and-Multiply) but (considered as) difficult to invert — one-way function.

In cryptography, the following groups are of interest:

- **①** The multiplicative group of a finite field \mathbb{F}_q
- 2 The group of \mathbb{F}_q -rational points on an elliptic curve, $E(\mathbb{F}_q)$
- **(3)** The Jacobian of a hyperelliptic curve over \mathbb{F}_q .

・ロン ・回と ・ヨン ・ヨン

DLP in cryptography

- Key exchange: Diffie-Hellman
- Encryption: ElGamal
- Signature: Schnorr, ElGamal
- Homomorphic encryption: Pallier
- Pairing-based Cryptography: Joux

Generic algorithms:

- Baby Step/Giant Step
- Pohlig-Hellmann
- Pollard Rho

同下 くほと くほと

The computation of $\log_\alpha\beta$ in a group consists of three steps.

Relation Generation.

Choose a subset S of the group, called factor base, and find multiplicative relations between factor base elements, which correspond to linear relations among their discrete logarithms.

2 Linear Algebra.

After sufficiently many relations have been generated, obtain the DLP for all factor base elements by solving a linear system.

3 Individual Logarithms.

Find an expression of the target element as a product of factor base elements, e.g., by a descent method.

・ 同 ト ・ ヨ ト ・ ヨ ト

The factor base S consists of the first t prime numbers. Relations are generated by computing $\alpha^k \mod p$ and then using trial division to check whether this integer is a product of primes in S.

Example. Let p = 229. The element $\alpha = 6$ is a generator of \mathbb{Z}_{229} of order n = 228. Choose factor base $S = \{2, 3, 5, 7, 11\}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

The factor base S consists of the first t prime numbers. Relations are generated by computing $\alpha^k \mod p$ and then using trial division to check whether this integer is a product of primes in S.

Example. Let p = 229. The element $\alpha = 6$ is a generator of \mathbb{Z}_{229} of order n = 228. Choose factor base $S = \{2, 3, 5, 7, 11\}$.

The following relations are obtained:

イロト イポト イヨト イヨト

The factor base S consists of the first t prime numbers. Relations are generated by computing $\alpha^k \mod p$ and then using trial division to check whether this integer is a product of primes in S.

Example. Let p = 229. The element $\alpha = 6$ is a generator of \mathbb{Z}_{229} of order n = 228. Choose factor base $S = \{2, 3, 5, 7, 11\}$.

The following relations are obtained:

イロト イポト イヨト イヨト

The factor base S consists of the first t prime numbers. Relations are generated by computing $\alpha^k \mod p$ and then using trial division to check whether this integer is a product of primes in S.

Example. Let p = 229. The element $\alpha = 6$ is a generator of \mathbb{Z}_{229} of order n = 228. Choose factor base $S = \{2, 3, 5, 7, 11\}$.

These yield the following equations mod 228:

$$100 \equiv 2 \log_{6} 2 + 2 \log_{6} 3 + \log_{6} 5$$

$$18 \equiv 4 \log_{6} 2 + \log_{6} 11$$

$$12 \equiv \log_{6} 3 + \log_{6} 5 + \log_{6} 11$$

$$62 \equiv \log_{6} 2 + \log_{6} 7 + \log_{6} 11$$

$$143 \equiv \log_{6} 2 + 2 \log_{6} 3 + \log_{6} 11$$

$$206 \equiv \log_{6} 2 + \log_{6} 3 + \log_{6} 5 + \log_{6} 7$$

The factor base S consists of the first t prime numbers. Relations are generated by computing $\alpha^k \mod p$ and then using trial division to check whether this integer is a product of primes in S.

Example. Let p = 229. The element $\alpha = 6$ is a generator of \mathbb{Z}_{229} of order n = 228. Choose factor base $S = \{2, 3, 5, 7, 11\}$.

