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Sommaire

On appelle fonctions discrètes les applications d’un ensemble fini dans un
autre. Un cas important de telles fonctions est celui des fonctions boolénnes,
qui sont omniprésentes en informatique et interviennent au coeur des syst-
èmes numériques. Les ordinateurs, les télécommunications et les primitives
cryptographiques dépendent de la théorie des fonctions booléennes. Les
fonctions assurant des propriétés cryptographiques optimales définissent ou
permettent de définir des objets optimaux dans de nombreux domaines des
mathématiques et de la théorie de l’information. Ainsi, la construction et
l’analyse des fonctions aux bonnes propriétés cryptographiques sont liées
à d’importants problèmes mathématiques et la solution à ces problèmes
représente une contribution importante aux mathématiques et à la théorie
d’information.

Soit p un nombre premier et n un nombre entier positif. Nous désignons
par Fpn le corps fini à pn éléments et par Fnp l’espace vectoriel de dimen-
sion n sur Fp. Nous considérons les fonctions de Fnp dans Fmp , où n et m
sont arbitraires. Nous appelons (n,m, p)-fonction ou fonction vectorielle une
telle fonction. Une (n,m, 2)-fonction sera simplement appelée une (n,m)-
fonction ou une fonction vectorielle booléenne, et une (n, 1, 2)-fonction sera
appelée une fonction booléenne de n variables.

Dans la société moderne, l’échange et le stockage de l’information de
façon efficace, fiable et sécurisée ont une importance fondamentale. La
cryptologie se subdivise en cryptographie et cryptoanalyse. Les primitives
cryptographiques sont utilisées pour protéger l’information contre son in-
terception lors de transferts sur des lignes non sécurisées, contre sa modi-
fication et contre toutes sortes d’autres utilisations frauduleuses. Dans le
cas de la cryptographie symétrique, les chiffrements sont réalisés par des
compositions appropriées de fonctions booléennes. Par exemple, la sécurité
des chiffrements par blocs dépend des bôıtes de substitution, qui sont des
(n,m)-fonctions. Pour la plupart des attaques cryptographiques il existe une
propriété des fonctions qui mesure la résistance de la bôıte de substitution
à cette attaque. Les deux attaques les plus puissantes contre les cryptosys-
temes symétriques sont les attaques différentielle et linéaire. Les critères de
résistance à ces attaques sont respectivement l’uniformité différentielle et la
non-linéarité. Le fait intéressant est que, comme nous l’avons signalé, les
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fonctions ayant une non-linéarité ou une uniformité différentielle optimales
définissent des objets optimaux en théorie des codes, en géométrie finie,
pour les séquences, en algèbre et en combinatoire. Ainsi, la construction et
l’analyse de ces fonctions jouent un rôle important vis à vis de ces théories;
le travail présent est dédié à cette tâche.

Le nombre des fonctions booléennes de n variables est très grand, même
quand n est petit, de sorte que trouver la meilleure fonction booléenne pour
chaque application possible est une tâche difficile et importante. L’abondance
des fonctions booléennes signifie qu’en général il est impossible de résoudre
ces problèmes par recherche sur ordinateur et qu’il faut inventer des méthodes
efficaces de construction de nouvelles fonctions booléennes réalisant de meil-
leurs compromis et pouvant être implémentées d’une manière efficace dans
les dispositifs électroniques, permettant ainsi une économie de temps et
d’énergie pour les applications.

Une (n,m, p)-fonction F est dite différentiellement δ-uniforme si, pour
chaque élément a non nul de Fnp et chaque b dans Fmp , l’équation F (x) −
F (x+a) = b a au plus δ solutions. Les fonctions ayant la plus petite unifor-
mité différentielle possible contribuent à une résistance optimale à l’attaque
différentielle [10, 130]. Dans ce sens, les fonctions différentiellement pn−m-
uniformes, dites parfaitement non linéaires (PN), sont optimales. Cepen-
dant quand p = 2, les fonctions PN existent seulement pour des couples de
nombres (n,m) tels que n est pair et m ≤ n/2. Quand p = 2 et n = m,
les fonctions différentiellement 2-uniformes, dites presque parfaitement non
linéaires (APN) ont l’uniformité la plus petite possible.

La non-linéarité NL(F ) d’une (n,m)-fonction F est la distance de Ham-
ming minimale entre toutes les fonctions composantes de F (c’est à dire les
fonctions v ·F où · désigne un produit scalaire dans Fm2 ), et toutes les fonc-
tions booléennes affines de n variables. La non-linéarité quantifie le niveau
de résistance de la fonction à l’attaque linéaire: plus la non-linéarité NL(F )
est élevée, meilleure est la résistance de F à l’attaque linéaire [50, 116]. Les
fonctions de non-linéarité maximale sont dites courbes. Toutes les fonctions
courbes sont aussi PN et vice versa; ainsi, ces fonctions ont une résistance op-
timale aux attaques différentielle et linéaire. Comme mentionné ci-dessus,
dans le cas binaire, les fonctions PN (ou courbes) n’existent pas quand
m = n. Dans ce cas, les fonctions ayant la meilleure non-linéarité possi-
ble sont dites optimalement non-linéaires. Quand n est impair, les fonc-
tions optimalement non-linéaires sont dites presque courbes (AB). Quand n
est pair, une borne supérieure sur la non-linéarité reste à être déterminée.
Toutes les fonctions AB sont APN, mais l’implication inverse est fausse en
général. Les fonctions APN et AB permettent de définir des codes cor-
recteurs d’erreurs binaires de paramètres [2n, 2n − 2n− 1, 5] optimaux dans
un certain sens (voir [46]). Les fonctions quadratiques APN définissent aussi
des hyper-ovales duales [81, 144].

La non-linéarité et l’uniformité différentielle (et, par conséquent, les
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propriétés PN, AB, APN) sont invariantes sous équivalences affine, affine-
étendue (EA) et Carlet-Charpin-Zinoviev (CCZ) par ordre croissant de géné-
ralité. Deux (n,m, p)-fonctions F et F ′ sont dites affinement équivalentes
si l’une est égale à l’autre, lorsqu’elle est composée à gauche et à droite par
des permutations affines. Elles sont dites EA-équivalentes si l’une est affine-
ment équivalente à l’autre, lorsqu’on lui ajoute une fonction affine. Elles sont
CCZ-équivalentes si leurs graphes {(x, F (x)) | x ∈ Fnp} et {(x, F ′(x)) | x ∈
Fnp} sont affinement équivalents. L’équivalence CCZ est la relation d’équi-
valence la plus générale parmi les relation d’équivalence connues pour laque-
lle la non-linéarité et l’uniformité différentielle sont invariantes.

La notion d’équivalence CCZ est difficile à traiter, car la vérification du
fait que deux fonctions données sont CCZ-équivalentes ou non est difficile (au
moins quand elles partagent les mêmes paramètres CCZ-invariants). La con-
struction de fonctions CCZ-équivalentes EA-inéquivalentes à une fonction
donnée est difficile. La EA-équivalence qui est moins générale est au con-
traire plus facile à vérifier, et la construction des fonctions EA-équivalentes
à une fonction donnée est très facile. Donc identifier des situations où
l’équivalence CCZ se réduit à l’EA-équivalence est utile. Dans le travail
présenté nous prouvons que c’est le cas pour toutes les fonctions booléennes
à sortie simple et que ce n’est pas le cas pour les (n,m)-fonctions sous con-
dition que m soit supérieur ou égal au plus petit diviseur de n différent de
1, ce qui dans le cas où n est pair se traduit simplement par m ≥ 2 (voir
[24, 37]). Dans [136], ces résultats ont été étendus au cadre plus général
des fonctions définies sur les groupes abéliens finis, avec une condition sur
m réduite à m ≥ 2 également pour le cas n impair et pour le cas où p est
impair qui inclut alors aussi le cas m = 1.

Nous prouvons ci-après que la CCZ-équivalence cöıncide avec l’EA-équi-
valence pour toutes les fonctions PN (ou courbes), qu’il s’agisse de fonctions
à sortie simple ou multiple, et, plus généralement, pour toutes les fonctions
dont toutes les dérivées sont surjectives (voir [25, 36]).

Une question qui a de l’importance pour des raisons théoriques et pra-
tiques est de savoir si la CCZ-équivalence est vraiment la relation d’équiva-
lence la plus générale. Nous montrons qu’étendre la CCZ-équivalence à
une notion plus générale de la même manière que l’équivalence affine a été
étendue à la CCZ-équivalence (c’est-à-dire, en considérant la CCZ-équivalence
des indicateurs des graphes des fonctions au lieu des fonctions elles-mêmes)
mène à la même CCZ-équivalence (voir [24, 35]).

La classification des fonctions courbes, APN et AB est un problème
ouvert difficile. La classification complète pour les fonctions APN et AB est
connue seulement pour n ≤ 5, [22]. Pour les fonctions courbes cela peut se
faire aujourd’hui pour n ≤ 8, [110]. Il existe peu de classes de fonctions APN
et AB connues. Parmi elles il y a six classes de fonctions puissances APN,
dont quatre sont aussi AB (pour n impair). Les fonctions puissances AB sont
en correspondance biunivoque avec les séquences utilisées pour les radars et
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pour les communications à étalement de spectre. Une séquence binaire qui
peut être produite par un LFSR est dite une m-séquence ou une séquence à
longueur maximale si sa période est égale à 2n−1, qui est la valeur maximale
possible. Une telle séquence peut être utilisée pour des radars et pour le
“code division multiple accès” (CDMA) dans les télécommunications, car
cela permet d’envoyer un signal qui peut être facilement distingué de toutes
ses versions décalées dans le temps. Dobbertin a émis la conjecture que la
classification des fonctions puissances APN et AB est complète.

Dans ce travail nous examinons la question de l’équivalence CCZ des
fonctions puissances APN connues et nous prouvons que deux fonctions de
Gold x2i+1 et x2j+1 avec 1 ≤ i 6= j < n/2, sont CCZ-inéquivalentes, et
que les fonctions de Gold sont CCZ-inéquivalentes aux fonctions de Kasami
et de Welsh (à l’exception de cas particuliers) [33]. Nous montrons aussi
que les fonctions inverses et les fonctions APN de Dobbertin sont CCZ-
inéquivalentes l’une à l’autre et à toutes les autres fonctions puissances APN
connues [33].

Les autres familles connues de fonctions APN et AB sont constituéees
de quelques classes de fonctions quadratiques APN et AB récemment con-
struites [13, 14, 26, 30, 31, 32]. De plus, pour 6 ≤ n ≤ 9 existe une longue
liste de fonctions quadratiques APN et AB pour lesquelles les classes infinies
doivent encore être determinées [21, 84, 143, 147]. Le seul exemple connu
de fonctions APN CCZ-inéquivalentes aux fonctions puissances ainsi qu’aux
fonctions quadratiques est donné dans [22, 84] pour n = 6 et construire
des familles infinies de telles fonctions est encore un problème ouvert. La
construction de familles infinies de permutations APN sur F2k

2 est aussi un
problème ouvert tandis qu’un exemple de telle fonction est construit pour
n = 6 dans [20], ce qui contredit la conjecture émise de longue date sur la
non-existence de telles permutations.

Dans ce travail, nous présentons sept des onze familles infinies connues de
polynômes quadratiques APN non CCZ-équivalents aux fonctions puissances
dont quatre sont aussi AB, quand n est impair [26, 30, 31, 32]. Nous intro-
duisons deux classes infinies des fonctions quadratiques APN pour n divisible
par 3 et 4 respectivement. Nous prouvons que pour n impair ces fonctions
sont des permutations AB. Nous montrons que, pour n ≥ 12, ces fonctions
sont EA-inéquivalentes aux fonctions puissances et CCZ-inéquivalentes aux
fonctions de Gold, de Kasami, inverse et de Dobbertin. Cela implique que
pour n pair elles sont CCZ-inéquivalentes à toutes les fonctions APN con-
nues. En particulier, pour n = 12, 20, 24, elles sont CCZ-inéquivalentes à
toutes les fonctions puissances. Ces classes de binômes ont été les premières
trouvées qui soient APN et CCZ-inéquivalentes aux fonctions puissances.
De plus, elles sont les premiers contre-exemples à la conjecture de [46] sur
la non-existence des fonctions quadratiques AB non équivalentes aux fonc-
tions de Gold. Nous discutons ci-après la possibilité d’une généralisation
des binômes APN introduits pour les autres diviseur de n.



ix

Une (n, n)-fonction F est dite “crooked” si F (x) +F (y) +F (z) +F (x+
y + z) 6= 0 pour tout triplet d’éléments distincts x, y, z, F (0) = 0, et
F (x) + F (y) + F (z) + F (x + a) + F (y + a) + F (z + a) 6= 0 pour a 6= 0
et x, y, z arbitraires [5]. D’une part, toute fonction crooked est liée à un
rectographe distance-régulier de diamètre 3, et d’autre part chaque permu-
tation quadratique AB est crooked [5]. L’implication réciproque, de savoir si
une fonction crooked est nécessairement une permutation quadratique AB,
n’est pas connue. Un rectographe est un graphe sans triangles dans lequel
chaque paire de sommets situés à distance 2 l’un de l’autre appartient à un
seul cycle de longueur 4. Il n’y a pas beaucoup de constructions connues
de rectographes, en particulier de rectographes de petit diamètre. Donc,
une construction de telles fonctions non seulement produirait une construc-
tion intéressante d’éléments de base pour les cryptosystèmes symétriques
mais aurait aussi l’intérêt de produire de nouveaux rectographes distance-
réguliers. Aujoud’hui seules deux familles de fonctions crooked sont con-
nues: l’une est celle des fonctions de Gold, construites en 1968 par Gold [86]
dans le contexte des séquences pour les télécommunications, redécouverte
en 1993 par Nyberg [130], qui donne des graphes de Preparata; et l’autre
est la famille des binômes avec n divisible par 3 présentée ici et dans [30].

Nous développons ci-après une méthode introduite par Dillon [70] pour
construire des polynômes quadratiques différentiellement 4-uniformes et nous
proposons diverses généralisations [26]. Nous construisons une nouvelle
classe infinie de trinômes quadratiques APN et une nouvelle classe poten-
tiellement infinie d’hexanômes quadratiques APN que nous conjecturons non
CCZ-équivalents aux fonctions puissances pour n ≥ 6 et nous confirmons
cette hypothèse pour n ≤ 10 [26].

Nous présentons alors une méthode pour construire de nouvelles fonc-
tions quadratiques APN à partir de celles que nous connaissons. En appli-
quant cette méthode pour les fonctions puissances de Gold, nous constru-
isons une fonction APN x3 + trn(x9) sur Fn2 [32]. Nous prouvons que pour
n ≥ 7 cette fonction est non CCZ-équivalente aux fonctions Gold, et dans
le cas où 7 ≤ n ≤ 10 qu’elle est non CCZ-équivalente à toute fonction APN
appartenant à l’une des familles des fonctions APN connues à ce moment-là.
C’était le premier polynôme APN trouvé qui soit non CCZ-équivalent aux
fonctions puissances et dont tous les coefficients étaient dans F2; c’est encore
aujourd’hui le seul qui soit défini pour tout n [32].

Nous donnons ci-après des conditions suffisantes sur des fonctions linéaires
L1 et L2 du corps F2n dans lui-même de telle manière que la fonction
L1(x3) + L2(x9) soit APN sur F2n [31]. Nous montrons que cela peut
mener à beaucoup de nouveaux cas de fonctions APN. En particulier, nous
obtenons deux nouvelles familles de fonctions APN x3+a−1 tr3

n(a3x9+a6x18)
et x3 +a−1 tr3

n(a6x18 +a12x36) sur F2n pour tout n divisible par 3 et a ∈ F∗2n .
Nous prouvons que pour n = 9, ces deux familles sont différentes et diffèrent
de toutes les familles connues de fonctions APN, à CCZ-équivalence près.
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Nous étudions aussi sous quelles conditions suffisantes ces conditions sur L1

et L2 sont satisfaites.
Pour p = 2 les fonctions courbes (ou PN) sont les fonctions caractéri-

stiques d’ensembles à différences de Hadamard sur les 2-groupes élémentaires
[68]. De plus, elles sont utilisées pour construire des familles de séquences
binaires, qui possèdent les propriétés appropriées pour les applications en
“code division multiple accès” [131]. De plus, quelques-unes de ces fonctions
définissent des o-polynômes (c’est-à-dire des permutations associées à des
“hyperovals” dans le plan projectif) [48]. Pour p impair, les fonctions PN
se sont avérées utiles à la construction de certains objets combinatoires tels
que les ensembles à différences partiels, les graphes fortement réguliers et
les schémas d’association [54, 134, 139].

Quelques-un de nos résultats présentés dans ce travail sont dédiés à
l’analyse et à la construction de fonctions courbes [25, 27, 28, 29]. Comme
mentionné ci-dessus, la CCZ-équivalence des fonctions vectorielles courbes
sur Fn2 équivaut à l’EA-équivalence. Nous prouvons que malgré ce fait, la
CCZ-équivalence peut être utilisée pour construire des fonctions courbes qui
sont nouvelles à EA-équivalence près et donc, à CCZ-équivalence près: en
utilisant la CCZ-équivalence et en partant d’une fonction F vectorielle non-
courbe ayant des composantes courbes, nous obtenons une fonction F ′ qui
a aussi quelques composantes courbes et dont les composantes courbes sont
CCZ-inéquivalentes aux composantes de la fonction originale F . En appli-
quant cette approche nous construisons des classes de fonctions booléennes
non-quadratiques courbes ainsi que des fonctions vectorielles courbes [25].

Nous étudions ensuite un problème soulevé dans [46]. En 1998, Carlet,
Charpin et Zinoviev ont caractérisé les (n, n)-fonctions APN et AB à l’aide
de fonctions booléennes de 2n variables. En particulier, ils ont prouvé que
la fonction F est AB si et seulement si la fonction booléenne associée γF
est courbe. Cette observation mène à des fonctions courbes potentiellement
nouvelles associées aux fonctions AB connues, ou si ces fonctions ne sont pas
nouvelles, donne au moins un nouvel éclairage sur des fonctions courbes con-
nues. Cependant, les fonctions γF n’étaient connues que pour les fonctions
de Gold et la fonction inverse; la détermination de γF restait ouverte pour
les autres fonctions. Nous déterminons γF pour toutes les fonctions puis-
sances AB connues et pour presque toutes les familles connues de polynômes
APN. Nous essayons aussi de déterminer si ces fonctions courbes (quand F
est AB) appartiennent aux classes générales de fonctions courbes connues
[27]. Notons que la CCZ-équivalence (et la EA-équivalence) des fonctions
vectorielles se traduit par l’équivalence des fonctions associées γF . Nous
prouvons que si les (n, n)-fonctions F et F ′ sont CCZ-équivalentes, alors il
existe une permutation affine L de F2

2n telle que γF ′ = γF ◦L. Cela implique
que tous les invariants affines de la fonction booléenne γF (ses propriétés
différentielles et linéaires, son degré algébrique, ...) peuvent être utilisés
comme CCZ-invariants pour la (n, n)-fonction F . Donc, bien que l’étude
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de γF soit intéressante par elle-même, il y a aussi des raisons pratiques à
l’étudier parce qu’elle peut mener à des fonctions courbes potentiellement
nouvelles quand γF est AB et parce que les invariants affines de γF sont des
invariants CCZ pour F .

Dans le travail présent, nous résolvons un problème qui remonte à 1974.
Dans sa thèse [68], Dillon a introduit une famille de fonctions courbes
nommée H, où la propriété courbe est prouvée sous quelques conditions qui
n’étaient pas évidentes à obtenir. Dans cette classe H, Dillon n’a pu trou-
ver que des fonctions qui appartiennent à la classe complétée de Maiorana-
McFarland, qui est l’une des familles les plus larges et les plus connues de
fonctions courbes. La question de savoir si ces deux classes de fonctions
courbes diffèrent se posait. Dans [48] a été mis en évidence que la classe
complétée de H contient toutes les fonctions courbes du type “Niho”, intro-
duites dans [80] par Dobbertin et ses co-auteurs. Nous prouvons que deux
classes de fonctions binômes courbes de Niho n’appartiennent pas à la classe
complétée de Maiorana-McFarland. Ainsi, la classe H contient des fonctions
qui n’appartiennent pas à la classe complétée de Maiorana-McFarland et, par
conséquent, la classe complétée de Maiorana-McFarland ne contient pas la
classe H [29].

Nous étudions aussi la relation entre les classes connues de fonctions
courbes généralisées données dans leur représentation trace et les fonctions
de la classe complétée de Maiorana-McFarland. Dans le cas binaire, celle-ci
contient toutes les fonctions courbes quadratiques, qui sont les plus simples
et les mieux comprises des fonctions courbes. Nous prouvons que ce n’est
plus le cas pour les fonctions courbes généralisées. Premièrement, pour
p impair, il existe des fonctions courbes quadratiques sur Fpn quand n est
impair, bien que les fonctions courbes de Maiorana-McFarland soient définies
seulement pour n pair. Pour le cas n pair, nous trouvons des exemples
de fonctions courbes quadratiques généralisées qui n’appartiennent pas à
la classe complétée de Maiorana-McFarland. De plus, nous prouvons que
presque toutes les classes connues de fonctions courbes généralisées données
sous forme de traces n’intersectent pas la classe complétée de Maiorana-
McFarland. Cela nous mène à la conclusion qu’en général, la construction
de Maiorana-McFarland est moins complète que dans le cas binaire même
pour le cas n pair [28].

Quand p est impair et n = m, les fonctions PN sont aussi dites planaires.
Elles sont en correspondance biunivoque avec les semi-corps commutatifs
d’ordres impairs. Un semi-corps fini est un anneau sans diviseur de zéro,
une unité et une propriété de distributivité à gauche et à droite de la multipli-
cation par rapport à l’addition. Évidemment chaque corps fini est un semi-
corps. Les premiers semi-corps finis qui ne soient pas des corps étaient les
semi-corps commutatifs de Dickson [79] qui sont d’ordre p2k avec p premier
impair et k un nombre entier positif. Probablement Dickson a commencé
à étudier des semi-corps après la publication du théorème de Wedderburn
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[140] qui est apparu un an plus tôt [79] et dont Dickson a été le premier
à donner une preuve correcte (voir Parshall [132]). Comme on n’obtient
pas de nouvelle structure quand on élimine la commutativité de la définition
des corps, il est raisonnable d’étudier les structures qui sont en revanche
non-associatives. Le rôle de semi-corps dans la géométrie projective a été
confirmé à la suite de l’introduction des coordonnées dans les plans non-
Desarguésien par Hall [89]. Après le travail de Hall, Lenz [112] a développé
et Barlottia [4] a affiné ce qui est aujourd’hui connu comme la classification
de Lenz-Barlotti, dans laquelle les semi-corps correspondent aux plans pro-
jectifs de Lenz-Barlotti type V.1. Dans un certain sens, l’intérêt moderne
pour les semi-corps remonte au travail important de Knuth [104]. Malgré le
travail considérable dans ce domaine, seules deux familles infinies de semi-
corps commutatifs (différents des corps finis) d’ordre pn, définis pour tout p
premier impair sont connues. Elles ont été construites par Dickson (1906)
et Albert (1952) [2, 79].