We can write this linear system in matrix form as:

$$\begin{bmatrix} 100\\18\\12\\62\\143\\206 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 1 & 0 & 0\\4 & 0 & 0 & 0 & 1\\0 & 1 & 1 & 0 & 1\\1 & 0 & 0 & 1 & 1\\1 & 2 & 0 & 0 & 1\\1 & 1 & 1 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} x_1\\x_2\\x_3\\x_4\\x_5 \end{bmatrix}$$

Solving this linear system yields the solutions: $x_1 = \log_6 2 = 21, x_2 = \log_6 3 = 208, x_3 = \log_6 5 = 98, x_4 = \log_6 7 = 107, \text{ and } x_5 = \log_6 11 = 162.$

Consider β = 13. Then log₆ 13 is computed as follows.
 We find for k = 77 that

$$\beta \cdot \alpha^k = 13 \cdot 6^{77} \mod 229 = 147 = 3 \cdot 7^2$$
,

hence it follows that

$$\log_6 13 = (\log_6 3 + 2\log_6 7 - 77) \mod 228$$

= (208 + 214 - 77) mod 228 = 117.

- In the FFS, we work on polynomials over 𝔽_q[X]. Factor base is small degree (degree 1) polynomials.
- Choose $g_1, g_2 \in \mathbb{F}_q[X]$ of degrees $d_1, d_2 \approx \sqrt{n}$ such that $X g_1(g_2(X))$ has a degree *n* irreducible factor f(X) over \mathbb{F}_q , and represent \mathbb{F}_{q^n} as $\mathbb{F}_{q^n} \cong \mathbb{F}_q(x) \cong \mathbb{F}_q[X]/\langle f(X) \rangle$. For $y := g_2(x)$ we then have $g_1(y) = x$.

ヘロン 人間と 人間と 人間と

- In the FFS, we work on polynomials over 𝔽_q[X]. Factor base is small degree (degree 1) polynomials.
- Choose $g_1, g_2 \in \mathbb{F}_q[X]$ of degrees $d_1, d_2 \approx \sqrt{n}$ such that $X g_1(g_2(X))$ has a degree *n* irreducible factor f(X) over \mathbb{F}_q , and represent \mathbb{F}_{q^n} as $\mathbb{F}_{q^n} \cong \mathbb{F}_q(x) \cong \mathbb{F}_q[X]/\langle f(X) \rangle$. For $y := g_2(x)$ we then have $g_1(y) = x$.
- We set the factor base as $S = \{x + a \mid a \in \mathbb{F}_q\} \cup \{y + b \mid b \in \mathbb{F}_q\}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

- In the FFS, we work on polynomials over 𝔽_q[X]. Factor base is small degree (degree 1) polynomials.
- Choose $g_1, g_2 \in \mathbb{F}_q[X]$ of degrees $d_1, d_2 \approx \sqrt{n}$ such that $X g_1(g_2(X))$ has a degree *n* irreducible factor f(X) over \mathbb{F}_q , and represent \mathbb{F}_{q^n} as $\mathbb{F}_{q^n} \cong \mathbb{F}_q(x) \cong \mathbb{F}_q[X]/\langle f(X) \rangle$. For $y := g_2(x)$ we then have $g_1(y) = x$.
- We set the factor base as S = {x + a | a ∈ ℝ_q} ∪ {y + b | b ∈ ℝ_q}. Relation generation:
- We consider elements xy + ay + bx + c for a, b, c ∈ 𝔽_q to obtain two expressions for an element of 𝔽_{qⁿ}

$$xg_2(x) + ag_2(x) + bx + c = yg_1(y) + ay + bg_1(y) + c$$
.

・ロン ・回と ・ヨン ・ヨン

• If for some (a, b, c) triple, the corresponding polynomials

$$Xg_2(X) + ag_2(X) + bX + c, Yg_1(Y) + aY + bg_1(Y) + c$$

both split, one obtains a relation by evaluating the polynomials at x and y respectively. That is,

$$\prod_i (x + \alpha_i) = \prod_j (y + \beta_j)$$

gives us a relation.

In the original Joux-Lercier approach, the probability of either polynomial

$$Xg_2(X) + ag_2(X) + bX + c, Yg_1(Y) + aY + bg_1(Y) + c.$$

splitting is $1/(d_2+1)!$ and $1/(d_1+1)!$ respectively.

Can we choose g₁, g₂ such that we can control the splitting behaviour?

Projective polynomials

• Let $q = 2^m$, m = kk'. Consider the family of polynomials

$$x^{2^k+1} + ax^{2^k} + bx + c.$$

• If $ab \neq c$ and $ba^{2^k} \neq b$, this may be transformed into

$$f_B(y) = y^{2^k+1} + By + B$$

via
$$x = \frac{ab+c}{a^{2^k}+b}y + a$$
.

Theorem (Bluher; Helleseth-Kholosha)

The number of elements $B \in \mathbb{F}_q^*$ such that the polynomial $f_B(x)$ splits completely over \mathbb{F}_q equals

$$\frac{2^{m-k}-1}{2^{2k}-1} \quad \text{if } k' \text{ is odd} \,, \qquad \frac{2^{m-k}-2^k}{2^{2k}-1} \quad \text{if } k' \text{ is even} \,.$$

・ロト ・回ト ・ヨト ・ヨト

• Recall the polynomials

$$Xg_2(X) + ag_2(X) + bX + c, Yg_1(Y) + aY + bg_1(Y) + c.$$

• Choose $g_2(X) = X^{2^k}$

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

• Recall the polynomials

$$Xg_2(X) + ag_2(X) + bX + c, Yg_1(Y) + aY + bg_1(Y) + c.$$

- Choose $g_2(X) = X^{2^k}$
- LHS becomes

$$X^{2^{k}+1} + aX^{2^{k}} + bX + c$$

• LHS splits with a probability $1/2^{3k}$ which is much better then $1/(2^k + 1)!$.

(本間) (注) (注) (注)

Recall the polynomials

$$Xg_2(X) + ag_2(X) + bX + c, Yg_1(Y) + aY + bg_1(Y) + c.$$

- Choose $g_2(X) = X^{2^k}$
- LHS becomes

$$X^{2^{k}+1} + aX^{2^{k}} + bX + c$$

- LHS splits with a probability $1/2^{3k}$ which is much better then $1/(2^k + 1)!$.
- Of course choosing g₂ imposes a condition on g₁, but one can choose 2^k >> d₁ making splitting probability very high.
- One can even get more greedy and choose g₁(X) = γX then RHS become quadratic and splits with probability 1/2!.

・ 同 ト ・ ヨ ト ・ ヨ ト

- The irreducible factor then becomes X^{2^k-1} + γ, an example of a Kummer extension.
- Our setting: k' = 3 and k = 8. Therefore our field is: $\mathbb{F}_{2^{8 \cdot 3 \cdot 2^8 1}} = \mathbb{F}_{2^{6120}}$.
- This setting guarantees existence of splitting projective polynomials.
- Our method is the **first polynomial time relation generation method**. The relation generation was the bottleneck before.

A D A A B A A B A A B A

Factor base preserving automorphisms

- The linear algebra step (we use Lanczos) requires matrix-vector multiplications Ax where A is an $|S| \times |S|$ matrix.
- The automorphisms which preserves the factor base helps us shrink the size of **A**.
- Choice of $g_2(X) = X^{2^k}$ implies $y = x^{2^k}$ and

$$(y+b) = (x+b^{2^{-k}})^{2^k} \implies \log(y+b) = 2^k \log(x+b^{2^{-k}})$$

which halves the factor base size.

 α → α^q is another automorphism which preserves the factor base, shrinking A further, all thanks to properties of projective polynomials.

(1) マン・ション・

Other niceties implied by projective polynomials

- The matrix-vector multiplications normally is too expensive (lots of finite fields multiplications)
- A property of projective polynomials is that when they split, repeated roots have multiplicity powers of 2.
- This implies entries in A are all powers of 2.
- Therefore instead of field multiplications, we have "rotations".

The descent

- Now, given a random polynomial in $\mathbb{F}_q[X]$ (e.g. an element in \mathbb{F}_{q^n} whose logarithm is to be found) we use standard methods to represent it by a product of smaller degree polynomials, hence the descent a recursive algorithm.
- For degree 2 elimination we try to equate a given quadratic polynomial

$$Q(x) = x^{2} + A_{1}x + A_{0} = x^{2^{k}+1} + ax^{2^{k}} + bx + c$$

where RHS splits (again high probability).