Dans le travail présent nous construisons deux familles infinies de multi-
nômes quadratiqueparfaits non-linéaires sur Fp2k où p est un nombre premier
impair et k est un nombre entier positif [35, 38]. Nous prouvons qu’en général
ces fonctions sont CCZ-inéquivalentes aux fonctions PN déjà connues. De
plus, nous produisons des résultats indiquant que ces fonctions planaires
définissent de nouveaux semi-corps commutatifs. Après les travaux de Dick-
son (1906) et Albert (1952), ce sont les premières familles infinies trouvées de
semi-corps commutatifs, qui soient définies pour tous les premiers p impairs.
L’une des familles, que nous introduisons, a été construite par l’extension
d’une famille connue de fonctions APN sur F22k [14]. Cela indique que les
classes connues de fonctions APN sur des corps de caractéristiques paires
peuvent servir comme sources pour les constructions futures de fonctions
PN sur des corps de caractéristiques impaires. Cette méthode, tout d’abord
introduite dans [38], a été ensuite utilisée pour des familles des binômes
APN de [30] pour les étendre à des familles de binômes planaires. Donc, les
résultats sur la classification des fonctions APN et PN ont des conséquences
importantes sur la classification des semi-corps commutatifs et des plans
projectifs.

Nous étendons ensuite la famille des fonctions PN construites dans [115,
9] en une famille plus large (sous CCZ-équivalence) de fonctions PN. Cela
est fait par l’utilisation des isotopismes des semi-corps (qui ne sont pas
forts). C’est-à-dire que, en étendant la famille des fonctions PN, nous restons
toujours dans la même famille des semi-corps commutatifs (à équivalence
isotopique près).

Le présent travail est organisé comme suit: dans le Chapitre 1 nous
donnons l’information générale qui est nécessaire pour la présentation des
résultats. Le chapitre 2 est dédié aux résultats sur la relation d’équivalence
des fonctions. Les fonctions courbes sont analysées et construites dans le
Chapitre 3. Dans le Chapitre 4 nous construisons des familles infinies de
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fonctions quadratiques APN et AB. Le chapitre 5 présente des familles in-
finies des fonctions planaires et les semi-corps commutatifs qui leur corre-
spondent.

Les résultats présentés dans ce travail ont été publiés dans les revues
internationales et dans les actes de conférences internationales [24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 35, 36, 38].
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Summary

Discrete functions are functions from one finite set to another one and an
important particular case of such functions is the case of Boolean functions,
which are ubiquitous, occurring at the heart of virtually all known digital
systems: computers, telecommunications and cryptographic primitives, for
example, all depend on the theory of Boolean functions. Moreover, functions
with optimal cryptographic properties, define optimal in certain sense ob-
jects in many domains of mathematics and information theory. Hence, con-
struction and analysis of optimal cryptographic functions is connected with
important mathematical problems and solution of these problems makes
valuable contribution to both mathematics and information theory.

Let p be a prime and n any positive integer. We denote by Fpn the finite
field with pn elements and by Fnp the n-dimensional vector space over Fp.
We study functions from Fnp to Fmp , where n and m are arbitrary, which
we call an (n,m, p)-function or a vectorial function. An (n,m, 2)-function
we simply call an (n,m)-function or a vectorial Boolean function and an
(n, 1, 2)-function is called a Boolean function in n variables.

In modern society, exchange and storage of information in an efficient,
reliable and secure manner is of fundamental importance. Cryptology com-
prises the interrelated areas of cryptography and cryptanalysis. Crypto-
graphic primitives are used to protect information against eavesdropping,
unauthorized changes and other misuse. In the case of symmetric cryptog-
raphy ciphers are designed by appropriate composition of nonlinear Boolean
functions. For example the security of block ciphers depends on S-boxes
which are (n,m)-functions. For most of cryptographic attacks there is a
certain property of functions which measures the resistance of the S-box to
this attack. The two most powerful attacks on symmetric cryptosystems
are differential and linear attacks and the respective cryptographic prop-
erties of functions are the nonlinearity and the differential uniformity. An
interesting fact is that functions with optimal nonlinearity or differential uni-
formity define optimal objects in coding theory, finite geometry, sequence
design, algebra, combinatorics, et al. Hence construction and analysis of
these functions is important for all these theories and the present work is
dedicated to this task.

There are many different Boolean functions even in very few variables

xv
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so it is an important and very challenging task to find the best Boolean
functions for each possible application. The abundance of Boolean functions
means that it is usually impossible to solve these problems by using computer
searches alone and one needs to invent more effective methods to construct
new and better Boolean functions that can be efficiently implemented in
electronic devices and thus save power and time in many applications.

An (n,m, p)-function F is called differentially δ-uniform if the equation
F (x)− F (x+ a) = b has at most δ solutions for every nonzero element a of
Fnp and every b in Fmp . Functions with the smallest possible differential uni-
formity contribute an optimal resistance to the differential attack [10, 130].
In this sense differentially pn−m-uniform functions, called perfect nonlinear
(PN), are optimal. However when p = 2, PN functions exist only for n even
and m ≤ n/2. When p = 2 and n = m differentially 2-uniform functions,
called almost perfect nonlinear (APN), have the smallest possible differential
uniformity.

The nonlinearity NL(F ) of an (n,m)-function F is the minimum Ham-
ming distance between all the component functions of F (that is, the func-
tions v · F where ”·” denotes an inner product in Fm2 and all affine Boolean
functions in n variables. The nonlinearity quantifies the level of resistance
of the function to the linear attack: the higher is the nonlinearity NL(F )
the better is the resistance of F to the linear attack [50, 116]. The functions
achieving the upper bound on nonlinearity are called bent functions. All
bent functions are also PN and vice versa, that is, these functions have op-
timal resistance against both linear and differential attacks. As mentioned
above in the binary case PN (or bent) functions do not exist when m = n.
In this case functions with the best possible nonlinearity are called maxi-
mally nonlinear. When n is odd maximally nonlinear functions are called
almost bent (AB). When n is even the upper bound on the nonlinearity
is still to be determined. All AB functions are APN, but the converse is
not true in general. APN and AB functions define binary error correct-
ing [2n, 2n − 2n − 1, 5] codes optimal in certain sense [46]. Quadratic APN
functions also define dual hyperovals [81, 144].

The nonlinearity and the differential uniformity (and, therefore, bent-
ness, APNness and ABness), are invariant under affine, extended affine
and CCZ-equivalences (in increasing order of generality). Two (n,m, p)-
functions F and F ′ are called affine equivalent if one is equal to the other,
composed on the left and on the right by affine permutations. They are
called extended affine equivalent (EA-equivalent) if one is affine equivalent
to the other, added with an affine function. They are called Carlet-Charpin-
Zinoviev equivalent (CCZ-equivalent) if their graphs {(x, F (x)) | x ∈ Fnp}
and {(x, F ′(x)) | x ∈ Fnp} are affine equivalent. CCZ-equivalence is the most
general known equivalence relation of functions for which the nonlinearity
and the differential uniformity are invariant.

The notion of CCZ-equivalence is difficult to handle, since checking
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whether two given functions are CCZ-equivalent or not is hard (at least
when they share the same CCZ-invariant parameters). Building functions
CCZ-equivalent (but not EA-equivalent) to a given function is hard too. The
less general EA-equivalence is on the contrary simpler to check and, given
some function, building EA-equivalent ones is very easy. Hence, identifying
situations in which CCZ-equivalence reduces to EA-equivalence is useful.
We investigate this problem and, in particular, we prove with Carlet and
Helleseth that this happens for all single output Boolean functions and that
it does not, for functions from Fnp to Fmp under condition that m is greater
or equal to the smallest divisor of n different from 1, which for n even case
simply implies m ≥ 2 [24, 35]. In [136] these results were extended to a
more general framework of functions over finite abelian groups in which the
condition on m is redused to m ≥ 2 also for n odd case and for p odd also
includes m = 1.

We prove further that CCZ-equivalence coincides with EA-equivalence
for all (single output or multi ouput) PN (or bent) functions, and, more
generally, for all functions whose all derivatives are surjective [25, 36].

A question which has some importance for theoretical and practical rea-
sons is whether CCZ-equivalence is really the most general equivalence rela-
tion of functions which is relevant to the block cipher framework. We show
with Carlet and Helleseth that trying to extend CCZ-equivalence to a more
general notion in the same way as affine equivalence was extended to CCZ-
equivalence (that is, by considering the CCZ-equivalence of the indicators
of the graphs of the functions instead of that of the functions themselves)
leads in fact to the same CCZ-equivalence [24, 35].

Classification of bent, APN and AB functions is a hard open problem.
Complete classification for APN and AB functions is known only for n ≤ 5,
[22]. For bent functions it can be done nowadays for n ≤ 8, [110]. There are
only a few classes of APN and AB functions known. Among them are six
classes of APN power functions, four of which are also AB (for n odd). AB
power functions are in one-to-one correspondence with sequences used for
radars and for spread-spectrum communications. A binary sequence which
can be generated by an LFSR is called an m-sequence or a maximum-length
sequence if its period equals 2n − 1, which is the maximal possible value.
Such a sequence can be used for radars and for code division multiple access
(CDMA) in telecommunications, since it allows sending a signal which can be
easily distinguished from any time-shifted version of itself. It is conjectured
by Dobbertin that classification of APN and AB power functions is complete.

In this work we study the question of CCZ-equivalence for known power
APN functions. We prove with Carlet and Leander that two Gold functions
x2i+1 and x2j+1 with 1 ≤ i, j < n/2, i 6= j, are CCZ-inequivalent, and
that the Gold functions are CCZ-inequivalent to any Kasami and to Welch
functions (except in particular cases) [33]. We also show that the inverse
and Dobbertin APN functions are CCZ-inequivalent to each other and to
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all other known power APN mappings [33].
The other known families of APN and AB functions are a few classes of

quadratic APN and AB functions constructed recently [13, 14, 26, 30, 31, 32].
Besides, for 6 ≤ n ≤ 9 there is a large list of quadratic APN and AB
functions for which infinite classes are still to be determined [21, 84, 143,
147]. The only known example of APN functions CCZ-inequivalent to power
functions and to quadratic functions is found in [22, 84] for n = 6 and
construction of infinite families of such functions is still an open problem.
Construction of infinite family of APN permutations over F2k

2 is an open
problem too while an example of such a function is constructed for n = 6
in [20] by this disproving a longstanding conjecture about non-existence of
such functions.

In this work we present seven out of eleven known infinite families of
quadratic APN polynomials CCZ-inequivalent to power functions (four of
which are also AB when n is odd) which we constructed with Carlet and Le-
ander in [26, 30, 31, 32]. First, we introduce two infinite classes of quadratic
APN functions for n divisible by 3, respectively, 4, [30]. We prove that for n
odd these functions are AB permutations. We show that, for n ≥ 12, these
functions are EA-inequivalent to power mappings and CCZ-inequivalent to
Gold, Kasami, inverse and Dobbertin functions. This implies that for n
even they are CCZ-inequivalent to all known APN functions. In particu-
lar, for n = 12, 20, 24, they are CCZ-inequivalent to any power mappings.
These classes of binomials are the firstly found classes of APN functions
CCZ-inequivalent to power mappings. Besides, they are the first counterex-
amples for the conjecture of [46] on nonexistence of quadratic AB functions
inequivalent to the Gold maps. Further we discuss the possibility of gener-
alization of the introduced APN binomials for other divisors of n.

An (n, n)-function F is called crooked if F (x) + F (y) + F (z) + F (x +
y + z) 6= 0 for any three distinct elements x, y, z, F (0) = 0, and F (x) +
F (y) + F (z) + F (x+ a) + F (y+ a) + F (z + a) 6= 0 for any a 6= 0 and x, y, z
arbitrary [5]. On one hand, every crooked function gives rise to a distance
regular rectagraph of diameter 3, and on the other hand every quadratic AB
permutation is crooked [5]. The converse is not known, that is, whether a
crooked function is necessarily a quadratic AB permutation. A rectagraph
is a graph without triangles in which every pair of vertices at distance 2 lies
in a unique 4-cycle. There are not too many constructions of rectagraphs
known, especially rectagraphs of small diameter. Hence construction of such
functions would provide not only interesting building blocks for symmet-
ric cryptosystems but would also provide new distance regular rectagraphs.
Nowadays only two families of crooked functions are known: one, the Gold
functions, constructed in 1968 by Gold [86] in context of sequence design
and rediscovered in 1993 by Nyberg [130], which gives Preparata graphs,
and the other one is our family of binomials with n divisible by 3 [30].

Further we develop the method for constructing differentially 4-uniform
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quadratic polynomials introduced by Dillon [70] by proposing its various
generalizations [26]. We construct a new infinite class of quadratic APN
trinomials and a new potentially infinite class of quadratic APN hexanomials
which we conjecture to be CCZ-inequivalent to power functions for n ≥ 6
and we confirm this conjecture for n ≤ 10 [26].

Then we present a method for constructing new quadratic APN functions
from known ones [32]. Applying this method to the Gold power functions
we construct an APN function x3 + trn(x9) over F2n . We prove that for
n ≥ 7 this function is CCZ-inequivalent to the Gold functions, and in the
case 7 ≤ n ≤ 10 it is CCZ-inequivalent to any power mapping and any APN
polynomial belonging to the previously known families. This was the first
APN polynomial CCZ-inequivalent to power functions whose all coefficients
are in F2 and is still the only one which is defined for any n [32].

Further we give sufficient conditions on linear functions L1 and L2 from
F2n to itself such that the function L1(x3)+L2(x9) is APN over F2n [31]. We
show that this can lead to many new cases of APN functions. In particular,
we get two new families of APN functions x3 + a−1 tr3

n(a3x9 + a6x18) and
x3 + a−1 tr3

n(a6x18 + a12x36) over F2n for any n divisible by 3 and a ∈ F∗2n .
We prove that for n = 9, these families are pairwise different and differ from
all previously known families of APN functions, up to CCZ-equivalence. We
also investigate further sufficient conditions under which the conditions on
the linear functions L1 and L2 are satisfied.

For p = 2 bent (or PN) functions are the characteristic functions of ele-
mentary Hadamard difference sets [68]. Moreover they are employed to con-
struct families of binary sequences, which possess properties well suited for
application in code-division multiple-access communications systems [131].
Besides, some of these functions define o-polynomials (that is, permuta-
tions associated with hyperovals in a projective plane) [48]. For p odd PN
functions were shown to be useful for constructing certain combinatorial ob-
jects such as partial difference sets, strongly regular graphs and association
schemes [54, 134, 139].

Some of our results presented in this work are dedicated to analysis and
construction of bent functions [25, 27, 28, 29]. As it was mentioned be-
fore, CCZ-equivalence of bent vectorial functions over Fn2 reduces to their
EA-equivalence. We prove with Carlet that in spite of this fact, CCZ-
equivalence can be used for constructing bent functions which are new
up to EA-equivalence and therefore to CCZ-equivalence: applying CCZ-
equivalence to a non-bent vectorial Boolean function F which has some bent
components, we get a function F ′ which also has some bent components and
whose bent components are CCZ-inequivalent to the components of the orig-
inal function F . Using this approach we construct classes of nonquadratic
bent Boolean and bent vectorial functions [25].

Further we study the problem raised in [46]. In 1998, Carlet, Charpin
and Zinoviev characterized APN and AB (n, n)-functions by means of as-
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sociated 2n-variable Boolean functions. In particular, they proved that a
function F is AB if and only if the associated Boolean function γF is bent.
This observation leads to potentially new bent functions associated to the
known AB functions, or at least gives new insight on known bent functions.
However, representations of γF were known only for Gold and inverse power
APN functions and determining γF for the rest of AB and APN functions
was an open problem. We determine, with Carlet and Helleseth, the repre-
sentation of γF for all known power AB functions and for almost all known
families of APN polynomials. We also try to determine whether these bent
functions (when F is AB) belong to the main known classes of bent functions
[27]. In addition, CCZ-equivalence and EA-equivalence result in the equiv-
alence of the associated functions γF . We note that if (n, n)-functions F
and F ′ are CCZ-equivalent then there exists an affine permutation L of F2

2n

such that γF ′ = γF ◦L. This implies that all affine invariants of the Boolean
function γF (as weight, differential and linear properties, algebraic degree,
et al.) can be used as CCZ-invariants for the (n, n)-function F . Hence,
although studying γF is interesting by itself, there are also practical reasons
for it: because they can be a source of potentially new bent functions when
F is AB and because affine invariants of γF are CCZ-invariants for F .

In the present work we further solve a problem which dates back to 1974.
In his thesis [68], Dillon introduced a family of bent functions denoted by H,
where bentness is proven under some conditions which were not obvious to
achieve. In this class, Dillon was able to exhibit only functions belonging to
the completed Maiorana-McFarland class (the completed MM class), which
is one of the largest and best known families of bent functions. Since then it
was an open problem whether these two classes of bent functions differ. In
[48] it was observed that the completed class of H contains all bent functions
of the, so called, Niho type which were introduced in [80] by Dobbertin
et al. We prove that two classes of binomial Niho bent functions do not
belong to the completed MM class. This implies that the class H contains
functions which do not belong to the completed Maiorana-McFarland class
and, therefore, the class H is not contained in the completed MM class [29].

We also study the relation between known classes of generalized bent
functions given in trace representation and completed class of Maiorana-
McFarland functions. In the binary case, the completed MM class contains
all quadratic bent functions which are the simplest and best understood.
We prove that this does not hold in the generalized case. First, for p odd
there exist quadratic bent functions over Fpn when n is odd while Maiorana-
McFarland bent functions are defined only for n even. For the case n even,
we provide examples of quadratic generalized bent functions not belonging
to the completed MM class. Moreover, we prove, with Carlet, Helleseth and
Kholosha, that almost all of the known classes of generalized bent functions
given in trace representation do not intersect with the completed MM class.
This leads us to the conclusion that in general, the Maiorana-McFarland
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construction is less overall than in the binary case even for the case n even
[28].

When p is odd and n = m PN functions are also called planar and they
are in one-to-one correspondence with commutative semifields of odd order.
A finite semfield is a ring with no zero-divisors, a multiplicative identity
and left and right distributivity. Obviously every finite field is a semifield.
The first finite semifields, different from finite fields, were the commutative
semifields of Dickson [79] which have order p2k with p an odd prime and k a
positive integer. Dickson may have been led to study semifields following the
publication of Wedderburn’s Theorem [140], which appeared the year before
[79] and which Dickson was the first person to provide a correct proof for (see
Parshall [132]). As no new structures are obtained by removing commutativ-
ity, it is reasonable to investigate those structures which are non-associative
instead. The role of semifields in projective geometry was confirmed follow-
ing the introduction of coordinates in non-Desarguesian planes by Hall [89].
Subsequent to Hall’s work, Lenz [112] developed and Barlotti [4] refined
what is now known as the Lenz-Barlotti classification, under which semi-
fields correspond to projective planes of Lenz-Barlotti type V.1. In some
sense, modern interest in semifields can be traced back to the important
work of Knuth [104]. In spite of considerable work in this field the only two
previously known infinite families of commutative semifields (different from
finite fields) of order pn defined for any odd prime p were constructed by
Dickson and Albert [2, 79].

In this work we present two infinite families of quadratic perfect nonlin-
ear multinomials over Fp2k where p is any odd prime and k a positive integer,
which we constructed with Helleseth in [36, 38]. We prove that in general
these functions are CCZ-inequivalent to previously known PN mappings.
Besides, we supply results indicating that the planar functions, we intro-
duce, define new commutative semifields. After the works of Dickson (1906)
and Albert (1952), these were the firstly found infinite families of commu-
tative semifields which are defined for all odd primes p. One of the families,
which we introduce, has been constructed by extension of a known family of
APN functions over F22k [14]. This shows that known classes of APN func-
tions over fields of even characteristic can serve as a source for further con-
structions of PN mappings over fields of odd characteristics. This method,
first introduced in [38] was further applied to the families of APN binomials
from [30] to extend them to the families of planar binomials. Hence, results
on classification of APN and PN functions have important consequences on
classification of commutative semifields and projective planes.

Further we extend the family of PN functions constructed in [115, 9] to
a larger (up to CCZ-equivalence) family of PN functions. This is done by
using isotopisms of semifields (which are not strong). That is, extending the
family of PN functions we still stay within the same family of commutative
semifields (up to isotopic equivalence) [35].
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The present work is organized as follows. In Chapter 1 we give general
information which is necessary for presentation of the results. Chapter 2 is
dedicated to the results on equivalence relations of functions. Bent functions
are analyzed and constructed in Chapter 3. In Chapter 4 we construct infi-
nite families of quadratic APN and AB functions. Chapter 5 presents infinite
families of planar functions and corresponding commutative semifields.

The results presented in this work have been published in international
journals and international conference proceedings [24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 35, 36, 38].
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Chapter 1

Introduction

Let p be a prime and n any positive integer. We denote by Fpn the finite
field with pn elements and by Fnp the n-dimensional vector space over Fp.
Further for any set E, we denote E \ {0} by E∗.

In this work we study functions from Fnp to Fmp where n and m are
arbitrary. Recall that a function F from Fnp into Fmp is called an (n,m, p)-
function or a vectorial function. An (n,m, 2)-function we simply call an
(n,m)-function or a vectorial Boolean function or an S-box. When p =
2 and m = 1 the function F is called a Boolean function. Opposite to
vectorial functions which are denoted by capital letters, Boolean functions,
and (n, 1, p)-functions in general, will be denoted by small letters. Clearly
any (n,m, p)-function F can be presented in the form

F (x1, ..., xn) =
(
f1(x1, ..., xn), ..., fm(x1, ..., xn)

)
,

where the (n, 1, p)-functions f1, ..., fm are called the coordinate functions of
the function F .

When n = m it is often more convenient to identify the vector space
Fnp with Fpn and consider functions from Fnp to itself as mappings from Fpn
to itself. Any such function F has a unique representation as a univariate
polynomial over Fpn of degree smaller than pn

F (x) =

pn−1∑
i=0

cix
i, ci ∈ Fpn .

For any integer k, 0 ≤ k ≤ pn − 1, the number wp(k) =
∑n−1

s=0 ks, 0 ≤ ks ≤
p − 1, in the p-ary expansion

∑n−1
s=0 p

sks of k is called the p-weight of k.
The algebraic degree of a function F : Fpn → Fpn is equal to the maximum
p-weight of the exponents of the monomials with nonzero coefficients in the
polynomial F (x):

d◦(F ) = max
0≤i≤pn−1

ci 6=0

wp(i).

A function F from Fpn to itself is

1
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• linear if

F (x) =
∑

0≤i<n
aix

pi , ai ∈ Fpn ;

• affine if F is a sum of a linear function and a constant;

• Dembowski-Ostrom polynomial (DO polynomial) if

F (x) =
∑

0≤k≤j<n
akjx

pk+pj , aij ∈ Fpn ; (1.1)

• quadratic if it is a sum of a DO polynomial and an affine function.