• Since $x^{2^k-1} = \gamma$, RHS becomes

$$\gamma\left(x^2 + \left(\mathbf{a} + \frac{\mathbf{b}}{\gamma}\right)x + \frac{\mathbf{c}}{\gamma}\right)$$

and using Bluher-parametrization we get

$$(a^{2^{k}} + \gamma a + \gamma A_{1})^{2^{k}+1} + B(\gamma a^{2} + \gamma A_{1}a + \gamma A_{0})^{2^{k}} = 0$$

which we solve via a Gröbner basis computation.

イロン イ部ン イヨン イヨン 三日

Algorithmic optimizations

- Matrix-Vector multiplication
 - $\bullet\,$ Matrix of size 1000000 \times 1000000, each entry 1000s of bits.
 - If entries are powers of 2 shift instead of multiplication.
- GMP GNU Multi-Precision Library
- Parallelization and Vectorization

個 と く ヨ と く ヨ と …

Algorithmic optimizations

- Matrix-Vector multiplication
 - $\bullet\,$ Matrix of size 1000000 \times 1000000, each entry 1000s of bits.
 - If entries are powers of 2 shift instead of multiplication.
- GMP GNU Multi-Precision Library
- Parallelization and Vectorization
- Some algorithms *embarassingly parallel*
- Lanczos (finding a solution to a linear system) parallelisation (not very good) depends on parameters
- OpenMP and MPI

・ 同 ト ・ ヨ ト ・ ヨ ト

Algorithmic optimizations

- Matrix-Vector multiplication
 - $\bullet\,$ Matrix of size 1000000 \times 1000000, each entry 1000s of bits.
 - If entries are powers of 2 shift instead of multiplication.
- GMP GNU Multi-Precision Library
- Parallelization and Vectorization
- Some algorithms *embarassingly parallel*
- Lanczos (finding a solution to a linear system) parallelisation (not very good) depends on parameters
- OpenMP and MPI
- Registers up to 512 bits
- Vectorization means exploit the *length* of the registers

・ 同 ト ・ ヨ ト ・ ヨ ト

Solving the DLP in $\mathbb{F}_{2^{6120}}$

• Let $\mathbb{F}_{2^8} = \mathbb{F}_2[T] / < T^8 + T^4 + T^3 + T + 1 >$,

• Let
$$\mathbb{F}_{2^{24}} = \mathbb{F}_{2^8}[W] / < W^3 + t >$$
,

• Let
$$\mathbb{F}_{2^{6120}} = \mathbb{F}_{2^{24}}[X] / \langle X^{255} + w + 1 \rangle$$
.

We took as generator $\alpha = x + w$ and target

$$eta_\pi = \sum_{i=0}^{254} au(\lfloor \pi q^{i+1}
floor egin{array}{c} {
m mod} \ q) x^i \ .$$

The computation took:

- 15 seconds for relation generation using Magma
- 60.5 core-hours for the parallelized C/GMP Lanczos implementation on four of the Intel (Westmere) Xeon E5650 hex-core processors ICHEC's SGI Altix ICE 8200EX Stokes cluster
- 689 core-hours for the descent, giving a total of 750 core-hours.

・ 回 と ・ ヨ と ・ モ と …

Solving the DLP in $\mathbb{F}_{2^{6120}}$

On 11/4/13 we announced that $\log_{\alpha}(\beta_{\pi}) =$

・ 同 ト ・ ヨ ト ・ ヨ ト

bitlength	who/when	running time
127	Coppersmith 1984	N/A
521	Joux-Lercier 2001	> 3000 core hours
607	Thomé 2001	> 800000 core hours
923	Hayashi et al. 2010	> 800000 core hours
1175	Joux Dec. 2012	> 30000 core hours
1425	Joux Jan. 2013	> 30000 core hours
1778	Joux 11/2/2013	215 core hours

◆□> ◆圖> ◆国> ◆国> ○

æ

bitlength	who/when	running time
127	Coppersmith 1984	N/A
521	Joux-Lercier 2001	> 3000 core hours
607	Thomé 2001	> 800000 core hours
923	Hayashi et al. 2010	> 800000 core hours
1175	Joux Dec. 2012	> 30000 core hours
1425	Joux Jan. 2013	> 30000 core hours
1778	Joux 11/2/2013	215 core hours
1971	GGMZ 19/2/2013	3132 core hours

◆□> ◆圖> ◆国> ◆国> ○

æ

bitlength	who/when	running time
127	Coppersmith 1984	N/A
521	Joux-Lercier 2001	> 3000 core hours
607	Thomé 2001	> 800000 core hours
923	Hayashi et al. 2010	> 800000 core hours
1175	Joux Dec. 2012	> 30000 core hours
1425	Joux Jan. 2013	> 30000 core hours
1778	Joux 11/2/2013	215 core hours
1971	GGMZ 19/2/2013	3132 core hours
4080	Joux 22/3/2013	14100 core hours

< ロ > < 回 > < 回 > < 回 > < 回 > <

臣

bitlength	who/when	running time
127	Coppersmith 1984	N/A
521	Joux-Lercier 2001	> 3000 core hours
607	Thomé 2001	> 800000 core hours
923	Hayashi et al. 2010	> 800000 core hours
1175	Joux Dec. 2012	> 30000 core hours
1425	Joux Jan. 2013	> 30000 core hours
1778	Joux 11/2/2013	215 core hours
1971	GGMZ 19/2/2013	3132 core hours
4080	Joux 22/3/2013	14100 core hours
6120	GGMZ 11/4/2013	750 core hours

< ロ > < 回 > < 回 > < 回 > < 回 > <

æ

bitlength	who/when	running time
127	Coppersmith 1984	N/A
521	Joux-Lercier 2001	> 3000 core hours
607	Thomé 2001	> 800000 core hours
923	Hayashi et al. 2010	> 800000 core hours
1175	Joux Dec. 2012	> 30000 core hours
1425	Joux Jan. 2013	> 30000 core hours
1778	Joux 11/2/2013	215 core hours
1971	GGMZ 19/2/2013	3132 core hours
4080	Joux 22/3/2013	14100 core hours
6120	GGMZ 11/4/2013	750 core hours
6168	Joux 21/5/2013	550 core hours (subgroup)

臣

bitlength	who/when	running time
127	Coppersmith 1984	N/A
521	Joux-Lercier 2001	> 3000 core hours
607	Thomé 2001	> 800000 core hours
923	Hayashi et al. 2010	> 800000 core hours
1175	Joux Dec. 2012	> 30000 core hours
1425	Joux Jan. 2013	> 30000 core hours
1778	Joux 11/2/2013	215 core hours
1971	GGMZ 19/2/2013	3132 core hours
4080	Joux 22/3/2013	14100 core hours
6120	GGMZ 11/4/2013	750 core hours
6168	Joux 21/5/2013	550 core hours (subgroup)
9234	GKZ 31/01/2014	400000 core hours

臣

Barbulescu, Gaudry, Joux and Thome 2014: A heuristic quasi-polynomial time algorithm. Theoretically much better than any previous algorithm for smalll characteristic fields.

Problem

What are the implications in medium prime case?

Problem

A heuristic-free algorithm for small characteristic.

・ 同 ト ・ ヨ ト ・ ヨ ト

APN functions

Let

•
$$n = 2m$$
, $q = 2^m$, $\mathbb{F} = \mathbb{F}_{q^2}$, $\mathbb{K} = \mathbb{F}_q$

•
$$\mathcal{P}_{q-1} = \{X^{q-1} : X \in \mathbb{F}\}$$

•
$$\mathcal{T}_1 = \{ X \in \mathbb{F} : X + X^q = 1 \}$$

Budaghyan and Carlet proved:

Theorem

Let $C \in \mathbb{F}$ and $A \in \mathbb{F} \setminus \mathbb{K}$. If

$$P_{C,k}(X) = X^{2^{k}+1} + CX^{2^{k}} + C^{q}X + 1 = 0$$

has no solutions $X \in \mathcal{P}_{q-1}$, then the polynomial

$$g_{C,k}(X) = X(X^{2^{k}} + X^{q} + CX^{2^{k}q}) + X^{2^{k}}(C^{q}X^{q} + AX^{2^{k}q}) + X^{(2^{k}+1)q}$$

is differentially $2^{gcd(k,m)}$ -uniform on \mathbb{F} . Thus, $g_{C,k}$ is APN if and only if gcd(k,m) = 1.