If m is a positive divisor of n then a function F from Fpn to Fpm can be
viewed as a function from Fpn to itself and, therefore, it admits a univari-
ate polynomial representation. More precisely, if trmn (x) denotes the trace
function from Fpn into Fpm :

trmn (x) = x+ xp
m

+ xp
2m

+ ...+ xp
(n/m−1)m

,

(we shall write trn(x) instead of tr1
n(x) when m = 1) then F can be repre-

sented in the form trmn (
∑pn−1

i=0 cix
i). Indeed, there exists a function G from

Fpn to Fpn (for example G(x) = aF (x), where a ∈ Fpn and trmn (a) = 1)
such that F equals trmn (G(x)). Hence, any (n, 1, p)-function f can be writ-
ten in a non-unique way as trn(G(x)) where G(x) is a polynomial over F2n .
Moreover, univariate representation of f can be written in the form of

f(x) =
∑
j∈Γn

tro(j)(ajx
j),

where Γn is a set of integers obtained by choosing one element in each
cyclotomic coset of p modulo pn − 1, o(j) is the size of the cyclotomic coset
containing j and aj ∈ Fpo(j) . This representation is unique up to the choice
of cyclotomic coset representatives.

Let n = 2k and f be an (n, 1, p)-function. Then f can have a bivariate
representation defined as follows: we identify Fnp with Fpk ×Fpk and consider
the argument of f as an ordered pair (x, y) of elements in Fpk . There exists
a unique bivariate polynomial over Fpk that represents f :

f(x) =
∑

0≤i,j≤pk−1

ai,jx
iyj .

Then the algebraic degree of f is equal to

d◦(f) = max
(i,j) | ai,j 6=0

(wp(i) + wp(j)).
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And then the bivariate representation of f can be written in the form
f(x, y) = trk(P (x, y)), where P (x, y) is some polynomial of two variables
over Fpk .

Whenm is not a divisor of n, the univariate representation of an (n,m, p)-
function F in the field is not convenient. We need then to see F as a function
from Fnp to Fmp and the natural way of representing it is by its algebraic nor-
mal form ANF :

F (x) =
∑
u∈Fnp

au

n∏
i=1

xuii , au ∈ Fmp ,

(this sum being calculated in Fmp ). The way to obtain one representation of a
function from the other is recalled in [46] for the binary case. The algebraic
degree d◦(F ) of F equals the degree of its ANF. The minimum algebraic
degree of all nonzero linear combinations of the coordinate functions of F is
called the minimum degree of the function F and is denoted by min d◦(F ).

A function F from Fnp to Fmp , where n and m are arbitrary, is called
balanced if every element of Fmp has the same number pn−m of pre-images.
Balanced functions from Fnp to itself are permutations of Fnp . In some cases
properties of vectorial functions can be described by similar properties of
its component functions. For instance, an (n,m)-function F is balanced if
and only if all nonzero linear combinations of the coordinate functions of F
are balanced, that is if and only if the Boolean function c ·F is balanced for
every nonzero c ∈ Fm2 , where ”·” denotes the usual inner product in Fm2 (see
[45]).

Let n, m and δ be any positive integers. A function F from Fnp to Fmp is
called differentially δ-uniform if all the equations

F (x+ a)− F (x) = b, a ∈ Fn∗p , b ∈ Fmp , (1.2)

have at most δ solutions. Differential uniformity measures the resistance of
a function, used as an S-box in a cryptosystem, to differential attack: the
smaller is differential uniformity the better is the resistance [10, 128]. In this
sense differentially pn−m-uniform functions, called perfect nonlinear (PN),
are optimal. Clearly, a function F is perfect nonlinear if and only if for any
a ∈ Fn∗p the function DaF (x) = F (x+ a)− F (x), called the derivative of F
in the direction of a, is balanced. When n = m this condition implies that
all derivatives of F in non-zero directions are permutations, and in this case
F is also called a planar function. Planar functions were introduced in 1968
by Dembowski and Ostrom [63] in the context of finite geometry to describe
projective planes with specific properties. It is obvious that planar functions
exist only for p odd since if p is even and x0 is a solution of (1.2) then
x0 + a is a solution too. The functions from Fn2 to itself, whose derivatives
DaF , a ∈ Fn∗2 , are 2-to-1 mappings, possess the best possible resistance to
differential cryptanalysis and are called almost perfect nonlinear (APN).
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There are several equivalence relations of functions for which differential
uniformity is an invariant. Due to these equivalence relations, having only
one PN (or APN) function, one can generate a huge class of PN (resp. APN)
functions. The terminology for these equivalence relations was introduced in
[34] while the ideas behind this terminology go back to the works of Nyberg
[130] and Carlet, Charpin and Zinoviev [46].

Definitions for equivalences below are given for functions from Fnp to Fmp .
However they can be naturally extended to functions from A to B where A
and B are arbitrary groups [34, 136]. Two functions F and F ′ from Fnp to
Fmp are called

• affine equivalent (or linear equivalent) if F ′ = A1 ◦ F ◦ A2, where the
mappings A1 and A2 are affine (resp. linear) permutations of Fmp and
Fnp , respectively;

• extended affine equivalent (EA-equivalent) if F ′ = A1 ◦ F ◦ A2 + A,
where the mappings A : Fnp → Fmp , A1 : Fmp → Fmp , A2 : Fnp → Fnp are
affine, and where A1, A2 are permutations;

• Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent) if for some affine
permutation L of Fnp ×Fmp the image of the graph of F is the graph
of F ′, that is, L(GF ) = GF ′ where GF = {(x, F (x)) | x ∈ Fnp} and
GF ′ = {(x, F ′(x)) | x ∈ Fnp}.

Although different, these equivalence relations are connected to each
other. It is obvious that linear equivalence is a particular case of affine equiv-
alence, and that affine equivalence is a particular case of EA-equivalence.
As shown in [46], EA-equivalence is a particular case of CCZ-equivalence
and every permutation is CCZ-equivalent to its inverse. The algebraic de-
gree of a function (if it is not affine) is invariant under EA-equivalence but,
in general, it is not preserved by CCZ-equivalence. Let us recall why the
structure of CCZ-equivalence implies this: for a function F from Fnp to Fmp
and an affine permutation

L(x, y) =
(
L1(x, y), L2(x, y)

)
of Fnp ×Fmp , where L1 : Fnp ×Fmp → Fnp and L2 : Fnp ×Fmp → Fmp , we have

L(GF ) = {
(
F1(x), F2(x)

)
: x ∈ Fnp}

where
F1(x) = L1(x, F (x)),

F2(x) = L2(x, F (x)).

L(GF ) is the graph of a function if and only if the function F1 is a per-
mutation. The function CCZ-equivalent to F whose graph equals L(GF ) is
then

F ′ = F2 ◦ F−1
1 .
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The composition by the inverse of F1 modifies in general the algebraic degree,
except, for instance, when L1(x, y) depends only on x, which corresponds
to EA-equivalence of F and F ′ (see Proposition 1 below proven in [34] for
p = 2 and n = m and whose proof obviously extends to the general case).

Proposition 1 [34] Let F and F ′ be two (n,m, p)-functions where p is
a prime and n and n are any positive integers. The function F ′ is EA-
equivalent to the function F or to the inverse of F (if it exists) if and
only if there exists a linear permutation L = (L1, L2) on Fn2 ×Fm2 such
that L(GF ) = GF ′ and the function L1 depends only on one variable, i.e.
L1(x, y) = L(x) or L1(x, y) = L(y).

For quite a long time it was believed that CCZ-equivalence class of an arbi-
trary function F can be completely described by means of EA-equivalence
and the inverse F (if F is a permutation). In [23, 34], it is proven to be false:
CCZ-equivalence is much more general. However, there are particular cases
of functions for which CCZ-equivalence can be reduced to EA-equivalence.
For instance, CCZ-equivalence coincides with

• EA-equivalence for planar functions [36, 38];

• linear equivalence for DO planar functions [36, 38];

• EA-equivalence for all functions whose derivatives are surjective [36];

• EA-equivalence for all Boolean functions [24];

• EA-equivalence for all vectorial bent Boolean functions [25];

• EA-equivalence for two quadratic APN functions (conjectured by Edel,
proven by Yoshiara [145]).

It is useful to know cases where CCZ- and EA-equivalences coincide be-
cause in general it is very difficult to determine whether two functions are
CCZ-equivalent or not while EA-equivalence is much simpler and has a nice
invariant, algebraic degree of a function. Besides, if the minimum degree
of F is grater than 1 then the minimum degree is also EA-invariant. Ob-
viously, the algebraic and minimum degrees of a function are not invariant
under the inverse transformation. For some CCZ-invariants one can see [84],
for instance.

Nowadays, CCZ-equivalence is the most general known equivalence re-
lation of functions preserving PN and APN properties and it is appealing
to find a more general equivalence for which PN and APN properties are
invariants. We make an attempt to solve this problem by studying the in-
dicators of the graphs of functions. For a given function F from Fnp to Fmp ,
let us denote the indicator of its graph GF by 1GF , that is,

1GF (x, y) =

{
1 if y = F (x)
0 otherwise

.
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However, as we shall prove further, two (n,m, p)-functions F and F ′ are
CCZ-equivalent if and only if their indicators 1GF and 1GF ′ are CCZ-equivalent
(see Theorem 7 or [24, 35]).

1.1 Bent functions

Boolean bent functions were first introduced by Rothaus in 1976 as an in-
teresting combinatorial object with the important property of having the
maximum Hamming distance to the set of all affine functions. Later the re-
search in this area was stimulated by the significant relation to the following
topics in computer science: coding theory, sequences and cryptography (de-
sign of stream ciphers and S-boxes for block ciphers). Kumar, Scholtz and
Welch in [105] generalized the notion of Boolean bent functions to the case of
functions over an arbitrary finite field. Complete classification of bent func-
tions looks hopeless even in the binary case. In the case of generalized bent
functions, things are naturally much more complicated. However, many ex-
plicit methods are known for constructing bent functions either from scratch
or based on other, simpler bent functions.

1.1.1 The case of even characteristic

Let f be a Boolean function over Fn2 . The Hamming weight wt(f) of the
function f is the size of its support {x ∈ Fn2 : f(x) 6= 0}. The Hamming
distance d(f, g) between two Boolean functions f and g is the size of the set
{x ∈ Fn2 : f(x) 6= g(x)}. The minimum distance NL(f) between f and all
affine Boolean functions is called the nonlinearity of the Boolean function f .

The nonlinearity of an (n,m)-function F is the minimum Hamming dis-
tance between all nonzero linear combinations of the coordinate functions of
F and all affine Boolean functions on n variables. Clearly the nonlinearity
of F is described by the nonlinearities of the Boolean functions b · F

NL(F ) = min
b∈Fm2 ,b 6=0

NL(b · F ),

The linear cryptanalysis, introduced by Matsui [116], is based on finding
affine approximations to the action of a cipher, therefore the linear attack
on a function F is successful if NL(F ) is small.

If we consider a Boolean function as valued in {0, 1} ⊂ Z then the
nonlinearity can be described by Walsh transform. Let F be an (n,m)-
function. The function λF : Fn2 × Fm2 → Z defined by

λF (a, b) =
∑
x∈Fm2

(−1)b·F (x)+a·x, a ∈ Fn2 , b ∈ Fm2 ,

is called the Walsh transform of the function F . For any elements a ∈ Fn2
and b ∈ Fm2 the value λF (a, b) is called the Walsh coefficient of F and the
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set
ΛF = {λF (a, b) : a ∈ Fn2 , b ∈ Fm∗2 }

is called the Walsh spectrum of F . The set

Λ′F = {|λF (a, b)| : a ∈ Fn2 , b ∈ Fm∗2 }

is called the extended Walsh spectrum of F . We also denote

λF = max
a∈Fn2 ,b∈Fm∗2

|λF (a, b)|.

In case of a Boolean function f the Walsh transform is simply defined as

λf (a) =
∑
x∈Fn2

(−1)f(x)+a·x, a ∈ Fn2 .

The Walsh transform of a function does not depend on a particular
choice of the inner product in Fn2 . If we identify Fn2 with F2n then we can
take x · y = trn(xy) and the Walsh transform of an (n,m)-function F can
be defined as

λF (a, b) =
∑
x∈F2n

(−1)trm(bF (x))+trn(ax), a ∈ F2n , b ∈ F2m .

If n is even then a Boolean function f can be considered as f : F2n/2 ×F2n/2 →
F2. In this case, we can take (x, y)·(x′, y′) = trn/2(xx′+yy′) where trn/2(x) is
the trace function over F2n/2 . Then the Walsh transform of f is the function:

λf (a, a′) =
∑

x,y∈F
2n/2

(−1)f(x,y)+trn/2(ax+a′y), a, a′ ∈ F2n/2 .

One can easily note that for any (n,m)-function F and any elements
a ∈ Fn2 , b ∈ Fm2 we have

λF (a, b) = 2n − 2wt
(
b · F (x) + a · x

)
= 2n − 2d

(
b · F (x), a · x

)
.

Then

d
(
b · F (x), a · x

)
= 2n−1 − 1

2
λF (a, b),

d
(
b · F (x), a · x+ 1

)
= 2n−1 +

1

2
λF (a, b).

This gives the connection between the nonlinearity of F and the values of
its Walsh transform

NL(F ) = 2n−1 − 1

2
λF .

The nonlinearity and the extended Walsh spectrum of an (n,m)-function
are invariant under CCZ-equivalence [46].
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It can be easily proved that the Walsh transform of any Boolean function
f in n variables satisfies Parseval’s relation∑

a∈Fn2

λF (a)2 = 22n. (1.3)

Parseval’s relation makes clear that the nonlinearity NL(F ) of any (n,m)-
function F has an upper bound

NL(F ) ≤ 2n−1 − 2
n
2
−1.

This bound is called the universal bound. Functions achieving this bound
have the optimal nonlinearity and they are called bent. Bent functions exist
only for n even and m ≤ n/2 (see [129]). A function F : Fn2 → Fm2 is bent if
and only if one of the following conditions holds (see [45]):
(i) for any nonzero c ∈ Fm2 the Boolean function c · F is bent;
(ii) λF (a, b) = ±2

n
2 for any a ∈ Fn2 , b ∈ Fm∗2 .

(iii) F is PN.

The algebraic degree of a bent Boolean function in n > 2 variables is at
most n

2 , [137]. If f is a bent Boolean function in n variables then its dual f ′

is the Boolean function defined by

λf (a) = 2
n
2 (−1)f

′(a).

Obviously, f ′ is also bent and its dual is f itself.

There are many known constructions of bent functions, see [44, 45] for
most of them. However, complete classification of bent functions seems
hopeless, it is an open problem for n ≥ 10 (see [108] for classification with
n = 8). The main known classes of bent functions are the Maiorana-
McFarland class and the PSap class. An n-variable Boolean bent func-
tion belongs to the Maiorana-McFarland class (MM class) if, writing its

input in the form (x, y), with x, y ∈ Fn/22 , the corresponding output equals

x · π(y) + g(y), where π is a permutation of Fn/22 and g is a Boolean func-

tion over Fn/22 . The completed class of Maiorana-McFarland’s functions
(completed MM class) is the set of all functions which are EA-equivalent to
Maiorana-McFarland functions. In general, for any set S of functions we call
the set S′ of all functions EA-equivalent to the functions in S the completed
class of S. The completed MM class contains all quadratic bent Boolean
functions [68].

A bent Boolean function belongs to PSap if it has the form f(x, y) =

g
(
x
y

)
where g is a balanced Boolean function on F2n/2 which vanishes at 0

(with the convention 1
0 = 0). These functions have the peculiarity that their

algebraic degree equals n/2 (i.e. is optimal), which allows in some cases to
exclude that a given bent function belongs to the completed class of PSap.
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There are also a few classes of bent Boolean functions known in trace
representation, in particular power bent functions (which can also be called
monomial functions), that is, functions of the form trn(axi) with the follow-
ing exponents:
- the Gold exponents i = 2j + 1, where n/ gcd(j, n) is even and a /∈ {bi, b ∈
Fn2} (these functions belong to the Maiorana-McFarland class);
- the Dillon exponents of the form i = j(2n/2−1), where gcd(j, 2n/2 +1) = 1
and a ∈ F2n/2 is such that

∑
x∈F

2n/2
(−1)trn/2(1/x+ax) = 0 with 1/0 = 0 (these

functions belong to the PSap class) [69];
- the Kasami exponents i = 22j−2j+1, where gcd(j, n) = 1 and a /∈ {b3, b ∈
F2n} (see [71, 109]);
- the exponent i = (2n/4 + 1)2 where n is divisible by 4 but not by 8 and
a = a′bi with a′ ∈ w F2n/4 , w ∈ F4 \F2, b ∈ F2n (this function belongs to
the Maiorana-McFarland class) [51, 109];
- the exponent i = 2n/3 + 2n/6 + 1, where n is divisible by 6 and a = a′bi

with a′ ∈ F2n/2 such that tr
n/6
n/2(a′) = 0, b ∈ F2n (this function belongs to

the Maiorana-McFarland class) [42].
A still simpler bent function (but which is not expressed by means of the

function trn itself) is trn/2(x2n/2+1
), which belongs to MM class.

Another interesting case of bent Boolean functions are so-called Niho
bent functions. Recall that a positive integer d (always understood modulo
2n − 1) is said to be a Niho exponent and xd is a Niho power function if
the restriction of xd to F2m , for m = n/2, is linear or, in other words,
d ≡ 2j (mod 2m−1) for some j < n. As we consider trn(axd) with a ∈ F2n ,
without loss of generality, we can assume that d is in the normalized form,
i.e., with j = 0. Then we have a unique representation d = (2m − 1)s + 1
with 2 ≤ s ≤ 2m. The simplest example of an infinite class of Niho bent
functions is the quadratic function trm(ax2m+1) with a ∈ F∗2n . In this case,
s = 1/2 (interpret 1/2 as an inverse of 2 modulo 2m + 1) and 2d = 2m + 1.
Other known classes are:

(1) Two functions from [80] that are binomials of the form

f(x) = trn(α1x
d1 + α2x

d2), (1.4)

where

2d1 = 2m + 1 ∈ Z/(2n − 1)Z

and α1, α2 ∈ F∗2n are such that (α1 + α2m
1 )2 = α2m+1

2 . Equivalently,
denoting a = (α1 + α2m

1 )2 and b = α2 we have a = b2
m+1 ∈ F∗2m and

f(x) = trm(ax2m+1) + trn(b xd2).

Note that if b = 0 and a 6= 0 then f is also bent but becomes quadratic
equal to the function mentioned above. The possible values of d2 are:
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d2 = (2m − 1)3 + 1,

6d2 = (2m − 1) + 6 (with the condition that m is even).

These functions have algebraic degree m.

(2) A function from [80, 111] which has the form

trn

(
ax2m+1 +

2r−1−1∑
i=1

x(2m−1) i
2r

+1

)
(1.5)

with r > 1 satisfying gcd(r,m) = 1 and a ∈ F2n is such that a+a2m =
1. This function belongs to the completed Maiorana-McFarland class.

(3) A few other functions found recently in [48], which are given in bivari-
ate form.

The first class of binomial Niho bent functions was extended in [98] by
removing the restriction on coefficient b.

We shall also analyze in this work the so-called class H of bent Boolean
functions which was introduced by Dillon in his thesis [68]. The functions
f : Fn2 → F2 in this class are defined in their bivariate form as

f(x, y) = trm
(
y + xF (yx2m−2)

)
, (1.6)

where x, y ∈ F2m , n = 2m and F is a permutation of F2m such that F (x)+x
does not vanish and for any β ∈ F∗2m , the function F (x) + βx is 2-to-1 (i.e.,
the pre-image of any element of F2m is either a pair or the empty set). As
observed by Carlet and Mesnager [48], this class can be slightly extended
into a class H defined as the set of (bent) functions g satisfying

g(x, y) =

{
trm

(
xG
( y
x

))
if x 6= 0

trm(µy) if x = 0
, (1.7)

where µ ∈ F2m and G is a mapping from F2m to itself satisfying the following
necessary and sufficient conditions

F : z → G(z) + µz is a permutation on F2m , (1.8)

z → F (z) + βz is 2-to-1 on F2m for any β ∈ F∗2m . (1.9)

As proved in [48], condition (1.9) implies condition (1.8) and, thus, is nec-
essary and sufficient for g being bent. Adding the linear term trm((µ+ 1)y)
to (1.7) we obtain the original Dillon function (1.6). Therefore, functions in
H and in the Dillon class are the same up to the addition of a linear term.
It is observed in [48] that the class H contains all Niho type bent functions.

In [68] Dillon showed that the classH intersects with Maiorana-McFarland
class and it has remained an open question whether H is contained in com-
pleted MM class. This problem is solved in [29] (see Section 3.3) by showing
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that the Niho bent functions of the first case do not belong to the completed
MM class. Hence, Dillon’s class H of bent functions is not contained in the
completed MM class [29].

A natural extension of the class of bent functions is the class of plateaued
functions. A Boolean function f on n variables is called plateaued if λf (a) ∈
{0,±λ} for any a ∈ Fn2 . The value λ is called the amplitude of the plateaued
function. Because of (1.3) the amplitude λ cannot be null and must be
a power 2r, n

2 ≤ r ≤ n. Bent functions are plateaued and, according to
Parseval’s relation (1.3), a plateaued function is bent if and only if its Walsh
transform never takes the value 0. An (n,m)-function F is called plateaued
if for any non-zero c ∈ Fm2 the Boolean function c · F is plateaued.

1.1.2 The case of odd characteristics

Given a function f mapping Fpn to Fp with p odd, its Walsh transform is
defined as

λf (b) =
∑
x∈Fpn

ωf(x)−trn(bx), b ∈ Fpn ,

where ω = e
2πi
p is the complex primitive pth root of unity and elements of

Fp are considered as integers modulo p.

According to [105], a function f from Fpn to Fp is called a p-ary bent
function (or generalized bent function) if all its Walsh coefficients satisfy
|λf (b)|2 = pn. A bent function f is called regular (see [105, 101]) if for every
b ∈ Fpn the normalized Walsh coefficient p−n/2λf (b) is equal to a complex
pth root of unity, i.e., p−n/2λf (b) = ωf

∗(b) for some function f∗ mapping
Fpn into Fp. A bent function f is called weakly regular if there exists a
complex u having unit magnitude such that up−n/2λf (b) = ωf

∗(b) for all
b ∈ Fpn . For a weakly regular function f , function f∗ is called the dual
of f . Recently, weakly regular bent functions were shown to be useful for
constructing certain combinatorial objects such as partial difference sets,
strongly regular graphs and association schemes (see [139, 134, 54]). This
justifies why the classes of (weakly) regular bent functions are of independent
interest.

It was long believed that all p-ary bent functions are weakly regular.
However, some counter examples were found recently. In particular, ternary
function f mapping F36 to F3 and given by f(x) = tr6(α7x98) where α is a
primitive element of F36 , is bent and not weakly regular bent. An interesting
open problem is to find an infinite class of non-weakly regular bent functions
in a univariate representation.

Known univariate polynomials representing infinite classes of p-ary bent
functions are listed in the table below. Here ξ denotes a primitive element
of F3n , ”r” and ”wr” refer to regular and weakly regular bent functions
respectively. The first seven families in the table are monomials of the
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form trn(axd) while the last one is a binomial bent function in the form
trn(F (x)). Also, for any a ∈ Fpn , define the Kloosterman sum K(a) =∑

x∈Fpn w
trn(x+ax−1), where w is a complex p-th primitive root of unity.

These functions were constructed and analyzed in [56, 92, 93, 94, 95, 96,
88, 97]. There are also numerous cases of quadratic functions and binomial
ternary bent functions (see [92]).

Table 1
Generalized Bent Functions

n d or F (x) a d◦ Remarks

2 a 6= 0 2 r, wr

2k pk + 1 a+ ap
k 6= 0 2 wr

pj + 1, n
gcd(n,j)

-odd a 6= 0 2 r, wr

pj + 1 Some condition on a 2 r, wr

3k+1
2

, gcd(k, n) = 1, k-odd a 6= 0 k + 1 r, wr

2k t(3k − 1), gcd(t, 3k + 1) = 1 K(ap
k+1) = 0 n ternary r

2k 3n−1
4

+ 3k + 1, k-odd ξ
3k+1

4 n ternary wr

4k xp
3k+p2k−pk+1 + x2 (p− 1)k + 2 wr

Maiorana-McFarland construction of bent Boolean functions can be ex-
tended to the case of generalized bent functions. Let π be a permutation of
Fmp and σ : Fmp → Fp. Then f : Fmp ×Fmp → Fp with f(x, y) := x ·π(y)+σ(y)
is a bent function. Moreover, the bijectiveness of π is necessary and suffi-
cient for f being bent. Such bent functions are regular and the dual function
is equal to f∗(x, y) = y · π−1(x) + σ(π−1(x)). The completed MM class of
generalized bent functions gives by far the widest class of bent functions,
compared to all the other primary constructions.

A criterion for a function to be a member of the completed MM class in
the binary case is given in [68]. In the general case, the proof is similar.

Proposition 2 [68] Let n be an even positive integer, p any prime and
f : Fnp 7→ Fp a bent function. If f belongs to the completed MM class then
there exists an n/2-dimensional vector subspace V in Fnp such that the second
order derivatives

DaDcf(x) = f(x+ a+ c)− f(x+ a)− f(x+ c) + f(x)

vanish for any a, c ∈ V .

Relation between the generalized bent functions of Table 1 and completed
class of Maiorana-McFarland functions is studied in [28] (see also Section
3.4). In the binary case, the completed MM class contains all quadratic
bent functions. However, this does not hold in the generalized case. First,
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for p odd there exist quadratic bent functions over Fpn when n is odd while
Maiorana-McFarland bent functions are defined only for n even. For the case
n even, there also exist examples of quadratic generalized bent functions not
belonging to the completed MM class [28]. Moreover, almost all of the non-
quadratic classes in Table 1 do not intersect with the completed MM class
[28]. This implies that in general, the Maiorana-McFarland construction is
less overall than in the binary case even for the case n even.

1.2 APN and AB functions

As we mentioned before perfect nonlinear or bent (n,m)-functions, being op-
timal against differential and linear attack, exist only for m ≤ n/2. When
n = m functions with optimal resistance to differential and linear cryptanal-
ysis are, respectively, almost perfect nonlinear and almost bent functions.

For any (n,m)-function F with m ≥ n the inequality

NL(F ) ≤ 2n−1 − 1

2

(
3 · 2n − 2(2n − 1)(2n−1 − 1)/(2m − 1)− 2

)1/2
gives a better upper bound for nonlinearity than the universal bound [50,
138]. This bound can be achieved only if n = m with n odd when it takes
the form

NL(F ) ≤ 2n−1 − 2
n−1
2 .

Functions achieving this bound are called almost bent (AB) or maximum
nonlinear. AB functions are optimal against linear cryptanalysis. When
n is even functions with the nonlinearity 2n−1 − 2

n
2 are known and it is

conjectured that this value is the highest possible nonlinearity for the case
n even.

An (n, n)-function F is AB if and only if one of the following conditions
is satisfied:
(i) ΛF = {0,±2

n+1
2 } [50];

(ii) for every a, b ∈ Fn2 the system of equations{
x+ y + z = a
F (x) + F (y) + F (z) = b

has 3 · 2n − 2 solutions (x, y, z) if b = F (a), and 2n − 2 solutions otherwise
[62];
(iii) the function γF : F2n

2 → F2 defined by the equality

γF (a, b) =

{
1 if a 6= 0 and δF (a, b) 6= 0
0 otherwise

is bent [46].
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For a function F : Fn2 → Fn2 and any elements a, b ∈ Fn2 we denote by
δF (a, b) the number of solutions of the equation F (x+ a) + F (x) = b, that
is,

δF (a, b) = |{x ∈ Fn2 : F (x+ a) + F (x) = b}|,

and we call the set

∆F = {δF (a, b) : a, b ∈ Fn2 , a 6= 0}

the differential spectrum of the function F .
For any (n, n)-function F its differential uniformity

δF = max
a,b∈Fn2 ,a 6=0

δF (a, b)

is not less than 2. Recall that F is almost perfect nonlinear (APN) if δF = 2.
APN functions possess the best resistance to the differential attack. The
differential cryptanalysis presented by Biham and Shamir [10] is based on
the study of how differences in an input can affect the resultant difference at
the output. The resistance of a function F , used as an S-box in the cipher,
to the differential attack is high when the value δF is small.

There are a few necessary and sufficient conditions for APN functions.
Statements (i-iii) below easily follow from the definition of APN functions.
An (n, n)-function F is APN if and only if one of the following conditions
holds:
(i) ∆F = {0, 2};
(ii) for any a ∈ Fn∗2 the set

Ha = {F (x+ a) + F (x) : x ∈ Fn2}

contains 2n−1 elements, that is |Ha| = 2n−1;
(iii) for every (a, b) 6= 0 the system{

x+ y = a
F (x) + F (y) = b

admits 0 or 2 solutions;
(iv) the function γF : F2n

2 → F2 defined by the equality

γF (a, b) =

{
1 if a 6= 0 and δF (a, b) 6= 0
0 otherwise

has the weight 22n−1 − 2n−1 [46];
(v) F is not affine on any 2-dimensional affine subspace of Fn2 [100].

For any (n, n)-function F we have the following inequality∑
a,b∈Fn2

λF (a, b)4 ≥ 3 · 24n − 23n+1
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and the equality occurs if and only if F is APN. It easily follows that every
AB function is APN ([50], see also [45]).

We know that the bentness of a function implies its perfect nonlinearity
and vice versa. It is not quite the case with AB and APN functions. Not
every APN function is AB. However, every quadratic APN function is AB
(see [46]). For the general case there are some sufficient conditions for APN
functions to be AB. For n odd, an APN function F is AB if and only if one
of the following conditions is fulfilled [41]:

(i) all the values in ΛF are divisible by 2
n+1
2 ;

(ii) for any c ∈ Fn∗2 the function c · F is plateaued.

Interesting subfamilies of APN functions are crooked and generalized
crooked functions. An (n, n)-function F is called crooked if the following
three conditions hold [5]:
1) F (x) + F (y) + F (z) + F (x + y + z) 6= 0 for any three distinct elements
x, y, z,
2) F (0) = 0,
3) F (x) + F (y) + F (z) + F (x+ a) + F (y + a) + F (z + a) 6= 0 for any a 6= 0
and x, y, z arbitrary.
Crooked functions form a subclass of AB permutations taking 0 value at 0
[5]. Every quadratic AB permutation taking 0 value at 0 is crooked. Every
crooked function gives rise to a distance regular rectagraph [5]. We say that
a function F is generalized crooked if the set { u ∈ F2n : F (x) +F (x+ v) =
u has solutions } is an affine hyperplane for any v 6= 0 (see [83, 84]). Every
generalized crooked function is crooked, but the converse is not true. For
instance, every quadratic APN function is generalized crooked.

1.2.1 The case of power functions

There are natural reasons that in the beginning the main attention in the
study of APN and AB functions was payed to power functions. AB power
functions correspond to binary cyclic codes with two zeros, whose duals are
optimal, and to pairs of maximum-length sequences (called M -sequences)
with preferred crosscorrelation, which are used for spread-spectrum commu-
nications [46].

Checking APN and AB properties of power functions is easier than in the
case of arbitrary polynomials. If F is a power function, that is F (x) = xd,
then F is APN if and only if the derivative D1F is a two-to-one mapping.
Indeed, since for any a 6= 0

DaF (x) = (x+ a)d + xd = adD1F (x/a)

then DaF is a two-to-one mapping if and only if D1F is two-to-one.

Besides, the function F (x) = xd is AB if and only if λF (a, b) ∈ {0,±2
n+1
2 }

for a ∈ F2, b ∈ Fn∗2 , since λF (a, b) = λF (1, a−db) for a ∈ Fn∗2 . In case F is a
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permutation, F is AB if and only if λF (a, 1) ∈ {0,±2
n+1
2 } for a ∈ Fn2 , since

λF (a, b) = λF (ab−
1
d , 1).

There are also simple sufficient condition for functions to be EA-inequivalent
to power functions. If for an (n, n)-function F there exists an element
c ∈ F∗2n such that d◦

(
trn(cF )

)
6= d◦(F ) and d◦

(
trn(cF )

)
> 1, then F is

EA-inequivalent to power functions [34]. Besides, for n odd, if an APN
function F satisfies d◦(F ) 6= min d◦(F ) then F is EA-inequivalent to power
functions [34].

The exponent d, 0 ≤ d < 2n − 1, of a power function F (x) = xd on F2n

gives an equivalence class (d) of exponents

(d) =

{
{2id, 2i/d : 0 ≤ i < n} if xd is a permutation
{2id : 0 ≤ i < n} otherwise

,

i.e. (d) is a union of 2-cyclotomic cosets of d and 1
d modulo 2n − 1 if xd is a

permutation, otherwise (d) is the 2-cyclotomic coset of d modulo 2n−1. If d
and d′ belong to the same equivalence class then we call the power functions
xd and xd

′
cyclotomic equivalent. Obviously, if power functions F and F ′

are cyclotomic equivalent then ∆F = ∆F ′ and ΛF = ΛF ′ .
Table 2 (resp. Table 3) gives all known values of exponents d (up to

cyclotomic equivalence) such that the power function xd is APN (resp. AB)
and Table 4 gives all known values of d that xd is a permutation with the
best known nonlinearity (that is, 2n−1 − 2

n
2 ) on the field F2n with n even.

It is proved by Dobbertin that power APN functions are permutations when
n is odd and 3-to-1 over F∗2n when n is even. When n is even, the inverse
function x2n−2 is a differentially 4-uniform permutation [130], and is chosen
as the basic S-box, with n = 8, in the AES, see [61]. In [74] Dobbertin
conjectured that Tables 2 and 3 represent the complete list of possible APN
and AB power functions. This conjecture is confirmed for APN functions
with n ≤ 25 and for AB functions with n ≤ 33 (see [76, 110]).

Table 2
Known APN power functions xd on F2n .

Functions Exponents d Conditions d◦(xd) Proven

Gold 2i + 1 gcd(i, n) = 1 2 [86, 130]

Kasami 22i − 2i + 1 gcd(i, n) = 1 i+ 1 [102, 103]

Welch 2t + 3 n = 2t+ 1 3 [75]

Niho 2t + 2
t
2 − 1, t even n = 2t+ 1 (t+ 2)/2 [74]

2t + 2
3t+1

2 − 1, t odd t+ 1

Inverse 22t − 1 n = 2t+ 1 n− 1 [7, 130]

Dobbertin 24i + 23i + 22i + 2i − 1 n = 5i i+ 3 [76]

Since algebraic degree is an invariant for EA-equivalence and, in general,
the functions of Table 2 (as well as their inverses) have different algebraic
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degrees, then no question about EA-equivalence between different functions
of Table 2 could rise. Unlike EA-equivalence, CCZ-equivalence does not
preserve algebraic degrees of functions. Thus, the question about CCZ-
inequivalence of functions of Table 2 needs to be answered. It is proved
in [33] (see also Section 2.4) that two Gold functions x2i+1 and x2j+1 with
1 ≤ i, j < n/2, i 6= j, are CCZ-inequivalent, and that the Gold functions
are CCZ-inequivalent to any Kasami and to the Welch functions (except
in particular cases). Besides, the inverse and Dobbertin APN functions are
CCZ-inequivalent to each other and to all other known power APN mappings
[33] (see also Section 2.4). For all the other cases the problem stays open.

Table 3
Known AB power functions xd on F2n , n odd.

Functions Exponents d Conditions Proven

Gold 2i + 1 gcd(i, n) = 1 [86, 130]

Kasami 22i − 2i + 1 gcd(i, n) = 1 [103]

Welch 2t + 3 n = 2t+ 1 [41, 40]

Niho 2t + 2
t
2 − 1, t even n = 2t+ 1 [99]

2t + 2
3t+1

2 − 1, t odd

Table 4
Known power permutations xd with the highest known nonlinearity on

F2n , n = 2t.
Exponents d Conditions Proven

2i + 1 gcd(i, n) = 2, t odd [86]

22i − 2i + 1 gcd(i, n) = 2, t odd [103]

2n−1 − 1 [107]

2t + 2
t+1
2 + 1 t odd [60]

2t + 2t−1 + 1 t odd [60]

2t + 2
t
2 + 1 t ≡ 2 mod 4 [73]∑t

k=0 2ik gcd(i, n) = 1, t even [73, 127]

1.2.2 The case of polynomials

Before the work [34] the only known constructions of APN and AB functions
were EA-equivalent to power functions, and it was widely accepted as true
that all APN functions are EA-equivalent to power functions. Besides, CCZ-
equivalence was considered as conjunction of EA-equivalence and taking
inverses of permutations. In [34], it is proven that CCZ-equivalence is more
general, and classes of APN and AB functions which are EA-inequivalent to
power functions are constructed by applying CCZ-equivalence to the Gold
APN and AB mappings. It was also shown in [34] that for n = 5 the
constructed AB functions are EA-inequivalent to any permutations and this
disproved the conjecture from [46] about nonexistence of such AB functions.
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It is proven recently in [114] that these AB functions are EA-inequivalent to
permutations for any n ≥ 5. However, it is still a question whether all AB
functions are CCZ-equivalent to permutations. Table 5 presents the classes
of APN functions constructed in [34]. When n is odd they are also AB. It
is an open problem to determine whether the Gold power APN functions
is the only case from Table 2 which allows construction of functions CCZ-
equivalent but EA-inequivalent to them (see [113, 114]).

The new APN and AB functions introduced in [34] are, by construction,
CCZ-equivalent to Gold functions. Hence, the problem of knowing whether
there exist APN functions which would be CCZ-inequivalent to power func-
tions remained open after their introduction. The first examples of APN
functions CCZ-inequivalent to power functions where fould in [83]. The first
examples of such AB functions are constructed in [34] where we also present
the first infinite families of such APN and AB polynomials. These functions
are quadratic binomials given in Table 6 representing the families of APN
and AB functions known nowadays. All these 11 families of APN functions
are obviously AB when n is odd. When n is even they seem to have the
same Walsh spectrum as Gold functions as already proven for the families
(1-2), (5) and (8-11) [15, 16, 17, 18]. As proven by Carlet in [43], the families
of APN functions (3), (4) and (11) from Table 6 are particular cases of a
general construction (see Section 3.2).

Table 5

Some APN functions CCZ-equivalent to Gold functions and
EA-inequivalent to power functions on F2n (costructed in [34]).

Functions Conditions d◦

n ≥ 4

x2
i+1 + (x2

i
+ x+ trn(1) + 1) tr(x2

i+1 + x trn(1)) gcd(i, n) = 1 3

6|n
[x+ trn/3(x2(2

i+1) + x4(2
i+1)) + tr(x) trn/3(x2

i+1 + x2
2i(2i+1))]2

i+1 gcd(i, n) = 1 4

m 6= n

x2
i+1 + trn/m(x2

i+1) + x2
i

trn/m(x) + x trn/m(x)2
i

n odd

+[trn/m(x)2
i+1 + trn/m(x2

i+1) + trn/m(x)]
1

2i+1 (x2
i

+ trn/m(x)2
i

+ 1) m|n m+ 2

+[trn/m(x)2
i+1 + trn/m(x2

i+1) + trn/m(x)]
2i

2i+1 (x+ trn/m(x)) gcd(i, n) = 1

Classification of APN functions is complete for n ≤ 5 [22]: for these
values of n the only APN functions, up to CCZ-equivalence, are power APN
functions, and up to EA-equivalence, are power APN functions and those
APN functions constructed in [34]. For n = 6 classification is complete for
quadratic APN functions: 13 quadratic APN functions are found in [21]
and, as proven in [82], up to CCZ-equivalence, these are the only quadratic
APN functions. The only known APN function CCZ-inequivalent to power
functions and to quadratic functions was found in [22, 84] for n = 6. For n =
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7 and n = 8, as shown in recent works [143, 147], there are, respectively, more
than 470 and more than 1000 CCZ-inequivalent quadratic APN functions.

Table 6

Known classes of quadratic APN polynomials
CCZ-inequivalent to power functions on F2n .

N◦ Functions Conditions References

n = pk, gcd(k, 3) = gcd(s, 3k) = 1, Corol. 16,

1-2 x2
s+1 + α2k−1x2

ik+2mk+s
p ∈ {3, 4}, i = sk mod p, m = p− i, Thm. 24,

n ≥ 12, α primitive in F∗2n and [30]

q = 2m, n = 2m, gcd(i,m) = 1, Corol. 23

3 x2
2i+2i + bxq+1 + cxq(2

2i+2i) gcd(2i + 1, q + 1) 6= 1, cbq + b 6= 0, and [26]

c 6∈ {λ(2i+1)(q−1), λ ∈ F2n}, cq+1 = 1

q = 2m, n = 2m, gcd(i,m) = 1, Corol. 24

4 x(x2
i

+ xq + cx2
iq) c ∈ F2n , s ∈ F2n \Fq , and [26]

+x2
i
(cqxq + sx2

iq) + x(2
i+1)q X2i+1 + cX2i + cqX + 1

is irreducible over F2n

5 x3 + a−1 trn(a3x9) a 6= 0 Corol. 25 and [32]

6 x3 + a−1 tr3n(a3x9 + a6x18) 3|n, a 6= 0 Corol. 32 and [31]

7 x3 + a−1 tr3n(a6x18 + a12x36) 3|n, a 6= 0 Corol. 32 and [31]

n = 3k, gcd(k, 3) = gcd(s, 3k) = 1,

8-10 ux2
s+1 + u2

k
x2

−k+2k+s
+ v, w ∈ F2k , vw 6= 1, [14]

vx2
−k+1 + wu2

k+1x2
s+2k+s

3|(k + s), u primitive in F∗2n

n = 2k, gcd(s, k) = 1, s, k odd,

11 αx2
s+1 + α2kx2

k+s+2k+ β /∈ F2k , γi ∈ F2k , [13, 14]

βx2
k+1 +

∑k−1
i=1 γix

2k+i+2i α not a cube

APN permutations One of the most important problems related to cryp-
tographic functions is existence of APN permutations on F22k . It was con-
jectured that the answer is negative. Some nonexistence results were proven
in [100, 129]: if F is a permutation on F22k then it is not APN when one of
the following conditions holds:
(i) k is even and F ∈ F24 [x] [100];
(ii) F is a polynomial with coefficients in F2k [100];
(iii) F is a power function;
(iv) F is quadratic [129].

The conjecture on nonexistence of APN permutations on F22k is dis-
proved in [20]. Applying CCZ-equivalence to the trinomial APN function
over F26 found in [21], Dillon et al. constructed an APN permutation over
F26 [20]. This result is very important for future applications. However, it
seems quite difficult to generalize it to a family and to extend this result to
k ≥ 4.
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1.3 Commutative presemifields and semifields

In this subsection we are going to present commutative semifields and their
important connection to quadratic planar functions [57, 63]. A ring with
left and right distributivity and with no zero divisor is called a presemifield.
A presemifield with a multiplicative identity is called a semifield. Any finite
presemifield can be represented by S = (Fpn ,+, ?), where p is a prime, n is
a positive integer, (Fpn ,+) is the additive group of Fpn and x ? y = φ(x, y)
with φ a function from F2

pn onto Fpn , see [57, 104]. The prime p is called the
characteristic of S. Any finite field is a semifield. A semifield which is not a
field is called proper.

Investigation of commutative semifields was launched by Dickson in 1906,
shortly after the classification of finite fields. He constructed the first family
of proper commutative semifields then [75, 79].

Let S1 = (Fpn ,+, ◦) and S2 = (Fpn ,+, ?) be two presemifields. They
are called isotopic if there exist three linear permutations L,M,N over Fpn
such that

L(x ◦ y) = M(x) ? N(y),

for any x, y ∈ Fpn . The triple (M,N,L) is called the isotopism between S1

and S2. If M = N then S1 and S2 are called strongly isotopic.
Let S = (Fpn ,+, ?) be a finite semifield. The subsets

Nl(S) = {α ∈ S : (α ? x) ? y = α ? (x ? y) for all x, y ∈ S},
Nm(S) = {α ∈ S : (x ? α) ? y = x ? (α ? y) for all x, y ∈ S},
Nr(S) = {α ∈ S : (x ? y) ? α = x ? (y ? α) for all x, y ∈ S},

are called the left, middle and right nucleus of S, respectively, and the set
N(S) = Nl(S) ∩ Nm(S) ∩ Nr(S) is called the nucleus. These sets are finite
fields and if S is commutative then Nl(S) = Nr(S) ⊆ Nm(S). The nuclei
measure how far S is from being associative. The orders of the respective
nuclei are invariant under isotopism [57].

Every commutative presemifield can be transformed into a commutative
semifield. Indeed, let S = (Fpn ,+, ?) be a commutative presemifield which
does not contain an identity. To create a semifield from S, choose any a ∈ F∗pn
and define a new multiplication ◦ by

(x ? a) ◦ (a ? y) = x ? y

for all x, y ∈ Fpn . Then S′ = (Fpn ,+, ◦) is a commutative semifield isotopic
to S with identity a ? a. We say S′ is a commutative semifield corresponding
to the commutative presemifield S. An isotopism between S and S′ is a strong
isotopism

(
La(x), La(x), x

)
with a linear permutation La(x) = a?x, see [57].

Every commutative presemifield defines a planar DO polynomial and vice
versa [57]. Let F be a quadratic PN function over Fpn . Then S = (Fpn ,+, ?),
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with

x ? y = F (x+ y)− F (x)− F (y)

for any x, y ∈ Fpn , is a commutative presemifield. We denote by SF =
(Fpn ,+, ◦) the commutative semifield corresponding to the commutative pre-
semifield S with isotopism

(
L1(x), L1(x), x

)
and we call SF = (Fpn ,+, ◦) the

commutative semifield defined by the quadratic PN function F . Conversely,
given a commutative presemifield S = (Fpn ,+, ?) of odd order, the function
given by

F (x) =
1

2
(x ? x)

is a planar DO polynomial [57].