- Bracken, Tan and Tan (2014): constructed some elements C when $m \equiv 2 \text{ or } 4 \pmod{6}$ such that P_{C_k} has no roots in \mathcal{P}_{2^m-1} (in the gcd(m,k) = 1 case).
- Qu, Tan and Li (2014): constructed some elements when m ≡ 0 (mod 6) (in the gcd(m, k) = 1 case).
- Bluher (2013): characterized those (m, k) pairs for which such a P_{C,k} exists for any gcd(m, k).

(4回) (4回) (4回)

Recall that

- $\mathcal{P}_{q-1} = \{ X^{q-1} : X \in \mathbb{F}^* \}$
- $\mathcal{T}_1 = \{ X \in \mathbb{F} : X + X^q = 1 \}$

We have the following decompositions:

- Polar coordinate decomposition: Any X ∈ 𝔽* can be written as X = xu where x ∈ 𝔣 and u ∈ 𝒫_{q-1}.
- Trace-0/Trace-1 decomposition: Any $X \in \mathbb{F}^*$ can be written as X = xg where $x \in \mathbb{K}$ and $g \in \mathcal{T}_1 \cup \{1\}$.

Observe that xg = yh implies $\operatorname{Tr}_m^n(xg) = \operatorname{Tr}_m^n(yh)$ implies x = y and g = h. Notice that $\mathcal{P}_{q-1} = \{g^{q-1} : g \in \mathcal{T}_1 \cup \{1\}\}.$

イロト イヨト イヨト イヨト

Characterization of $P_{C,k}$

Let

$$\Gamma_k : \mathbb{K} \to \mathbb{K}$$
$$\Gamma_k : x \mapsto x^{2^k + 1} + x.$$

Write

$$g^{(q-1)(2^{k}+1)} + Cg^{(q-1)2^{k}} + C^{q}g^{q-1} + 1$$

instead of

$$u^{2^{k}+1} + Cu^{2^{k}} + C^{q}u + 1$$

and after some steps you get

< ロ > < 回 > < 回 > < 回 > < 回 > <

크

Theorem

Let $C \in \mathbb{F}$ and $1 \leq k < n$. The polynomial

$$P_{C,k}(X) = X^{2^{k}+1} + CX^{2^{k}} + C^{q}X + 1$$

has no solutions $X \in \mathcal{P}_{q-1}$ if and only if each of the three following conditions holds

• $k \neq m$,

٢

• $C \notin \mathbb{K}$, and

$$\frac{\operatorname{Tr}_m^n(h^3) + 1 + \frac{1}{b}}{\operatorname{Tr}_m^n(h^{2^k+1})^{2^{n-k}+1}} \not\in \operatorname{Im}(\Gamma_k)$$

where $C^q + 1 = bh$ with $b \in \mathbb{K}^*$ and $h \in \mathcal{T}_1 \setminus Z_{k,1}$.

・ロン ・回 と ・ 回 と ・ 回 と

3

- This is not that cumbersome.
- Equivalent to

$$\frac{1}{b}\neq A_h(y^{2^k+1}+y)+B_h.$$

- The image set of $\Gamma_k(y) = y^{2^k+1} + y$ is well-studied (Bluher 2007, Helleseth-Kholosha, Bracken-Tan-Tan 2014).
- Even the counts are given (HK), helping to prove:

Theorem

If gcd(k, m) = 1 (i.e., $g_{C,k}$ is APN), then the number of elements $C \in \mathbb{F}$ for which the polynomial $P_{C,k}(X)$ has no solutions $X \in \mathcal{P}_{q-1}$ is

$$N_{m,k} = \begin{cases} (q-2)\frac{q+1}{3} & \text{if } m \text{ is odd,} \\ q\frac{q-1}{3} & \text{if } m \text{ is even} \end{cases}$$

APN permutations

- There are many APN permutations on $\mathbb{F}_{2^{2m+1}},$ e.g. monomials
- The only known APN permutation (up to equivalence) on $\mathbb{F}_{2^{2m}}$ is (when m = 3) CCZ-equivalent to

$$\kappa(X) = X^3 + X^{10} + AX^{24},$$

where A is a generator of $\mathbb{F}_{2^6}^*$. (Browning-Dillon-McQuistan-Wolfe 2009)

- Does there exist another APN permutation on even dimensions?
- Why not mimic the behaviour of κ ?