We have the following known facts on connection between CCZ-equivalence,
isotopisms and strong isotopisms:

• two planar DO polynomials F and F ′ are CCZ-equivalent if and only
if the corresponding commutative semifields SF and SF ′ are strongly
isotopic [35];

• two commutative presemifields of order pn with n odd are isotopic if
and only if they are strongly isotopic [57];

• any commutative presemifield of odd order can generate at most two
CCZ-equivalence classes of planar DO polynomials [57];

• if S1 and S2 are isotopic commutative semifields of characteristic p
with the order of the middle nuclei and nuclei pm and pk, respectively,
then one of the following statements must hold

(a) m/k is odd and S1 and S2 are strongly isotopic,

(b) m/k is even and either S1 and S2 are strongly isotopic or the only
isotopisms between S1 and S2 are of the form (α?N,N,L) where
α is a non-square element of Nm(S1) [57] ;

• there exist two commutative semifields of order 36 which are isotopic
but not strongly isotopic [149].

Thus, according to the last point above, in the case n even it is possible
that isotopic commutative presemifields define CCZ-inequivalent quadratic
PN functions. However, isotopisms define an equivalence relation only over
quadratic PN functions, and it is an open question whether this can be ex-
tended to an equivalence relation over all functions (from Fpn to Fpm for any
positive integers n,m, and any prime p) preserving differential properties.
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1.3.1 Known cases of planar functions and commutative semi-
fields

Almost all known planar functions are DO polynomials. The only known
non-quadratic PN functions are the power functions

x
3t+1

2

over F3n , where t is odd and gcd(t, n) = 1 [56, 91]. Although commutative
semifields have been intensively studied for more than a hundred years,
there are only a few cases of commutative semifields of odd order known
(see [35, 57]). Below we present provably non-isotopic infinite families of
commutative semifields (and corresponding planar functions) defined for any
prime p known so far:

(i) x2

over Fpn which corresponds to the finite field Fpn ;

(ii) xp
t+1

over Fpn , with n/ gcd(t, n) odd, which correspond to Albert’s commu-
tative twisted fields [2, 63, 90];

(iii) the functions over Fp2k , which correspond to the Dickson semifields
[79];

(iv) the functions over Fp2k

(ax)p
s+1 − (ax)p

k(ps+1) +

k−1∑
i=0

cix
pi(pk+1), (1.10)

bxp
s+1 + (bxp

s+1)p
k

+ cxp
k+1 +

k−1∑
i=1

rix
pk+i+pi , (1.11)

where a, b ∈ F∗p2k , b is not a square, c ∈ Fp2k \Fpk , ri ∈ Fpk , 0 ≤
i < k,

∑k−1
i=0 cix

pi is a permutation of Fpk with coefficients in Fpk ,

gcd(k+ s, 2k) = gcd(k+ s, k), and for (1.11) also gcd(ps + 1, pk + 1) 6=
gcd

(
ps + 1, (pk + 1)/2

)
(see [36, 38]);

(v)

xp
s+1 − apt−1xp

t+p2t+s

over Fp3t , where a is primitive in Fp3t , gcd(3, t) = 1, t− s = 0 mod 3,
3t/ gcd(s, 3t) is odd (see [148]).
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The following infinite families of commutative semifields (and corre-
sponding planar functions) defined for any prime p were constructed recently
but it is not known whether they are non-isotopic to the previously known
families (1)-(v) above.

(vi)

xp
s+1 − apt−1xp

3t+pt+s

over Fp4t , where a is primitive in Fp4t , ps ≡ pt ≡ 1 mod 4, 2t/ gcd(s, 2t)
is odd (see [8]);

(vii) the function over Fp2m for m = 2k + 1, a ∈ F∗p2 , (see [115, 9, 35])

a1−px2 + x2pm + a1−p
k∑
i=0

(−1)ixp
2i(p2+1) +

k−1∑
j=0

(−1)k+jxp
2j+1(p2+1)

−
( k∑
i=0

(−1)ixp
2i(p2+1) + ap−1

k−1∑
j=0

(−1)k+jxp
2j+1(p2+1)

)pm
,

for a ∈ Fp2 \Fp and a ∈ Fp∗ it gives CCZ-inequivalent functions but
the corresponding semifields are isotopic [35].

There are also a few cases of commutative semifields defined for p = 3:

(viii)

x10 ± x6 − x2

over F3n , with n odd, corresponding to the Coulter-Matthews and
Ding-Yuan semifields [56, 72];

(ix) the function over F32k , with k odd, corresponding to the Ganley semi-
field [85];

(x) the function over F32k corresponding to the Cohen-Ganley semifield
[55];

(xi) the function over F310 corresponding to the Penttila-Williams semifield
[133];

(xii) the function over F38 corresponding to the Coulter-Henderson-Kosick
semifield [58];



24 CHAPTER 1. INTRODUCTION

(xiii) x2 + x90

over F35 (see [141]).

The polynomial representations of functions (iii), (ix)-(xi) can be found
in [118]. Note that PN functions (1.11) of family (iv) and families (v) and
(vi) were constructed by following patterns of some known families of APN
functions over fields of even characteristic, see [14, 30].

Further we have the following results on classification of commutative
presemifields:

• any semifield of order p2 is a finite field [104];

• any semifield of order p3 is either a finite field or Albert’s commutative
twisted field [117];

• all planar DO functions over F35 are classified in [142]: there are 7
CCZ-inequivalent planar DO functions;

• a commutative presemifield which is three dimensional over its middle
nucleus is necessarily isotopic to Albert’s commutative twisted field
[117];

• Albert’s commutative twisted fields have left and middle nuclei of or-
der pgcd(t,n) [3];

• Dickson semifields of order p2k have middle nuclei of order pk [74];

• for a ∈ Fpk the commutative semifields corresponding to the functions

(1.11) of the family (iv) have middle nuclei of order pd where d is even
and divisible by gcd(s, k) [25];

• a DO polynomial (1.1) is CCZ-inequivalent to the planar function x2

if ajj = 0 for all j [35];

• a DO polynomial (1.1) is CCZ-inequivalent to the planar function
xp

t+1, with n/ gcd(t, n) odd, if akj = 0 for all k and j = k ± t mod n
[35].



Chapter 2

Equivalence relations of
functions

The notion of CCZ-equivalence, which seems the most natural among all
equivalence notions in the block cipher framework and which seems to be
also the most general, is difficult to handle, since checking whether two given
functions are CCZ-equivalent or not is hard (at least when they share the
same CCZ-invariant parameters). Building functions CCZ-equivalent (but
not EA-equivalent) to a given function is hard too. The less general EA-
equivalence is on the contrary simpler to check and, given some function,
building EA-equivalent ones is very easy. Hence, identifying situations in
which CCZ-equivalence reduces to EA-equivalence is useful. We show in this
chapter that this happens for all single output Boolean functions and that
it does not, for functions from Fnp to Fmp under condition that m is greater
or equal to the smallest divisor of n different from 1, which for n even case
simply implies m ≥ 2 (see [24, 35]). In [136] these results were extended to
a more general framework of functions over finite abelian groups in which
the condition on m is reduced to m ≥ 2 also for n odd case and for p odd
also includes m = 1.

We prove further that CCZ-equivalence coincides with EA-equivalence
for all (single output or multi ouput) PN (or bent) functions, and, more
generally, for all functions whose all derivatives are surjective (see [25, 38,
36]).

Another question which has importance for theoretical and practical
reasons is whether CCZ-equivalence is really the most general equivalence
relation of functions which is relevant to the block cipher framework. We
showed that trying to extend CCZ-equivalence to a more general notion in
the same way as affine equivalence was extended to CCZ-equivalence (that
is, by considering the CCZ-equivalence of the indicators of the graphs of the
functions instead of that of the functions themselves) leads in fact to the
same CCZ-equivalence (see [24, 35]).

25
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Finally we study the question of CCZ-equivalence for known power APN
functions and we prove that two Gold functions x2i+1 and x2j+1 with 1 ≤
i, j < n/2, i 6= j, are CCZ-inequivalent, and that the Gold functions are
CCZ-inequivalent to any Kasami and to Welch functions (except in particu-
lar cases) [33]. We also show that the inverse and Dobbertin APN functions
are CCZ-inequivalent to each other and to all other known power APN
mappings [33].

2.1 CCZ-equivalence of (n,m)-functions

We are going to investigate the question whether CCZ-equivalence of (n,m)-
functions is strictly more general than their EA-equivalence. We already
know that the answer to this question is yes when n = m ≥ 4 since every
permutation is CCZ-equivalent to its inverse [46], and, moreover, as shown
in [34], when n = m ≥ 4, CCZ-equivalence is still more general than the con-
junction of EA-equivalence and of taking the inverse of a permutation. The
question was open for general (n,m)-functions when n 6= m. In Section 2.1.1
we prove that the answer is also negative for (n,m)-functions when m = 1,
that is, for Boolean functions. This poses then the question of knowing
whether the case m = 1 is a particular case or if the same situation occurs
for larger values of m. We give an almost complete answer to this ques-
tion in Section 2.1.2 by showing that CCZ-equivalence of (n,m)-functions
is strictly more general than their EA-equivalence when n ≥ 5 and m is
greater or equal to the smallest positive divisor of n different from 1.

2.1.1 The case of Boolean functions

Let us first consider the question whether CCZ-equivalence is strictly more
general than EA-equivalence for Boolean functions. Let two Boolean func-
tions f and f ′ of Fn2 be CCZ-equivalent but EA-inequivalent. Then, up to
translation, there exist linear functions L : Fn2 → Fn2 , and l : Fn2 → F2, and
elements a ∈ Fn2 \{0}, η ∈ F2, such that

L(x, y) =
(
L(x) + ay, l(x) + ηy

)
(2.1)

is a linear permutation of Fn2 ×F2, and denoting:

F1(x) = L(x) + af(x), (2.2)

F2(x) = l(x) + ηf(x), (2.3)

F1 is a permutation of Fn2 and

f ′(x) = F2 ◦ F−1
1 (x). (2.4)

Hence we need characterizing the permutations of the form (2.2). Note that
for any permutation (2.2) the linear function L must be either a permutation
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or 2-to-1. Thus, we have only two possibilities for the function F1, that is,
either

F1(x) = L
(
x+ L−1(a)f(x)

)
when L is a permutation, or

F1(x) = L′
(

(x/b)2 + x/b+ L′−1(a)f(x)
)

(2.5)

when L is 2-to-1 and its kernel equals {0, b}, b ∈ F∗2n , where L′ is a linear
permutation of F2n such that L′

(
(x/b)2 + x/b

)
= L(x). Note that if we take

L−1 ◦ F1 (L being a permutation) or L′−1 ◦ F1 (L being 2-to-1) in (2.4)
instead of F1, we get f ′ ◦L and f ′ ◦L′, respectively, which are EA-equivalent
to f ′. Therefore, without loss of generality we can neglect L and L′. Then
(2.5) gives (changing L−1(a) into a):

F1(bx) = x2 + x+ ag(x) (2.6)

where g(x) = f(bx). Hence it is sufficient to consider permutations (2.2) of
the following two types

x+ af(x), (2.7)

x2 + x+ af(x). (2.8)

A lemma will simplify the study of these permutations:

Lemma 1 [24] Let n be any positive integer, a ∈ F∗2n and f a Boolean
function on F2n.
- The function

F (x) = x+ af(x)

is a permutation over F2n if and only if F is an involution.
- The function

F ′(x) = x+ x2 + af(x)

is a permutation over F2n if and only if trn(a) = 1 and f(x+ 1) = f(x) + 1
for every x ∈ F2n. Under this condition, let H be any linear hyperplane
of F2n not containing 1; for every y ∈ F2n, there exists a unique element
φ(y) ∈ F2n such that

φ(y) ∈ H and φ(y) + (φ(y))2 = y if trn(y) = 0,

φ(y) = φ(y + a) + 1 if trn(y) = 1.

Then φ is a linear automorphism of F2n and we have

F ′−1(y) = φ(y) + trn(y) + f(φ(y))

for every y ∈ F2n.
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Proof. Let us assume that F (x) = x+ af(x) is a permutation. We have

F ◦ F (x) = x+ af(x) + af(x+ af(x)).

If f(x) = 0 then obviously F ◦F (x) = x. If f(x) = 1 then F ◦F (x) = x+a+
af(x+a). Moreover, we have f(x+a) = 1 since otherwise F (x+a) = F (x)
which contradicts F being a permutation. Hence, when f(x) = 1, we have
also F ◦ F (x) = x. Therefore, F−1 = F .

If F ′(x) = x + x2 + af(x) is a permutation over F2n , then trn(a) = 1
since otherwise we have trn(F ′(x)) = 0 for every x ∈ F2n (and F ′ is not
surjective), and f(x+ 1) = f(x) + 1 for every x since if f(x+ 1) = f(x) for
some x ∈ F2n , then F ′(x+ 1) = F ′(x) and F ′ is not injective.
Conversely, if trn(a) = 1 and f(x + 1) = f(x) + 1 for every x ∈ F2n then,
for every x, y ∈ F2n , we have F ′(x) = y if and only if:
- either trn(y) = f(x) = 0 and x is the unique element outside supp(f) =
{x ∈ F2n / f(x) = 1} such that x+ x2 = y;
- or trn(y) = f(x) = 1 and x is the unique element of supp(f) such that
x+ x2 = y + a.
Hence, F ′ is a permutation over F2n .
Moreover, assuming that this condition is satisfied, the relation F ′(x+ 1) =
F ′(x) + a, valid for every x ∈ F2n , implies F ′−1(y + a) = F ′−1(y) + 1 for
every y ∈ F2n . The existence and uniqueness of φ(y) is straightforward. The
restriction of φ to the hyperplane of equation trn(y) = 0 is an isomorphism
between this hyperplane and H. The restriction of φ to the hyperplane of
equation trn(y) = 1 is an isomorphism between this hyperplane and F2n \H.
Hence φ is a linear automorphism of F2n . Moreover, for every x, y ∈ F2n ,
we have F ′(x) = y if and only if:
- either trn(y) = f(x) = 0 and x = φ(y)+f(φ(y)) (indeed, if φ(y) 6∈ supp(f)
then φ(y) is the unique element x of F2n \supp(f) such that x+ x2 = y and
if φ(y) ∈ supp(f) then φ(y)+1 is the unique element x of F2n \supp(f) such
that x+ x2 = y since f(x+ 1) = f(x) + 1);
- or trn(y) = f(x) = 1 and

x = F ′−1(y + a) + 1 = φ(y + a) + f(φ(y + a)) + 1 = φ(y) + 1 + f(φ(y)).

This completes the proof. 2

We deduce the main result of this subsection:

Theorem 1 [24] Let n be any positive integer. Two Boolean functions of
F2n are CCZ-equivalent if and only if they are EA-equivalent.

Proof. Let two Boolean functions f and f ′ on F2n be CCZ-equivalent and
EA-inequivalent. Then there is a linear permutation L of F2

2n such that
(2.1)-(2.4) take place. We first assume that η = 1.
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If L is a permutation then, as mentioned above, without loss of generality
we can assume F1(x) = x + af(x) and therefore F−1

1 = F1 by Lemma 1.
Then we get

f ′(x) = l(F−1
1 (x)) + f(F−1

1 (x)) = l
(
x+ af(x)

)
+ f

(
x+ af(x)

)
.

If f(x) = 0 then f ′(x) = l(x). If f(x) = 1 then f(x+ a) = 1 (see the proof
of Lemma 1), and, therefore f ′(x) = l(x) + l(a) + 1. Thus,

f ′(x) = l(x) +
(
1 + l(a)

)
f(x)

for every x. Note that l(a) = 0. Indeed, if l(a) = 1 then the system of
equations {

x+ ay = 0
l(x) + y = 0

has two solutions (0, 0) and (a, 1) which contradicts L being a permutation.
Hence, f ′(x) = l(x) + f(x) and f is EA-equivalent to f ′, a contradiction.

Let now L be 2-to-1. Then, as observed above, we can assume without
loss of generality that (2.6) takes place. Then, since L is bijective, we
have l(b) = 1 (otherwise, the vector (b, 0) would belong to the kernel of
L). By Lemma 1, we have g(x + 1) = g(x) + 1 for any x ∈ F2n , that is,
f(bx+ b) = f(bx) + 1 for any x ∈ F2n , that is, f(x+ b) = f(x) + 1 for any
x ∈ F2n . By Lemma 1, the inverse of the function x2 + x + ag(x) equals
φ(x) + trn(x) + g(φ(x)) for a certain linear permutation φ of F2n . Then,
according to (2.6):

F−1
1 (x) = b

(
φ(x) + trn(x) + f(b φ(x))

)
and therefore, since f ′ = F2 ◦ F−1

1 :

f ′(x) = l
(
b
(
φ(x) + trn(x) + f(b φ(x))

))
+ f

(
b
(
φ(x) + trn(x) + f(b φ(x))

))
= l(b φ(x)) + trn(x) + f

(
b φ(x)

)
+ f

(
b φ(x)

)
+ trn(x) + f

(
b φ(x)

)
= l(b φ(x)) + f(b φ(x)).

This means that f and f ′ are EA-equivalent, a contradiction.
We now assume that η = 0. According to the observations above and

to Lemma 1, we can reduce ourselves to the cases f ′(x) = l(x+ af(x)) and

f ′(x) = l
(
b
(
φ(x) + trn(x) + f(b φ(x))

))
. For the first case we necessarily

have l(a) = 1 and for the second case l(b) = 1 since otherwise the kernel of
L would not be trivial (it would contain (a, 1) and (b, 0) respectively). Thus,
f ′(x) = l(x) + f(x) or f ′(x) = l(b φ(x)) + trn(x) + f(b φ(x)), and therefore
f and f ′ are EA-equivalent, a contradiction. 2
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For any positive integers m and n, a Boolean function f of F2n can be
considered as an (n,m)-function (since F2 is a subspace of F2m). Hence it is
a natural question whether an (n,m)-function f ′, which is CCZ-equivalent
to f , is necessarily EA-equivalent to f . The theorem below shows that the
answer is positive.

Theorem 2 [24] Let m and n be any positive integers. Let f be a Boolean
function of F2n and f ′ an (n,m)-function. Then f and f ′ are CCZ-equivalent
as (n,m)-functions if and only if they are EA-equivalent as (n,m)-functions.

Proof. If f and f ′ are CCZ-equivalent as (n,m)-functions then there is
a linear permutation L(x, y) = (L1(x, y), L2(x, y)) of F2n ×F2m such that
F1(x) = L1(x, f(x)) is a permutation of F2n and f ′ = F2 ◦ F−1

1 for F2(x) =
L2(x, f(x)). As we saw above it is sufficient to consider only the cases

L1(x, y) = x+ ay, (2.9)

L1(x, y) = (x/b)2 + x/b+ ay, (2.10)

where a ∈ F∗2m , b ∈ F∗2n . We have L2(x, y) = L′(x) + L′′(y) for some linear
functions L′ : F2n → F2m and L′′ : F2m → F2m , and F2(x) = L′(x) +
L′′(f(x)) = L′(x) + L′′(1)f(x). Since L is a permutation then the system

{
x+ ay = 0

L′(x) + L′′(y) = 0

in case (2.9), and the system

{
(x/b)2 + x/b+ ay = 0
L′(x) + L′′(y) = 0

in case (2.10), must have only (0, 0) solution. Hence, L′(a) 6= L′′(1) for case
(2.9) (since otherwise (a, 1) is in the kernel of L), and L′(b) 6= 0 for case
(2.10) (since otherwise (b, 0) is in the kernel of L).

Using Lemma 1 in case (2.9) we get

f ′(x) = F2 ◦ F1(x)

= L′
(
x+ af(x)

)
+ L′′(1)f

(
x+ af(x)

)
= L′(x) +

(
L′(a) + L′′(1)

)
f(x)

since f(x + af(x)) = f(x) as we see it in the proof of Lemma 1. Hence f
and f ′ are EA-equivalent as (n,m)-functions.
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Applying Lemma 1 for case (2.10) we get

f ′(x) = F2 ◦ F−1
1 (x)

= L′
(
b
(
φ(x) + trn(x) + f(b φ(x))

))
+L′′(1)f

(
b
(
φ(x) + trn(x) + f(b φ(x))

))
= L′(b φ(x)) + L′(b) trn(x) + L′(b)f(b φ(x))

+L′′(1)f(b φ(x)) + L′′(1) trn(x) + L′′(1)f(b φ(x))

=
(
L′(b φ(x)) + L′(b) trn(x) + L′′(1) trn(x)

)
+ L′(b)f(b φ(x))

since f(x + b) = f(x) + 1 as we see it from the proof of Lemma 1. Thus f
and f ′ are EA-equivalent as (n,m)-functions. 2

Obviously, Theorem 5 is still valid if f is any (n,m)-function whose image
set consists of only a pair of elements of Fm2 , that is, if |{f(x) : x ∈ Fn2}| = 2.

Remark 1 [24] The paper [53] is dedicated to the study of permutations
of the kind G(x)+f(x) where f is a Boolean function of F2n and G is either
a permutation or a linear function from F2n to itself. The results of this
section, and Lemma 1 in particular, give a description of the inverses of all
such permutations:

• Let L be a linear function from F2n to itself and f be a Boolean function
of F2n. If F (x) = L(x) + f(x) is a permutation then F−1 is EA-
equivalent to F .

• Let G be a permutation of F2n and f be a Boolean function of F2n.
If F (x) = G(x) + f(x) is a permutation then F−1(x) = G−1

(
x + f ◦

G−1(x)
)
.

The first assertion is straightforward and the second one is easily proved:
we have F (x) = H ◦G(x), where H(x) = x+ f ◦G−1(x) is a permutation.
H is involutive by Lemma 1; hence

F−1(x) = G−1 ◦H−1(x) = G−1 ◦H(x) = G−1
(
x+ f ◦G−1(x)

)
.

2.1.2 The case of m > 1

We first show in Proposition 3 that for any divisor m > 1 of n, CCZ-
equivalence of (n,m)-functions is strictly more general than EA-equivalence.
Then, due to Proposition 4, we extend in Theorem 3 the hypotheses under
which this is true.
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Proposition 3 [24] Let n ≥ 5 and m > 1 be any divisor of n. Then
for (n,m)-functions, CCZ-equivalence is strictly more general than EA-
equivalence.

Proof. We need to treat the cases n odd and n even differently.

Let n be any odd positive integer, m any divisor of n and

F (x) = trmn (x3). (2.11)

The linear function L from F2n ×F2m to itself

L(x, y) =
(
L1(x, y), L2(x, y)

)
=

(
x+ trn(x) + trm(y), y + trn(x) + trm(y)

)
is an involution, and

F1(x) = L1(x, F (x)) = x+ trn(x) + trn(x3)

is an involution too (which is easy to check). Let

F2(x) = L2(x, F (x)) = trmn (x3) + trn(x) + trn(x3).

Then the function

F ′(x) = F2 ◦ F−1
1 (x) = F2 ◦ F1(x)

= trmn (x3) + trmn (x2 + x) trn(x) + trmn (x2 + x) trn(x3)

is CCZ-equivalent to F by definition. The part trn/m(x2 + x) trn(x3) is
nonquadratic for n ≥ 5 and m > 1. Indeed, it equals∑

0≤i<n
0≤j<n/m

x2i+1+2i+2jm +
∑

0≤i<n
0≤j<n/m

x2i+1+2i+2jm+1
(2.12)

and for n ≥ 5, m > 1, the item x23+22+20 is cubic and does not vanish in
(2.12). Hence, when n ≥ 5 and m > 1 the (n,m)-functions F and F ′ have
different algebraic degrees, and, therefore, they are EA-inequivalent while
they are CCZ-equivalent by construction.

Let now n be any even positive integer, m any divisor of n and F be
given by (2.11). The linear function

L(x, y) =
(
L1(x, y), L2(x, y)

)
= (x+ trm(y), y)

is an involution, and

F1(x) = L1(x, F (x)) = x+ trn(x3)
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is also involutive (this can be easily checked). Let

F2(x) = L2(x, F (x)) = trmn (x3)

then

F ′(x) = F2 ◦ F−1
1 (x) = F2 ◦ F1(x)

= trmn

((
x+ trn(x3)

)3)
= trmn (x3) + trmn (1) trn(x3) + trmn (x2 + x) trn(x3).

The part trmn (x2 + x) trn(x3) is nonquadratic when n ≥ 6, m > 1, or when
n = m = 4. Indeed, in these cases the item x23+22+20 does not vanish
in (2.12). Hence, the (n,m)-functions F and F ′ are CCZ-equivalent by
construction, and when n ≥ 6, m > 1, or when n = m = 4 they are EA-
inequivalent because of the difference of their algebraic degrees. 2

The next proposition will allow us to generalize the conditions under
which the statement of Proposition 3 is valid.

Proposition 4 [24] Let m and n be positive integers, and (n,m)-functions
F and F ′ be CCZ-equivalent but EA-inequivalent. Then for any positive in-
teger k and any (n, k)-function C there exists an (n, k)-function C ′ such that
the (n,m + k)-functions H(x) = (F (x), C(x)) and H ′(x) = (F ′(x), C ′(x))
are CCZ-equivalent and EA-inequivalent.

Proof. Let L(x, y) = (L1(x, y), L2(x, y)) be a linear permutation of F2n ×F2m

which maps the graph of F to the graph of F ′. Then we have F1(x) =
L1(x, F (x)), F2(x) = L2(x, F (x)), F ′(x) = F2 ◦ F−1

1 (x), where F1 is a per-
mutation. Let

ψ(x, (y, z)) = (ψ1(x, (y, z)), ψ2(x, (y, z)))

be the function from F2n ×F2m ×F2k to itself such that:

ψ1(x, (y, z)) = L1(x, y),

ψ2(x, (y, z)) = (L2(x, y), z).

The function ψ is linear and it is a permutation; indeed its kernel is the set
of solutions of the system of two linear equations{

L1(x, y) = 0
(L2(x, y), z) = (0, 0).

From the second equation we get z = 0 and we come down to the system{
L1(x, y) = 0
L2(x, y) = 0.
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which has the only solution (0, 0). Hence the kernel of ψ is trivial.
For the (n,m+k)-functionH(x) = (F (x), C(x)) denoteH1(x) = ψ1(x,H(x))

and H2(x) = ψ2(x,H(x)) then

H1(x) = ψ1(x,H(x)) = ψ1

(
x, (F (x), C(x))

)
= L1(x, F (x)) = F1(x)

which is a permutation and

H2(x) = ψ2(x,H(x)) = ψ2(x, (F (x), C(x))) =
(
L2(x, F (x)), C(x)

)
= (F2(x), C(x)).

Hence, the function

H ′(x) = H2 ◦H−1
1 (x) =

(
F2 ◦ F−1

1 (x), C ◦ F−1
1 (x)

)
= (F ′(x), C ′(x)),

where C ′(x) = C ◦ F−1
1 (x), is CCZ-equivalent to H(x). If F and F ′ are

EA-inequivalent then obviously H and H ′ are EA-inequivalent too. 2

Obviously, Proposition 4 implies:

Corollary 1 [24] Let n and m be any positive integers. If for (n,m)-
functions CCZ-equivalence coincides with EA-equivalence then for (n,m′)-
functions, 1 ≤ m′ ≤ m, CCZ-equivalence coincides with EA-equivalence too.

Proposition 3 and Proposition 4 give

Theorem 3 [24] Let n ≥ 5 and k > 1 be the smallest divisor of n. Then
for any m ≥ k CCZ-equivalence of (n,m)-functions is strictly more general
than EA-equivalence.

In particular, Theorem 3 implies:

Corollary 2 [24] If n ≥ 6 is even then for every m ≥ 2 CCZ-equivalence
of (n,m)-functions is strictly more general than EA-equivalence.

Remark 2 [24] CCZ-equivalence reduces to EA-equivalence for all (n,m)-
functions with n = 3 and 1 ≤ m ≤ 3 (the case n = m = 3 is checked with a
computer and the rest follows from Corollary 1).

2.1.3 The case of bent vectorial Boolean functions

If two functions are CCZ-equivalent and one of them is bent then the sec-
ond is bent too. Below we show that, in this framework, CCZ-equivalence
coincides with EA-equivalence.

Theorem 4 [25] Let n and m be positive integers and F be a bent function
from Fn2 to Fm2 . Then any function CCZ-equivalent to F is EA-equivalent
to it.
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Proof. Let F ′ be CCZ-equivalent to F and L(x, y) =
(
L1(x, y), L2(x, y)

)
,

(with L1 : Fn2 ×Fm2 → Fn2 , L2 : Fn2 ×Fm2 → Fm2 ) be an affine permutation of
Fn2 ×Fm2 which maps the graph of F to the graph of F ′. Then L1(x, F (x)) is
a permutation and for some affine functions L′ : Fn2 → Fn2 and L′′ : Fm2 → Fn2
we can write L1(x, y) = L′(x) + L′′(y).
For any element v of Fn2 we have

v · L1(x, F (x)) = v · L′(x) + v · L′′(F (x)),

where “·” is the inner product in Fn2 (if Fn2 is identified with F2n , we can
take u · v = trn(uv) for any u, v ∈ F2n). Since L1(x, F (x)) is a permutation,
then any function v · L1(x, F (x)) is balanced (recall that this property is a
necessary and sufficient condition) and, hence, cannot be bent. Therefore,
v · L′′(F (x)) cannot be bent either because v · L′(x) is an affine function.
Then, the adjoint operator L′′′ of L′′ (satisfying v ·L′′(F (x)) = L′′′(v) ·F (x))
is the null function since if L′′′(v) 6= 0 then L′′′(v) ·F (x) is bent. This means
that L′′ is null, that is, L1 depends only on x, which corresponds to EA-
equivalence by Proposition 1. 2

Since the algebraic degree is preserved by EA-equivalence then The-
orem 4 gives a very simple criterion for distinguishing inequivalent bent
functions.

Corollary 3 [25] Let n and m be any positive integers. If two bent (n,m)-
functions have different algebraic degrees then they are CCZ-inequivalent.

2.2 CCZ-equivalence for functions of odd charac-
teristics

We are going to obtain an analogue of Theorem 3 for functions of odd
characteristics.

Proposition 5 [35] Let p be an odd prime, n ≥ 3, and m > 1 be a divisor
of n. Then there exist functions from Fpn to Fpm for which CCZ-equivalence
is strictly more general than EA-equivalence.

Proof. The linear permutation of Fpn ×Fpm

L(x, y) = (x+ trm(y), y)

maps the graph of a quadratic function F : Fpn → Fpm

F (x) = trmn (x2 − xp+1)

to the graph of a cubic function

F ′(x) = trmn (x2 − xp+1) + trn(x2 − xp+1)trmn (xp − x).
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That is, the functions F and F ′ are CCZ-equivalent but EA-inequivalent.
Indeed, L is obviously a permutation since (0, 0) is the only solution of

the system

x+ trm(y) = 0,

y = 0.

The function

F1(x) = x+ trm(F (x)) = x+ trn(x2 − xp+1)

is a permutation of Fpn since for any a ∈ F∗pn

F (x+ a)− F (x) = x+ a+ trn(x2 + 2ax+ a2 − xp+1 − axp − apx− ap+1)

−x− trn(x2 − xp+1)

= a+ trn(a2 − ap+1)− trn(x(ap + ap
n−1 − 2a))

and the equality F (x+a) = F (x) would imply a+trn(a2−ap+1) = trn(x(ap+
ap

n−1 − 2a)), that is, a ∈ F∗p, that is, a = 0, a contradiction. Note further
that the inverse of the function F1 is

F−1
1 (x) = x− trn(x2 − xp+1)

since

F−1
1 ◦ F1(x) = x+ trn(x2 − xp+1)− trn

(
x2 + 2x trn(x2 − xp+1)

+trn(x2 − xp+1)2 − xp+1 − xp trn(x2 − xp+1)

−x trn(x2 − xp+1)p − trn(x2 − xp+1)p+1
)

= x− trn(x2 − xp+1) trn(x− xp) = x.

Hence, for F2(x) = F (x) we get

F2 ◦ F−1
1 (x) = trmn

((
x− trn(x2 − xp+1)

)2 − (x− trn(x2 − xp+1)
)p+1

)
= trmn (x2 − xp+1) + trn(x2 − xp+1)trmn (xp − x) = F ′(x).

It is easy to check that for m ≥ 2 and n ≥ 3 the term x2p+1 has coefficient
−2 in the polynomial representation of F ′. Hence, F ′ has algebraic degree 3.
By construction F and F ′ are CCZ-equivalent but they are EA-inequivalent
because of the difference of their algebraic degrees. 2

Next proposition is a restatement of Proposition 4 (given for binary case)
for the case of any prime p. The proof for this general case is the same as
in case p = 2 and we skip it.
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Proposition 6 [35] Let p be an odd prime, m and n positive integers, and
functions F and F ′ from Fpn to Fpm be CCZ-equivalent but EA-inequivalent.
Then for any positive integer k and any function C from Fpn to Fpk there ex-
ists a function C ′ from Fpn to Fpk such that the functions H(x) = (F (x), C(x))
and H ′(x) = (F ′(x), C ′(x)) from Fpn to Fpm+k are CCZ-equivalent and EA-
inequivalent.

Proposition 5 and Proposition 6 give

Theorem 5 [35] Let p be an odd prime, n ≥ 3 and k > 1 the smallest
divisor of n. Then for any m ≥ k, CCZ-equivalence of functions from Fpn
to Fpm is strictly more general than their EA-equivalence.

Remark 3 In [136] Theorems 3 and 5 are extended to a more general frame-
work of finite abelian groups, in which the condition on m is relaxed: for
the cases p = 2 it is sufficient to have m ≥ 2 and for the rest of the cases
m ≥ 1.

2.2.1 CCZ-equivalence and PN functions

We exhibit below a large class of functions for which CCZ-equivalence coin-
cides with EA-equivalence.

Theorem 6 [36, 38] Let p be any prime, m and n any positive integers.
If a function F from Fpn to Fpm is such that all its derivatives DaF (x) =
F (x)− F (x+ a), a ∈ F∗pn , are surjective, then any function CCZ-equivalent
to F is EA-equivalent to it.

Proof. If functions F and F ′ are CCZ-equivalent then there exists an
affine permutation L over Fpn ×Fpm such that L(GF ) = GF ′ where GF =
{(x, F (x)) | x ∈ Fpn} and GF ′ = {(x, F ′(x)) | x ∈ Fpn}. The function L in
this case can be introduced as

L(x, y) = (L1(x, y), L2(x, y))

where L1 : Fpn ×Fpm → Fpn , L2 : Fpn ×Fpm → Fpm , are affine and L1(x, F (x))
is a permutation. We are going to show that L1 is independent of y when
DaF (x) = F (x)−F (x+a), a ∈ F∗pn , are surjective. For some linear functions
L : Fpn → Fpn , L′ : Fpm → Fpn , and some b ∈ Fpn we have

L1(x, y) = L(x) + L′(y) + b.

If L1(x, F (x)) is a permutation then for any a ∈ F∗pn

L(x) + L′(F (x)) + b 6= L(x+ a) + L′(F (x+ a)) + b,

that is,
L′(F (x+ a)− F (x)) 6= −L(a).
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Since F (x+a)−F (x) is surjective then the inequality above implies L′(c) 6=
L(a) for any c ∈ Fpm and any a ∈ F∗pn . First of all we see that L is a per-
mutation, since otherwise L(a′) = 0 = L′(0) for some a′ ∈ F∗pn , and we get
the inequality L−1 ◦L′(c) 6= a for any c ∈ Fpm and any a ∈ F∗pn , which in its
turn means L−1 ◦L′ = 0, that is, L′ = 0. Thus, F and F ′ are EA-equivalent
by Proposition 1. 2

Obviously, conditions of Theorem 6 are satisfied for PN functions:

Corollary 4 [36, 38] Let F be a PN function and F ′ be CCZ-equivalent to
F . Then F and F ′ are EA-equivalent.

In particular, this corollary implies:

Corollary 5 [36, 38] If a PN function F is CCZ-equivalent to a DO poly-
nomial F ′ then F is also DO polynomial.

Corollary 6 [36, 38] Perfect nonlinear DO polynomials F and F ′ are CCZ-
equivalent if and only if they are linear equivalent.

2.3 Equivalence of indicators of graphs of func-
tions

It obviously follows from the definition of CCZ-equivalence that two func-
tions are CCZ-equivalent if and only if the indicators of their graphs are
affine equivalent. In the present section, we investigate whether CCZ-
equivalence of the indicators of the graphs of functions can lead to a more
general notion of equivalence of functions than CCZ-equivalence.

The case of even characteristic For a given function F from Fn2 to Fm2
the indicator 1GF of its graph GF is a Boolean function of Fn+m

2 . Hence,
according to Theorem 1, for (n,m)-functions F and F ′ the indicators 1GF
and 1GF ′ are CCZ-equivalent if and only if they are EA-equivalent. In the
proposition below we prove that CCZ-equivalence of functions is the same
as EA-equivalence of the indicators of the graphs of these functions.

Proposition 7 [24] Let m and n be any positive integers. Two (n,m)-
functions F and F ′ are CCZ-equivalent if and only if the indicators 1GF
and 1G′F of their graphs are EA-equivalent.

Proof. It is obvious that when composing 1GF by an affine permutation L
of Fn+m

2 on the right, that is, taking 1GF ◦L, we are within the definition of
CCZ-equivalence of functions, since 1GF ◦L = 1L−1(GF ). If we compose 1GF
by an affine permutation L of F2 on the left, then we get L ◦ 1GF = 1GF + b
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for b ∈ F2. Hence, we have only to prove that if for an (n,m)-function F ′

and for an affine Boolean function ϕ of Fn+m
2 , we have

1GF ′ (x, y) = 1GF (x, y) + ϕ(x, y)

then F and F ′ are CCZ-equivalent.
In case m > 2 we must have ϕ = 0 because 1GF and 1GF ′ have Hamming

weight 2n while, if ϕ is not null, it has then Hamming weight 2n+m−1 or
2n+m, a contradiction, since 2n+m−1 > 2n+1. Thus, for m > 2 we get
F = F ′.

Let us consider now the case m = 1. Then 1GF (x, y) = F (x) + y + 1
and ϕ(x, y) = A(x) + ay + b for some affine Boolean function A of Fn2 and
a, b ∈ F2. Therefore,

1GF ′ (x, y) = 1GF (x, y) + ϕ(x, y) = F (x) +A(x) + (a+ 1)y + b+ 1.

If a = 1 then 1GF ′ is not the indicator of the graph of a function. Indeed, if
F (x0) + A(x0) = b for some x0 ∈ Fn2 then 1GF ′ (x0, 0) = 1GF ′ (x0, 1) = 1, a
contradiction, and if such element x0 does not exist then F (x)+A(x) ≡ b+1
and 1GF ′ (x, y) ≡ 0, a contradiction too.
If a = 0 then 1GF ′ (x, y) = 1 if and only if y = F (x) + A(x) + b, that is,
F ′(x) = F (x) + A(x) + b and F and F ′ are EA-equivalent and therefore
CCZ-equivalent.

Let now m = 2. Then ϕ has Hamming weight 2n+1 while 1GF and 1GF ′
have Hamming weight 2n. Therefore, for any x ∈ Fn2 , we have F (x) 6= F ′(x)
and

ϕ(x, y) =

{
1 if y ∈ {F (x), F ′(x)}
0 otherwise

.

Without loss of generality we can assume that F (0) = 0. Then ϕ(0, 0) =
ϕ(0, F (0)) = 1 and ϕ(0, F ′(0)) = 1. Since ϕ is affine then for any x ∈ Fn2

ϕ(x, F (x) + F ′(0)) = ϕ(x, F (x)) + ϕ(0, F ′(0)) + 1 = 1.

Thus, since F ′(0) 6= 0, we get F ′(x) = F (x) + F ′(0). 2

Due to Proposition 7 we can conclude:

Corollary 7 [24] Let m and n be any positive integers. Two (n,m)-functions
F and F ′ are CCZ-equivalent if and only if the indicators of their graphs
1GF and 1GF ′ are CCZ-equivalent.

The case of odd characteristics Below we prove that the equivalence
of indicators of graphs of functions coincides with CCZ-equivalence for func-
tions of odd characteristics as well. First we need some auxiliary results.
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Lemma 2 [35] Let p be an odd prime, n a positive integer, a ∈ Fpn and
f any function from Fpn to itself with the image set {0, a}. If the function
F (x) = x+ f(x) is a permutation of Fpn then x− f(x) is its inverse.

Proof. Denoting F ′(x) = x− f(x) we get

F ′ ◦ F (x) = x+ f(x)− f(x+ f(x)).

If f(x) = 0 then obviously F ′ ◦ F (x) = x.
If f(x) = a then F ′◦F (x) = x+a−f(x+a). Moreover, we have f(x+a) = a
since otherwise F (x+ a) = F (x) which contradicts F being a permutation.
Hence, when f(x) = a, we have also F ′ ◦F (x) = x. Therefore, F−1 = F ′. 2

As mentioned in [34], CCZ-equivalence can be considered not only for
functions from Fpn to itself but also for functions between arbitrary groups
H1 and H2. In the following proposition we consider CCZ-equivalence of
functions from Fpn to F2.

Proposition 8 [35] Let p be an odd prime and n a positive integer. Two
functions f and f ′ from Fpn to F2 are CCZ-equivalent if and only if f ′ = f◦A
for some affine permutation A of Fpn.

Proof. Let the functions f and f ′ be CCZ-equivalent. Then there exists an
affine permutation L of Fpn ×F2 such that L(Gf ) = Gf ′ . Without loss of
generality we can assume that L is linear. Then there exist linear functions
L : Fpn → Fpn , φ : F2 → Fpn , l : Fpn → F2 and an element a ∈ F2 such that

L(x, y) =
(
L(x) + φ(y), l(x) + ay

)
,

and for

F1(x) = L(x) + φ ◦ f(x),

F2(x) = l(x) + af(x),

F1 is a permutation of Fpn and

f ′(x) = F2 ◦ F−1
1 (x).

Note that any linear function l from Fnp to F2 must be 0 since otherwise
it is balanced, which is impossible since pn is an odd number. Hence, we
have l(x) = 0 and, since L is a permutation, a = 1, that is, F2(x) = f(x).
Besides, if φ ◦ f = 0 then obviously L is a permutation and f ′ = f ◦ L−1

and we can take A = L−1. Hence we assume that φ has the image set {0, b}
where b 6= 0 and φ ◦ f is not a zero function.
Since F1 is a permutation and the image of φ ◦ f consists of 2 elements
then the function L must have at most 2 zeros, and, since p ≥ 3 and L is a
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linear function from Fpn to itself then it has exactly one zero, that is, L is a
permutation. Hence,

F1(x) = L
(
x+ L−1 ◦ φ ◦ f(x)

)
,

where the function F ∗1 (x) = x + L−1 ◦ φ ◦ f(x) is a permutation too, and
therefore, by Lemma 2 its inverse is F ∗−1

1 (x) = x− L−1 ◦ φ ◦ f(x). We get

F−1
1 (x) = F ∗−1

1 ◦ L−1(x)

and then

f ′ ◦ L(x) = F2 ◦ F ∗−1
1 (x) = f

(
x− L−1 ◦ φ ◦ f(x)

)
.

If f(x) = 0 then f ′ ◦ L(x) = 0 = f(x).
If f(x) = 1 then we have f(x−L−1(b)) = 1 = f(x). Indeed, if f(x) = 1 and
f(x− L−1(b)) = 0 then

F ∗−1
(
x− L−1(b)

)
= x− L−1(b)− L−1 ◦ φ ◦ f

(
x− L−1(b)

)
= x− L−1(b),

F ∗−1(x) = x− L−1 ◦ φ ◦ f(x) = x− L−1(b),

which contradict F ∗−1 being a permutation. Hence, f ′ ◦ L(x) = f(x) and
we can take A = L−1. 2

Now we can prove the main result of this section:

Theorem 7 [35] Let n and m be any positive integers, p any prime, and F
and F ′ any functions from Fpn to Fpm. Then F and F ′ are CCZ-equivalent if
and only if the indicators of their graphs 1GF and 1GF ′ are CCZ-equivalent.

Proof. For the case p = 2 this theorem states Corollary 7. Let p be odd.
Since 1GF and 1GF ′ are functions from Fpn ×Fpm to F2 then according to
Proposition 8 they are CCZ-equivalent if and only if there exists an affine
permutation A of Fpn ×Fpm that 1GF ′ = 1GF ◦ A, that is, if and only if F
and F ′ are CCZ-equivalent. 2

2.4 CCZ-equivalence and power APN functions

It is clear that the known power APN functions are pairwise EA-inequivalent
since in general these functions (as well as their inverses) have different alge-
braic degrees. Unlike EA-equivalence, CCZ-equivalence does not preserve al-
gebraic degrees of functions. Thus, it is an open question whether the known
power APN functions (functions of Table 2) are pairwise CCZ-inequivalent.
Below we solve this problem for some cases. We prove that two Gold func-
tions x2i+1 and x2j+1 with 1 ≤ i, j < n/2, i 6= j, are CCZ-inequivalent,
and that the Gold functions are CCZ-inequivalent to any Kasami and to
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the Welch functions (except in particular cases). We also note that the
inverse and Dobbertin APN functions are CCZ-inequivalent to all known
power APN mappings because of their unique Walsh spectra.

Proving CCZ-inequivalence of two functions can be done, in some cases,
by showing that some invariants (such as, for instance, the extended Walsh
spectrum) are different for the two functions. However, we could not find
such invariants in the general cases of inequivalence we study here (except
for the inverse and Dobbertin functions). So we give brute-force proofs:
supposing that the functions are equivalent, we show this leads to contra-
dictions.