・ 同 ト ・ ヨ ト ・ ヨ ト

Properties of κ

- An APN function f on F_{2ⁿ} is CCZ-equivalent to a permutation if the Walsh zeroes of f contains two subspaces of dimension n intersecting only trivially.
- The Walsh transform of f

$$\widehat{f}(A,B) = \sum_{X \in \mathbb{F}} \chi (Af(X) + BX)$$

and Walsh zeroes WZ_f of f is

$$WZ_f = \{(X, Y) : \widehat{f}(X, Y) = 0\} \cup \{(0, 0)\}.$$

• Walsh zeroes of κ has more structure with respect to some subspaces, i.e.,

$$\{(u_1x, v_1y) : x, y \in \mathbb{K}\}, \{(u_2x, v_2y) : x, y \in \mathbb{K}\} \subseteq WZ_f$$

for some $u_1, u_2, v_1, v_2 \in \mathcal{P}_7$.

Subspace property

• The function κ satisfies the *subspace property*, which is defined as

$$f(aX) = a^{2^k + 1} f(X), \qquad \forall a \in \mathbb{K}.$$
 (1)

for some integer k.

• According to Browning-Dillon-McQuistan-Wolfe this explained some of the simplicity of why κ is equivalent to a permutation, viz.

$$\widehat{f}(au, bv) = \sum_{X \in \mathbb{F}} \chi \left(au \ f(X) + bv \ X \right)$$
$$= \sum_{X \in \mathbb{F}} \chi \left(ac^{2^{k}+1}u \ f(X) + bcv \ X \right)$$
$$= \widehat{f}(ac^{2^{k}+1}u, bcv).$$

Which functions satisfy the subspace property

• κ

Gold exponents

Remark

If the exponents of f are in $\{2^k + 1, q + 2^k, (2^k + 1)q, 2^kq + 1\}$ then f satisfies subspace property.

- $g_{C,k}$ necessarily has exponents $\{q + 1, 2^k q\}$ which disturbs the subspace property.
- Carlet 2011 and Zhou-Pott 2013 has bivariate constructions which necessitates the exponents {2, q + 1, 2q}. These constructions have also close connections to projective polynomials

Quoting Browning-Dillon-McQuistan-Wolfe

[T]he highly structured decomposition of the κ code raise the hope that much of the structure, if not all, should generalize to higher dimensions. Does it?

イロト イポト イヨト イヨト

New APN family satisfying the subspace property

Theorem

Let $f_k(X) = X^{2^k+1} + (\operatorname{Tr}_m^n(X))^{2^k+1}$. Then f_k is APN if and only if m is even and $\operatorname{gcd}(k, n) = 1$.

Proof.

Use Trace-0/Trace-1 decomposition. Write X = xg + y. Derivatives $L_{ag}(X) = a^{2^k+1}(A(x, y)g + B(x, y))$. L(X) are two-to-one maps.

Remark

Unfortunately f_k are not equivalent to permutations on \mathbb{F}_{2^8} and does not seem to be on $\mathbb{F}_{2^{12}}$.