Without loss of generality a Gold function F (x) = x2s+1 and a Kasami
function K(x) = x4r−2r+1 can be considered under conditions 1 ≤ s < n

2 ,
2 ≤ r < n

2 , since this exhausts all different cases (under EA-equivalence).

CCZ-inequivalence of two Gold functions

Theorem 8 [33] Let F (x) = x2s+1, G(x) = x2r+1 and s 6= r, 1 ≤ s, r < n
2 ,

gcd(s, n) = gcd(r, n) = 1. Then F and G are CCZ-inequivalent on F2n.

Proof. Suppose that F (x) and G(x) are CCZ-equivalent, then there exists
an affine automorphism L = (L1, L2) of F2n × F2n such that

L2(x, F (x)) = G(L1(x, F (x))). (2.13)

Writing

L1(x, y) = L(x) + L′(y), (2.14)

L2(x, y) = L′′(x) + L′′′(y), (2.15)

L(x) = b+
∑

m∈Z/nZ

bmx
2m , (2.16)

L′(x) = b′ +
∑

m∈Z/nZ

b′mx
2m , (2.17)

L′′(x) = b′′ +
∑

m∈Z/nZ

b′′mx
2m , (2.18)

L′′′(x) = b′′′ +
∑

m∈Z/nZ

b′′′mx
2m , (2.19)

b+ b′ = c. (2.20)

b′′ + b′′′ = c′, (2.21)

we can rewrite (2.13) as

L′′(x) + L′′′(F (x)) = G[L(x) + L′(F (x))]. (2.22)
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Considering the right side of equality (2.22) we get

G[L(x) + L′(F (x))] =
(
L(x) + L′(x2s+1)

) (
L(x) + L′(x2s+1)

)2r
=

c+
∑

m∈Z/nZ

bmx
2m +

∑
m∈Z/nZ

b′mx
2m(2s+1)



×

c2r +
∑

m∈Z/nZ

b2
r

mx
2m+r

+
∑

m∈Z/nZ

b′2
r

m x2m+r(2s+1)


=

∑
m,k∈Z/nZ

bkb
′2r
m x2m+r(2s+1)+2k +

∑
m,k∈Z/nZ

b′kb
2r

mx
2m+r+2k(2s+1)

+
∑

m,k∈Z/nZ

b′kb
′2r
m x2m+r(2s+1)+2k(2s+1) +Q(x),

where Q(x) is a quadratic polynomial. Since the left side of equality (2.22)
is a quadratic polynomial then all terms in the expression above whose
exponents have 2-weight strictly greater than 2 must cancel.

One of the functions L and L′ must be non-constant because otherwise
L1(x, F (x)) cannot be a permutation, and this contradicts the assumption
about CCZ-equivalence of F and G. Let L′ 6= const then there exists m ∈
Z/nZ such that b′m 6= 0. Considering s and r as elements of Z/nZ we have
s 6= ±r and s, r 6= 0. Then 2m+r(2s + 1) + 2m(2s + 1) has 2-weight 4 and
the items with this exponent have to vanish. We get b′2

r+1
m + b′m+rb

′2r
m−r = 0

and since b′m 6= 0 then b′m+r, b
′
m−r 6= 0 and b′mb

′−2r

m−r = b′m+rb
′−2r
m . Since

gcd(r, n) = 1 then applying this observation for m+ r, m+ 2r,..., instead of
m we get b′t 6= 0 and, for some λ ∈ F2n ,

λ = b′mb
′−2r

m−r = b′t+rb
′−2r

t (2.23)

for all t ∈ Z/nZ.
Let us consider the sum∑

m,k∈Z/nZ

b′kb
′2r
m x2m+r(2s+1)+2k(2s+1).

For any k,m ∈ Z/nZ, k 6= m + r, the items b′kb
′2r
m x2m+r(2s+1)+2k(2s+1) and

b′m+rb
′2r
k−rx

2k(2s+1)+2m+r(2s+1) differ and cancel pairwise because of (2.23). In
the case k = m+ r the sum gives items with the exponents of 2-weight not
greater than 2.

Equality (2.23) implies b′t+r = λb′2
r

t for all t. Then, introducing µ such
that λ = µ2r−1, we deduce that µb′t+r = (µb′t)

2r for all t and then that

µb′t+1 = (µb′t)
2 (using that gcd(r, n) = 1) and then µb′t = (µb′0)2t . This

means that
µL′(x) = µb′ + tr(µb′0x). (2.24)
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Then obviously L′ is not a permutation and, since L1(x, F (x)) is a permu-
tation, then L is not a constant. Thus bm 6= 0 for some m ∈ Z/nZ.

Since s 6= ±r then considering the items with the exponent 2m+r+s +
2m+r + 2m we get bmb

′2r
m + b′m+rb

2r
m−r = 0 if r 6= −2s. Since bm, b

′
m 6=

0 then bm−r 6= 0 and bmb
−2r

m−r = b′m+rb
′−2r
m . Repeating these steps for

bm−r, bm−2r, ..., because of (2.23) we get bt 6= 0 for all t ∈ Z/nZ and

λ = b′mb
′−2r

m−r = btb
−2r

t−r . (2.25)

For the case r = −2s (since gcd(s, n) = 1) we can consider the items with
the exponent 2m+r + 2m+s + 2m and get b′mb

2r
m + bm+rb

′2r
m−r = 0 which again

leads to (2.25).
Equality (2.25) implies µL(x) = µb + tr(µb0x) and then, because of

(2.24), we get

µ[L(x) + L′(F (x))] = µb′ + µb+ tr(µb0x+ µb′0F (x)).

Obviously the function L(x)+L′(F (x)) cannot be a permutation. Therefore,
L′ = const and then L 6= const. In this case (2.13) implies

L′′(x) +
∑

m∈Z/nZ

b′′′mx
2m(2s+1) =

∑
m,k∈Z/nZ

bmb
2r

k x
2m+2k+r + L0(x) (2.26)

for some affine function L0. For some m ∈ Z/nZ we have bm 6= 0 and
since s 6= ±r it is not difficult to note that b2

r+1
m + bm+rb

2r
m−r = 0. Thus

bm+r, bm−r 6= 0 and because of gcd(r, n) = 1 we derive bt 6= 0 and

λ′ = bmb
−2r

m−r = btb
−2r

t−r

for all t ∈ Z/nZ and some λ′ ∈ F2n . This leads to the equality

µ′L(x) = µ′b+ tr(µ′b0x)

with λ′ = µ′2
r−1 which shows that L is not a permutation. This contradic-

tion proves CCZ-inequivalence of F and G. 2

CCZ-inequivalence of Gold and Kasami functions

Theorem 9 [33] Let F (x) = x2s+1, K(x) = x4r−2r+1 and gcd(s, n) =
gcd(r, n) = 1, 1 ≤ s < n

2 , 2 ≤ r < n
2 .

1) If 3r 6= ±1 mod n then F and K are CCZ-inequivalent on F2n.
2) If n is odd and functions F and K−1 are EA-equivalent on F2n then,
s = 1 and 3r = ±1 mod n.

Proof. Let the functions K and F be CCZ-equivalent on F2n and let

G′(x) = x23r+1,

G(x) = x2r+1.
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Then, there exists an affine automorphism L = (L1, L2) of F2n × F2n such
that

L2(x,K(x)) = F (L1(x,K(x))),

which implies, by composition by G,

L2(G(x), G′(x)) = F (L1(G(x), G′(x))),

that is, using the notations (2.15)-(2.21)

0 = L′′(G(x)) + L′′′(G′(x)) + F [L(G(x)) + L′(G′(x))]

=
(
L(x2r+1) + L′(x23r+1)

)2s+1
+Q(x)

= Q(x) +

c+
∑

m∈Z/nZ

bmx
2m(2r+1) +

∑
m∈Z/nZ

b′mx
2m(23r+1)


×

c2s +
∑

m∈Z/nZ

b2
s

mx
2m+s(2r+1) +

∑
m∈Z/nZ

b′2
s

m x2m+s(23r+1)


= Q′(x) +

∑
m,k∈Z/nZ

bmb
2s

k x
2m(2r+1)+2k+s(2r+1)

+
∑

m,k∈Z/nZ

bmb
′2s
k x2m(2r+1)+2k+s(23r+1)

+
∑

m,k∈Z/nZ

b′mb
2s

k x
2m(23r+1)+2k+s(2r+1)

+
∑

m,k∈Z/nZ

b′mb
′2s
k x2m(23r+1)+2k+s(23r+1),

where Q and Q′ are quadratic.
Suppose that L and L′ are not constant. Then bm, b

′
k 6= 0 for some

m, k ∈ Z/nZ.
In the expression above we consider the items with the exponent 2m(2r+

1) + 2k+s(23r + 1). Since gcd(r, n) = 1, r 6= ±1, and if 3r 6= ±1, then it
is easy but tedious to check that this exponent has the 2-weight at least
3 and differs from exponents of the types 2t(23r + 1) + 2p(23r + 1) and
2t(2r + 1) + 2p(2r + 1). Thus we get the equality bmb

′2s
k + b′k+sb

2s
m−s = 0.

Since bm, b
′
k 6= 0 then b′k+s, bm−s 6= 0 and

bmb
−2s

m−s = b′k+sb
′−2s

k .

Repeating this step for k+s, k+2s,..., instead of k and for m−s, m−2s,...,
instead of m, because of gcd(s, n) = 1 we get

λ = bmb
−2s

m−s = b′k+sb
′−2s

k (2.27)
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for all m, k ∈ Z/nZ.
Like in the proof of Theorem 8 from the equality (2.27) we get

µ[L(x) + L′(K(x))] = µb′ + µb+ tr(µb0x+ µb′0K(x)),

where λ = µ2s−1. Thus L1(x,K(x)) is not a permutation, a contradiction.
Therefore, L or L′ is constant and F is then EA-equivalent to K or to the
inverse of K. We know that F and K are not EA-equivalent because alge-
braic degree of K is r + 1 while F is quadratic. Thus we need to consider
only the case L = const and L′ 6= const. We have b′m 6= 0 for some m
and 2m(23r + 1) + 2m+s(23r + 1) has 2-weight at least 3 except the cases
when s = ±1, 3r = ±1. With the same arguments as above we get that
L1(x,K(x)) is not a permutation. If s = ±1 and 3r = ±1 then the inverse
of K (if it exists) may be EA-equivalent to F in some cases. For instance,
K−1 = F 4 for s = 1, r = 2, n = 5. 2

Remark 4 It is proven in [87] that the Kasami functions over F27 are CCZ-
inequivalent to any quadratic function.

CCZ-inequivalence of Gold and Welch functions

Theorem 10 [33] Let F (x) = x2s+1 and G(x) = x2t+3 with gcd(s, n) = 1,
1 ≤ s ≤ n−1

2 , t = n−1
2 ≥ 4. Then F and G are CCZ-inequivalent on F2n.

Proof. Let the functions F and G be CCZ-equivalent on F2n . Then, there
exists an affine automorphism L = (L1, L2) of F2n × F2n such that

L2(x,G(x)) = F (L1(x,G(x))),

and L1(x,G(x)) a permutation. Using the notations (2.15)-(2.21) we get

0 = L′′(x) + L′′′(G(x)) + F [L(x) + L′(G(x))]

= Q(x) +

c+
∑

m∈Z/nZ

bmx
2m +

∑
m∈Z/nZ

b′mx
2m(2t+3)

2s+1

= Q(x) +

c+
∑

m∈Z/nZ

bmx
2m +

∑
m∈Z/nZ

b′mx
2m(2t+3)


×

c2s +
∑

m∈Z/nZ

b2
s

mx
2m+s

+
∑

m∈Z/nZ

b′2
s

m x2m+s(2t+3)


= Q′(x) +

∑
m,k∈Z/nZ

b′mb
′2s
k x2m(2t+3)+2k+s(2t+3)

+
∑

m,k∈Z/nZ

bmb
′2s
k x2m+2k+s(2t+3)
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+
∑

m,k∈Z/nZ

b′mb
2s

k x
2m(2t+3)+2k+s (2.28)

where Q and Q′ are cubic.

Since the algebraic degree of G is 3 for n > 3 then F and G are EA-
inequivalent. Therefore, L′ 6= const and b′m 6= 0 for some m.

Since t = n−1
2 ≥ 4 then 2m(2t + 3) + 2m+s(2t + 3) has 2-weight at least

5 when s 6= 1, t. If either s = 1 or s = t then 2m(2t + 3) + 2m+s(2t + 3) has
2-weight at least 4 and it differs from the exponents of the items in the first
and second sums in (2.28). The equality (2.28) implies b′2

s+1
m = b′m+sb

′2s
m−s

and then b′m+s, b
′
m−s 6= 0. Because of gcd(n, s) = 1 we get b′t 6= 0 and

λ = b′m+sb
′−2s

m = b′tb
′−2s

t−s (2.29)

for any t.

For m 6= k + s the items b′mb
′2s
k x2m(2t+3)+2k+s(2t+3) and

b′k+sb
′2s
m−sx

2m(2t+3)+2k+s(2t+3) differ and cancel pairwise because of (2.29).
In the case m = k + s the sum gives items with the exponents of 2-weight
not greater than 3.

Because of (2.29) we get

µL′(x) = µb′ + tr(µb′0x), (2.30)

where λ = µ2s−1. Therefore, L′ is not a permutation and then L 6= const.
We have bm 6= 0 for some m and considering the items with the exponent
2m + 2m+s(2t + 3) of 2-weight 4 we get bmb

′2s
m = b′m+sb

2s
m−s and bm−s 6= 0.

This leads to the equality

btb
−2s

t−s = b′m+sb
′−2s

m = λ

for any t, and this, together with (2.30), gives

µ[L(x) + L′(G(x))] = µb′ + µb+ tr(µb0x+ µb′0G(x)).

Thus, L(x) +L′(G(x)) is not a permutation. This contradiction shows that
F and G are CCZ-inequivalent. 2

Remark 5 It was checked with a computer that if 1 < t < 4 then F is
EA-equivalent to G−1 only in case n = 5, s = 2.

Inverse and Dobbertin functions

Proposition 9 [33] When n ≥ 5 the inverse and Dobbertin functions are
CCZ-inequivalent to other functions of Table 2.
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Proof. Gold, Kasami, Welch and Niho functions have the following prop-

erty: the number 2b
n+1
2
c divides all the values in their Walsh spectra (see

[41, 40, 86, 99, 103, 130]). It follows from [107] that the inverse function

does not have this property. Besides, it is proven in [41] that 2
2n
5

+1 cannot
be a divisor of all the values in the Walsh spectrum of a Dobbertin func-
tion. Since the extended Walsh spectrum of a function is invariant under
CCZ-equivalence then Gold, Kasami, Welch and Niho functions are CCZ-
inequivalent to the inverse and Dobbertin functions. 2

In general the inverse and Dobbertin APN functions are CCZ-inequivalent.
Indeed, computer experiments show that the extended Walsh spectra of the
inverse and Dobbertin APN functions differ (when n 6= 5). Besides, Dob-
bertin functions are APN also for n even while the inverse function is APN
only for n odd.



Chapter 3

Bent functions

This chapter is dedicated to our results on analysis and construction of bent
functions [25, 27, 28, 29].

As observed in the previous chapter, CCZ-equivalence of bent vectorial
functions over Fn2 reduces to their EA-equivalence. In Section 3.1 we show
that in spite of this fact, CCZ-equivalence can be used for constructing
bent functions which are new up to EA-equivalence and therefore to CCZ-
equivalence: applying CCZ-equivalence to a non-bent vectorial function F
which has some bent components, we get a function F which also has some
bent components and whose bent components are CCZ-inequivalent to the
components of the original function F . Using this approach we construct
classes of nonquadratic bent Boolean and bent vectorial functions [25].

Section 3.2 is dedicated to a problem raised in [46]. In 1998, Carlet,
Charpin and Zinoviev characterized APN and AB (n, n)-functions by means
of associated 2n-variable Boolean functions. In particular, they proved that
a function F is AB if and only if the associated Boolean function γF is
bent. This observation leads to potentially new bent functions associated
to the known AB functions, or at least gives new insight on known bent
functions. However, representations of γF were known only for Gold AB
power functions and determining γF for the rest of AB functions was an
open problem. We determine γF for most of the known families of APN and
AB functions [27].

In Section 3.3 we solve a problem which dates back to 1974. In his thesis
[68], Dillon introduced a family of bent functions denoted by H, where bent-
ness is proven under some conditions which were not obvious to achieve. In
this class, Dillon was able to exhibit only functions belonging to the com-
pleted Maiorana-McFarland class. In [48] it was observed that the completed
class of H contains all bent functions of the, so called, Niho type which were
introduced in [80] by Dobbertin et al. We prove that two classes of binomial
Niho bent functions do not belong to the completed MM class. This implies
that the class H contains functions which do not belong to the completed

49
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Maiorana-McFarland class and, therefore, the class H is not contained in
the completed MM class [29].

In the last section of this chapter we study the relation between the gener-
alized bent functions of Table 1 and completed class of Maiorana-McFarland
functions. In the binary case, the completed MM class contains all quadratic
bent functions which are the simplest and best understood. However, this
does not hold in the generalized case. First, for p odd there exist quadratic
bent functions over Fpn when n is odd while Maiorana-McFarland bent func-
tions are defined only for n even. For the case n even, we provide examples
of quadratic generalized bent functions not belonging to the completed MM
class. Moreover, we prove that almost all of the known classes do not in-
tersect with the completed MM class. This leads us to the conclusion that
in general, the Maiorana-McFarland construction is less overall than in the
binary case even for the case n even [28].

3.1 Constructing new bent Boolean functions us-
ing CCZ-equivalence

We show now that, despite the result of the previous section, CCZ-equivalence
can be used for constructing new bent Boolean functions, by applying it to
non-bent vectorial functions which admit bent components. We give two
examples illustrating this fact. Starting from Gold functions and consider-
ing two classes of APN functions which have been shown CCZ-equivalent to
them, we derived two infinite classes of bent Boolean functions which are
CCZ-inequivalent to the bent components of the Gold functions, and we also
deduced new families of vectorial bent functions.

Let i be a positive integer. Let us define for n even the (n, n)-function:

F (x) = x2i+1 + (x2i + x+ 1)trn(x2i+1), (3.1)

and for n divisible by 6 the (n, n)-function:

G(x) =
(
x+ tr3

n

(
x2(2i+1) + x4(2i+1)

)
+trn(x)tr3

n

(
x2i+1 + x22i(2i+1)

))2i+1
. (3.2)

The functions F and G correspond to the first (under condition of n be-
ing even) and the second cases in Table 5. They were constructed in [34]
by applying CCZ-equivalence to the Gold function F ′(x) = x2i+1. When
gcd(i, n) = 1 these functions are APN, the function F has algebraic degree 3
(for n ≥ 4), and the function G has algebraic degree 4 (however, some com-
ponents of F and G have lower algebraic degrees) [34]. Since the algebraic
degrees of non-affine functions are preserved by EA-equivalence, then F and
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G are EA-inequivalent to F ′. We know (see e.g. [109]) that if n/ gcd(n, i)
is even and b ∈ F2n is not the (2i + 1)-th power of an element of F2n , then
the Boolean function trn(bF ′(x)) is bent. In general, if a vectorial function
H has some bent components, this does not yet imply that a function CCZ-
equivalent to H has necessarily bent components. Below we show that the
two classes (3.1) and (3.2) above have bent nonquadratic components which
are CCZ-inequivalent to the components of F ′.

3.1.1 The infinite class of the functions F

Let us determine the bent cubic components of function (3.1).

Theorem 11 [25] Let n ≥ 6 be an even integer and i be a positive integer
not divisible by n/2 such that n/ gcd(i, n) is even. Let the function F be given
by (3.1), and b ∈ F2n \F2i. Then the Boolean function fb(x) = trn(bF (x))
has algebraic degree 3, and it is bent if and only if neither b nor b + 1 are
the (2i + 1)-th powers of elements of F2n.

Proof. Firstly we prove that for n/ gcd(i, n) even and b ∈ F2n the function
fb is bent if and only if neither b nor b + 1 is the (2i + 1)-th power of an
element of F2n .
By Theorem 2 of [34], which proves that the function F is CCZ-equivalent
to F ′(x) = x2i+1, the graph of F ′ is mapped to the graph of F by the linear
involution

L(x, y) =
(
L1(x, y), L2(x, y)

)
= (x+ trn(y), y).

It is shown in the proof of Proposition 2 of [34] (and straightforward to
check) that for any a, b ∈ F2n

λF ′(a, b) = λF (L−1∗(a, b)), (3.3)

where L−1∗ is the adjoint operator of L−1, that is, for any (x, y), (x′, y′) ∈
F2

2n :
(x, y) · L−1∗(x′, y′) = L−1(x, y) · (x′, y′),

where (x, y) · (x′, y′) = trn(xx′) + trn(yy′).
The adjoint operator of L−1 = L is

L∗(x, y) =
(
L∗1(x, y), L∗2(x, y)

)
= (x, y + trn(x)). (3.4)

Indeed,

L(x, y) · (x′, y′) = trn
(
(x+ trn(y))x′

)
+ trn(yy′)

= trn(xx′) + trn(y)trn(x′) + trn(yy′)

= trn(xx′) + trn
(
y(y′ + trn(x′))

)
= (x, y) · L∗(x′, y′).
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According to (3.3) and (3.4)

λF ′(a, b) = λF (a, b+ trn(a)),

or, equivalently,
λF (a, b) = λF ′(a, b+ trn(a)).

When n/ gcd(i, n) is even, it is known that λF ′(a, b+ trn(a)) = ±2n/2 if and
only if b+ trn(a) is not the (2i + 1)-th power of an element of F2n (see e.g.
[109]). Hence, fb is bent if and only if neither b nor b+ 1 is the (2i + 1)-th
power of an element of F2n .

Now we prove that for n ≥ 6 and i not divisible by n/2 and b /∈ F2i the
function fb has algebraic degree 3.
Note that c = b2

n−i
+ b 6= 0 since b /∈ F2i , and

fb(x) = trn(bx2i+1) + trn
(
b(x2i + x+ 1)

)
trn(x2i+1)

= trn(bx2i+1) + trn(b)trn(x2i+1) + trn
(
(b2

n−i
+ b)x

)
trn(x2i+1)

= Q(x) + trn(cx)trn(x2i+1),

where Q is quadratic. To prove that fb is cubic we need to show that there
are cubic terms in trn(cx)trn(x2i+1) which do not vanish.
All items in trn(x2i+1) =

∑n−1
j=0 x

2i+j+2j are pairwise different since i is
not divisible by n/2 . Indeed, if for some 0 ≤ j, k < n, k 6= j, we have
2i+j + 2j = 2i+k + 2k mod (2n − 1) or, equivalently, i + j = k mod n and
i+ k = j mod n then obviously i is divisible by n/2.
Let us denote Aj = {j − i, j, j + i, j + 2i}. Then, since∑

0≤j<n
c2j+2i

x2j+2j+i+2j+2i
=
∑

0≤j<n
c2j+ix2j−i+2j+2j+i ,

we have

trn(cx)trn(x2i+1) =

 ∑
0≤k<n

c2kx2k

 ∑
0≤j<n

x2j+2j+i


=

∑
0≤j<n

c2jx2j+1+2j+i +
∑

0≤j<n
c2j+ix2j+2j+i+1

+
∑

0≤j<n
(c2j−i + c2j+i)x2j−i+2j+2j+i

+
∑

0≤j,k<n
k/∈Aj

c2kx2k+2j+2j+i .