ヘロン 人間と 人間と 人間と

Hyperplane spectrum

Crooked functions

For a crooked function f, the hyperplane spectrum \mathcal{H}_f is defined by the multiset

$$\mathcal{H}_f = \{ * \ \beta \in \mathbb{F}^* : \operatorname{Im}(D_A f) = H_\beta \ * \}.$$

where $H_{\beta} = \{X \in \mathbb{F} : \operatorname{Tr}(\beta X) = 0\}$

イロン イ部ン イヨン イヨン 三日

Hyperplane spectrum

Crooked functions

For a crooked function f, the hyperplane spectrum \mathcal{H}_f is defined by the multiset

$$\mathcal{H}_f = \{* \ \beta \in \mathbb{F}^* : \operatorname{Im}(D_A f) = H_\beta \ *\}.$$

where $H_{\beta} = \{X \in \mathbb{F} : \operatorname{Tr}(\beta X) = 0\}$

For Gold exponents X^{2^k+1}

$$\mathcal{H}_{f_{\mathsf{Gold}}} = \{ \ast \ \beta^{2^k + 1} \ : \ \beta \in \mathbb{F}^* \ \ast \}$$

イロン イ部ン イヨン イヨン 三日

Hyperplane spectrum

Crooked functions

For a crooked function f, the hyperplane spectrum \mathcal{H}_f is defined by the multiset

$$\mathcal{H}_f = \{* \ \beta \in \mathbb{F}^* : \operatorname{Im}(D_A f) = H_\beta * \}.$$

where $H_{\beta} = \{X \in \mathbb{F} : \operatorname{Tr}(\beta X) = 0\}$

For Gold exponents X^{2^k+1}

$$\mathcal{H}_{f_{\mathsf{Gold}}} = \{ \ast \ \beta^{2^k + 1} \ : \ \beta \in \mathbb{F}^* \ \ast \}$$

Theorem

Let A = ag where $a \in \mathbb{K}^*$ and $g \in \mathcal{T}_1$. Then the derivatives $D_A f_k$ of f_k satisfy

$$\mathsf{Im}(D_A f_k) = H_{\beta_A}$$

where

$$\beta_{\mathcal{A}} = \frac{1}{a^{2^{k+1}}} \frac{\operatorname{Tr}_{m}^{n}(g^{2^{k+1}})}{\operatorname{Tr}_{m}^{n}(g^{3})^{2^{k+1}}} \left(g + 1 + \frac{\operatorname{Tr}_{m}^{n}(g^{3})}{\operatorname{Tr}_{m}^{n}(g^{2^{k+1}})}\right).$$

Corollary

We have

- (i) The Walsh spectrum W_{f_k} of f_k satisfies $W_{f_k} = \{0, \pm 2^m, \pm 2^{m+1}\},\$
- (ii) If $A \in \mathbb{F}^*$ and $A^{-1} \notin \mathcal{H}_f$, then the binomial (monomial if $A \in \mathbb{K}^*$) Boolean function $\operatorname{Tr}\left(AX^{2^k+1} + (A^q + A)X^{q2^k+1}\right)$ is bent. The number of such bent functions is $2\frac{q^2-1}{3}$.

Remark

- If k = 1 then $\beta_A = \frac{g}{a^3 \operatorname{Tr}_m^n(g^3)^2}$ becomes very simple.
- This also tells us finding zeroes of Walsh transform of f_k is rather easy.
- The functions f_k are not CCZ-equivalent to any known functions on $\mathbb{F}_{2^{12}}$.

イロト イポト イヨト イヨト

• Consider $L_1(g(L_2(X))) = h(X)$ where

$$L_i(X) = AX + BX^q$$

- Difficult to check with computers
- $\bullet\,$ It does not seem to exist on $\mathbb{F}_{2^{10}}$ and $\mathbb{F}_{2^{14}}$
- Restriction to odd dimension subfield important?

• Recall the similarity to the infinite family of Budaghyan-Carlet-Leander

$$X^3 + \operatorname{Tr}(X^9)$$

- Adding a Boolean function to a known family is a highly exploited method (Dillon, Budaghyan-Carlet-Leander, Edel-Pott, ...)
- New family can be seen as adding a "vectorial Boolean function" to the Gold family.

A (10) × (10) × (10) ×

Problem

Find an infinite family of APN functions which includes the Kim function and which satisfies the subspace property.

Problem

Show that the Gold functions (or any existing family) are not equivalent to permutations.

Problem

Describe the zeroes of the Walsh transform of known APN families.

Problem

Are there APN permutations on $\mathbb{F}_{2^{2m}}$ for m > 3?

・ロト ・同ト ・ヨト ・ヨト

Thanks for your attention.

・日・ ・ ヨ・ ・ ヨ・

크