For n > 4 all exponents 2k + 2j + 2j+i in the sum∑
0≤j,k<n
k/∈Aj

c2kx2k+2j+2j+i
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are pairwise different, have 2-weight 3 and they obviously differ from the
exponents in the first three sums above. Hence, the items with these expo-
nents do not vanish and, therefore, fb has algebraic degree 3. 2

Since F ′ is quadratic, then according to Corollary 3, the bent non-
quadratic components of F are CCZ-inequivalent to the components of F ′.

Corollary 8 [25] The functions fb of Theorem 11 are CCZ-inequivalent to
any component of F ′(x) = x2i+1.

Remark 6 [25] Knowing the number of EA-inequivalent bent components
of a given function W we cannot predict how many bent components can
have the function W ′ which is CCZ-equivalent to W . For instance, x3 has
only one bent component up to EA-equivalence while for small values of n
we can check that F has at least 2 bent components up to EA-equivalence.
Another interesting example is Dillon-Wolfe function, it is CCZ-equivalent
to a function with bent components but it itself has no bent component at
all [20].

The existence of elements b satisfying the conditions of Theorem 11
We first show that there always exist elements b satisfying the conditions of
Theorem 11. This result is only an existence result. We shall need a more
effective one, for building new bent vectorial functions. So, we subsequently
point out explicit values of such elements b, under some conditions.

Proposition 10 [25] Let n ≥ 6 be an even integer and i be a positive integer
not divisible by n/2 such that n/ gcd(i, n) is even. There exist at least 1

3(2n−
1) − 2n/2 > 0 elements b ∈ F2n \F2i such that neither b nor b + 1 are the
(2i + 1)-th powers of elements of F2n.

Proof. Since n/ gcd(i, n) is even, we have gcd(2i, n) = 2 gcd(i, n) and we
deduce that gcd(2n − 1, 22i − 1) = 2gcd(2i,n) − 1 = (2gcd(i,n) + 1)(2gcd(i,n) −
1) = (2gcd(i,n) + 1) gcd(2n − 1, 2i − 1). This implies gcd(2n − 1, 2i + 1) ≥
2gcd(i,n) + 1 ≥ 3 (note that this bound is tight since if gcd(i, n) = 1 then
gcd(2n − 1, 2i + 1) = 3). Then the size of the set E of all (2i + 1)-th
powers of elements of F∗2n is at most (2n − 1)/3 and this implies that
(F2n ∩F2i) ∪ E ∪ (1 + E) has size at most 2n/2 + 2(2n − 1)/3 < 2n − 1
(since n > 2). This completes the proof. 2

In the proposition below, we describe some cases where elements b sat-
isfying the conditions of Theorem 11 can be very easily chosen.

Proposition 11 [25] Let n ≥ 6 be an even integer, i a positive integer not
divisible by n/2, and s a divisor of i such that i/s is odd and gcd(n, 2s(2s +
1)) = 2s. If b ∈ F22s \F2s and the function F is given by (3.1) then the
Boolean function fb(x) = trn(bF (x)) is bent and has algebraic degree 3.
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Proof. We are going to show that under the assumption of this proposition
the conditions of Theorem 11 are satisfied. Since n is divisible by 2s and
i/s is odd then n/ gcd(i, n) is even. We have b /∈ F2i because b ∈ F22s \F2s

and i/s is odd. Besides, obviously, b + 1 ∈ F22s \F2s . Hence, we need only
to prove that any element b in F22s \F2s is not the (2i + 1)-th power of an
element of F2n .

Note that if the element b is not the (2s + 1)-th power of an element of
F2n then it is not the (2i + 1)-th power of an element of F2n . Indeed, for
any positive integer u and any positive odd integer v the number 2uv + 1 is
divisible by 2u + 1 since

2uv + 1 = 2u + 1 + (22u − 1)(2u + 23u + 25u + ..+ 2u(v−2)), (3.5)

and, therefore, recalling that i/s is odd, 2s + 1 is a divisor of 2i + 1.
Since b ∈ F22s \F2s then there exists a primitive element α of F∗2n , and

a positive integer k not divisible by 2s + 1, such that b = αk(2n−1)/(22s−1).
Obviously, b is the (2s + 1)-th power of an element of F2n if and only if k is
divisible by r = (2s + 1)/ gcd

(
2s + 1, (2n − 1)/(22s − 1)

)
. Hence, if we can

prove that r = 2s + 1, that is, 2n − 1 is not divisible by (2s + 1)q for any
divisor q 6= 1 of 2s + 1, then b is not the (2s + 1)-th power of an element of
F2n (and, therefore, is not the (2i + 1)-th power of an element of F2n), and
by Theorem 11 the function fb is bent and has algebraic degree 3.

Let q 6= 1 be any divisor of 2s + 1 and n be divisible by 2s. Below we
prove that 2n− 1 is divisible by (2s + 1)q if and only if n is divisible by 2sq.

If n is divisible by 2sq then 2n− 1 is divisible by 22sq − 1 and, therefore,
by 2sq + 1. Since q is odd (being a divisor of 2s + 1) then using (3.5) we get

2sq + 1 = (2s + 1)
(
1 + (2s − 1)(2s + 23s + ..+ 2s(q−2))

)
= (2s + 1)

(
1 + (2s + 1)(2s + 23s + ..+ 2s(q−2))

−2(2s + 23s + ..+ 2s(q−2))
)

= (2s + 1)
(

1 + (2s + 1)(2s + 23s + ..+ 2s(q−2))

+(q − 1)− 2
(
(2s + 1) + (23s + 1) + ...+ (2s(q−2) + 1)

))
= (2s + 1)2

(
2s + 23s + ...+ 2s(q−2)

)
+ (2s + 1)q

−2(2s + 1)
(

(2s + 1) + (23s + 1) + ...+ (2s(q−2) + 1)
)

(3.6)

which is divisible by (2s + 1)q because q is a divisor of 2s + 1 and because
for any odd positive integer v the number 2sv + 1 is divisible by 2s + 1 as it
is observed above. Hence, 2sq + 1, and therefore also 2n− 1, are divisible by
(2s + 1)q.

Let now n be divisible by 2s but not by 2sq. Then there exist positive
integers w and t such that 1 ≤ t < q and n = 2s(wq + t). Then

2n − 1 = 22st (22swq − 1) + (22st − 1). (3.7)
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As it is shown above 22swq − 1 is divisible by (2s + 1)q because the number
2swq is divisible by 2sq. Therefore, because of (3.7), the number 2n − 1 is
divisible by (2s+1)q if and only if 22st−1 is divisible by (2s+1)q. But 22st−1
is not divisible by (2s + 1)q as we show below by considering separately the
cases t odd and t even.
For t odd, using equality (3.6) and remembering that for any positive odd
integer v the number 2sv + 1 is divisible by 2s + 1, we get

2st + 1 = (2s + 1)2
(
2s + 23s + ...+ 2s(t−2)

)
+ (2s + 1)t

−2(2s + 1)
(

(2s + 1) + (23s + 1) + ...+ (2s(t−2) + 1)
)

= (2s + 1)2T + (2s + 1)t

for some integer T . Hence, 2st + 1 is divisible by 2s + 1 but not by (2s + 1)q,
and, since 2st − 1 is not divisible by q (otherwise the odd integer q would
be a divisor of 2st + 1 and 2st − 1 which is obviously impossible), then the
number 22st − 1 is also divisible by 2s + 1 but not by (2s + 1)q.
For t even

2st − 1 = (22s − 1)(1 + 22s + ...+ 2s(t−2))

= (22s − 1)
(
t/2 + (22s − 1) + (24s − 1) + ...+ (2s(t−2) − 1)

)
= (22s − 1)t/2 + (2s + 1)2R

for some integer R. Hence, 2st−1 is divisible by 2s+ 1 but not by (2s+ 1)q.
The odd integer q 6= 1 is a divisor of 2s + 1, and therefore it is a divisor of
2st − 1. Then, obviously, it is not a divisor of 2st + 1 = (2st − 1) + 2. Thus,
22st − 1 cannot be divisible by (2s + 1)q.
Hence, for both t odd and t even the number 22st − 1 is not divisible by
(2s + 1)q, and, therefore, 2n − 1 is not divisible by (2s + 1)q. 2

The relation of the functions of Theorem 11 to the Maiorana-
McFarland class of bent functions Many bent functions found in trace
representation recalled in Section 1.1.1 (and listed e.g. in [45]) are in the
completed Maiorana-McFarland class. It is interesting to see whether this
is also the case of the bent functions of Theorem 11. However, it is in
general difficult to determine what is the exact intersection between a given
infinite class of bent functions and the completed Maiorana-McFarland class.
Below we prove a partial result: the functions fb of Theorem 11 belong to
the completed Maiorana-McFarland class when b belongs to F2n/2 .

Proposition 12 [25] The bent functions fb of Theorem 11 belong to the
completed Maiorana-McFarland class when b ∈ F2n/2. In particular, all the
functions of Proposition 11 are in the completed Maiorana-McFarland class
when n is divisible by 4s.
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Proof. To check whether fb is in the Maiorana-McFarland class, we need
to see whether there exists an n/2-dimensional vector space such that the
second order derivatives

DaDcfb(x) = fb(x) + fb(x+ a) + fb(x+ c) + fb(x+ a+ c)

vanish when a and c belong to this vector space. We have

fb(x) = trn(bx2i+1) + trn(b(x2i + x+ 1)) trn(x2i+1),

Dafb(x) = trn(bx2i+1) + trn(bx2i+1 + bax2i + ba2ix+ ba2i+1)

+trn(b(x2i + x+ 1))trn(x2i+1)

+trn(b(x2i + x+ 1 + a2i + a))trn(x2i+1 + ax2i + a2ix+ a2i+1)

= trn(bax2i + ba2ix+ ba2i+1) + trn(b(a2i + a))trn(x2i+1)

+trn(b(x2i + x+ 1))trn(ax2i + a2ix+ a2i+1)

+trn(b(a2i + a))trn(ax2i + a2ix+ a2i+1),

DaDcfb(x) = trn(bac2i + ba2ic) + trn(b(a2i + a))trn(cx2i + c2ix+ c2i+1)

+trn(b(c2i + c))trn(ax2i + a2ix+ a2i+1)

+trn(b(x2i + x+ 1))trn(ac2i + a2ic)

+trn(b(c2i + c))trn(ac2i + a2ic)

+trn(b(a2i + a))trn(ac2i + a2ic)

= trn(λx) + ε,

where

λ = (c2n−i + c2i)trn(b(a2i + a)) + (a2n−i + a2i)trn(b(c2i + c))

+(b2
n−i

+ b)trn(ac2i + a2ic),

ε = trn(bac2i + ba2ic) + trn(b(a2i + a))trn(c2i+1)

+trn(b(c2i + c))trn(a2i+1) + trn(b)trn(ac2i + a2ic)

+trn(b(c2i + c))trn(ac2i + a2ic) + trn(b(a2i + a))trn(ac2i + a2ic).

The function DaDcfb is null if and only if ε = λ = 0. Then the n/2-
dimensional vector space can be taken equal to F2n/2 . Indeed, if a, b, c ∈
F2n/2 , then λ and ε are null since the trace of any element of F2n/2 is null. If,
under the conditions of Proposition 11, n is divisible by 4s then b ∈ F22s ⊂
F2n/2 . 2

Remark 7 [25] For n ≥ 8 the functions fb are not in class PSap, up to
EA-equivalence, because the degree of PSap functions is always n/2.
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3.1.2 The infinite class of the functions G

We study now the bent components of function (3.2).

Theorem 12 [25] Let n be a positive integer divisible by 6 and let i be
a positive integer not divisible by n/2 such that n/ gcd(i, n) is even. Let
b ∈ F2n and let G be given by (3.2). Then the Boolean function gb(x) =
trn(bG(x)) is bent if and only if, for any d ∈ F8, the element b + d + d2 is
not the (2i + 1)-th power of an element of F2n. If, in addition, i is divisible
by 3 and b /∈ F2i then gb has algebraic degree 3. If i is not divisible by 3 then
gb has algebraic degree at least 3, and it is exactly 4 if n ≥ 12 and either
b /∈ F8 or tr3(b) 6= 0.

Proof. First we are going to prove that for n/ gcd(i, n) even, the function
gb is bent if and only if the element b of F2n is such that for any d ∈ F8, the
element b+ d+ d2 is not the (2i + 1)-th power of an element of F2n .
By Theorem 3 of [34], which proves that the function G is CCZ-equivalent
to F ′(x) = x2i+1, the graph of F ′ is mapped to the graph of G by the linear
involution

L(x, y) = (x+ tr3
n(y2 + y4), y).

For the adjoint operator L∗ of L∗ we have

L∗(x, y) = (x, y + tr3
n(x2 + x4))

because

trn
(
tr3
n(y2 + y4)x′

)
= trn

 ∑
0≤j≤n−1

n
3 6 |j

x′y2j

 = trn

 ∑
0≤j≤n−1

n
3 6 |j

x′2
n−j

y



= trn

 ∑
0≤j≤n−1

n
3 6 |j

x′2
j
y

 = trn
(
tr3
n(x′2 + x′4)y

)
.

Since L and L∗ are involutions and since λG(a, b) = λF ′(L−1∗(a, b)), then
we get

λG(a, b) = λF ′(a, b+ tr3
n(a2 + a4)).

Thus, gb is bent if and only if b + tr3
n(a2 + a4) is not the (2i + 1)-th power

of an element of F2n for any a. This proves the first part of Theorem 12.
We prove below that the function gb has algebraic degree 3 when i is

divisible by 3 but not by n/2 and b /∈ F2i .
Since tr3

n(x22i(2i+1)) = tr3
n(x2i+1) for i divisible by 3 then

G(x) =
(
x+ tr3

n

(
x2(2i+1) + x4(2i+1)

))2i+1

= x2i+1 + tr3
n

(
x2i+1 + x4(2i+1)

)
+ (x+ x2i)tr3

n

(
x2(2i+1) + x4(2i+1)

)
.
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Clearly, c = b + b2
n−i 6= 0 because b /∈ F2i , and, since i is not divisible by

n/2 then all terms in tr3
n

(
x2(2i+1) +x4(2i+1)

)
are pairwise different. For some

quadratic function Q, we have

gb(x) = Q(x) + trn
(
b(x+ x2i)tr3

n

(
x2(2i+1) + x4(2i+1)

))
= Q(x) + tr3

(
tr3
n

(
cx)tr3

n

(
x2(2i+1) + x4(2i+1)

))
.

and it is not difficult to see that the cubic terms of gb do not vanish. Indeed,

tr3

(
tr3
n

(
cx)tr3

n

(
x2(2i+1) + x4(2i+1)

))
=

n/3−3∑
j,k=0

c23kx23k+23j+1+23j+i+1
+

n/3−3∑
j,k=0

c23kx23k+23j+2+23j+i+2

+

n/3−3∑
j,k=0

c23k+1
x23k+1+23j+2+23j+i+2

+

n/3−3∑
j,k=0

c23k+1
x23k+1+23j+3+23j+i+3

+

n/3−3∑
j,k=0

c23k+2
x23k+2+23j+3+23j+i+3

+

n/3−3∑
j,k=0

c23k+2
x23k+2+23j+4+23j+i+4

.

The item with the exponent 1 + 21 + 2i+1 of x appears only in the first sum
above and, obviously, it does not vanish there. As i is divisible by 3 but not
by n/2 then this exponent has 2-weight 3.

Let now i be not divisible by 3. We are going to prove that in this case
the function gb has algebraic degree at least 3, and it is exactly 4 if n ≥ 12,
and either b /∈ F8 or tr3(b) 6= 0. For n = 6 it is checked with a computer
that gb has algebraic degree at least 3 for any b ∈ F∗26 .
Let n ≥ 12. For simplicity we consider only the case i = 1. Denoting
T (x) = tr3

n(x3) we get

G(x) = C(x) + tr3

(
T (x)3

)
+ trn(x)

(
x
(
T (x) + T (x)2

)
+ x2

(
T (x) + T (x)4

))
,

where

C(x) = x3+T (x)+trn(x)
(
T (x)+T (x)4

)
+x
(
T (x)+T (x)4 big)+x2

(
T (x)2+T (x)4

)
is a cubic function. Hence,

gb(x) = trn(bC(x)) + trn(b)tr3

(
T (x)3

)
+trn(x)tr3

(
T (x)tr3

n(bx+ bx2 + (b2 + b4)x4)
)

= trn(bC(x)) + trn(b)
( ∑

0≤j,t<n/3

x23j+1+23j+23t+2+23t+1

+
∑

0≤j,t<n/3

x23j+3+23j+2+23t+1+23t +
∑

0≤j,t<n/3

x23j+3+23j+2+23t+2+23t+1
)

+
∑

0≤j,k<n
0≤t<n/3

ukx
2j+2k+23t+23t+1

+
∑

0≤j,k<n
0≤t<n/3

vkx
2j+2k+23t+1+23t+2
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+
∑

0≤j,k<n
0≤t<n/3

wkx
2j+2k+23t+2+23t+3

where for 0 ≤ k < n

uk =


b2
k

if k = 0 mod 3

b2
k−1

if k = 1 mod 3

(b2 + b4)2k−2
if k = 2 mod 3

,

vk =


b2
k

if k = 1 mod 3

b2
k−1

if k = 2 mod 3

(b2 + b4)2k−2
if k = 0 mod 3

,

wk =


b2
k

if k = 2 mod 3

b2
k−1

if k = 0 mod 3

(b2 + b4)2k−2
if k = 1 mod 3

.

The exponent 26 + 29 + 20 + 21 has 2-weight 4 and, obviously, we have
items with this exponent only with coefficients u6 and u9. Then u6 + u9 =
b2

6
+ b2

9
= (b+ b8)26 6= 0 when b /∈ F23 . Hence, in the univariate polynomial

representation of gb the item x26+29+20+21 has a non-zero coefficient and,
therefore, gb has algebraic degree 4 for b /∈ F23 .
If b ∈ F23 then trn(b) = 0. If tr3(b) 6= 0 then we have items with the
exponent 26 + 28 + 20 + 21 only with coefficients u6 and u8 and u6 + u8 =
b2

6
+ (b2 + b4)26 = tr3(b) 6= 0. Hence, again gb has algebraic degree 4 when

b ∈ F23 and tr3(b) 6= 0.
Let b ∈ F23 and tr3(b) = 0. Then all items with exponents of 2-weight 4
vanish and

gb(x) = trn(bC(x))

= trn
(
b(x3 + T (x))

)
+ tr3

(
T (x)tr3

n(bx+ b2x2 + b2x4 + b4x8)
)

= trn
(
b(x3 + T (x))

)
+

∑
0≤k<n

0≤t<n/3

b2x2k+23t+23t+1

+
∑

0≤k<n
0≤t<n/3

b4x2k+23t+1+23t+2
+

∑
0≤k<n

0≤t<n/3

bx2k+23t+2+23t+3
.

In gb, the only item with the exponent 20 + 21 + 23 has the coefficient b2.
Hence gb has algebraic degree 3 when b ∈ F∗23 and tr3(b) = 0. 2

Since F ′ is quadratic then, according to Corollary 3, the bent non-
quadratic components of G are CCZ-inequivalent to the components of F ′.

Corollary 9 [25] The functions gb of Theorem 12 are CCZ-inequivalent to
any component of F ′(x) = x2i+1.



60 CHAPTER 3. BENT FUNCTIONS

Remark 8 [25] We checked with a computer that for n = 6 there are cubic
bent components of G which are EA-inequivalent to any component of F .
This implies that in general cubic bent components of G are EA-inequivalent
to cubic bent components of F .

The existence of elements b satisfying the conditions of Theorem 12
and relation to MM class We prove in Proposition 13 the existence of
elements b satisfying the conditions of Theorem 12 for gcd(i, n) 6= 1. The
existence of such elements for the case gcd(i, n) = 1 when gcd(9, n) 6= 9 will
be shown in Proposition 15.

Proposition 13 [25] Let n be a positive even integer divisible by 6 and
i a positive integer not divisible by n/2 such that n/ gcd(i, n) is even and
gcd(i, n) 6= 1. There exist at least 1

5(2n−1)−2n/2 > 0 elements b ∈ F2n \F2i

such that, for any d ∈ F8, the element b+ d+ d2 is not the (2i + 1)-th power
of an element of F2n.

Proof. As in the proof of Proposition 10, we have gcd(2n − 1, 2i + 1) ≥
2gcd(i,n) + 1. This implies gcd(2n−1, 2i+ 1) ≥ 5. Since the number of d+d2

equals 4 and the size of the set E′ of all (2i+1)-th powers of elements of F∗2n
is at most (2n − 1)/5, this implies that

(
F2n ∩F2i

)
∪
(⋃

d∈F8
(d+ d2 +E′)

)
has size at most 2n/2 + 4(2n − 1)/5 < 2n − 1. This completes the proof. 2

Here again, we shall need a more effective result, in order to build a bent
vectorial function deduced from G. Next proposition describes cases for i
divisible by 3 where elements b satisfying the conditions of Theorem 12 can
be very easily chosen.

Proposition 14 [25] Let i, n, s be positive integers such that i is not divis-
ible by n/2, gcd(i, 6s) = 3s, and gcd(n, 6s(23s + 1)) = 6s. If b ∈ F26s \F23s

and the function G is given by (3.2) then the Boolean function gb(x) =
trn(bG(x)) is bent and cubic.

Proof. We are going to show that, under these assumptions, the conditions
of Theorem 12 are satisfied. Note that since gcd(i, 6s) = 3s then i

3s is odd,
and since b ∈ F26s \F23s then b /∈ F2i . Besides, n/ gcd(i, n) is even because
gcd(i, 6s) = 3s and gcd(n, 6s) = 6s.

According to (3.5) the number 2i + 1 is divisible by 23s + 1 because i
3s

is odd. Therefore if b is not the (23s + 1)-th power of an element of F2n

then it is not the (2i + 1)-th power of an element of F2n . Besides, since
b ∈ F26s \F23s then for any d ∈ F8 we have b + d + d2 ∈ F26s \F23s . Hence,
it is enough to prove that any element b in F26s \F23s is not the (23s + 1)-th
power of an element of F2n .

Since b ∈ F26s \F23s then there exists a primitive element α of F2n , and
a positive integer k not divisible by 23s + 1, such that b = αk(2n−1)/(26s−1).



3.1. NEW BENT FUNCTIONS VIA CCZ-EQUIVALENCE 61

Obviously, b is the (23s + 1)-th power of an element of F2n if and only if
k is divisible by r = (23s + 1)/ gcd

(
23s + 1, (2n − 1)/(26s − 1)

)
. But since

gcd(n, 6s(23s + 1)) = 6s then r = 23s + 1 (see the proof of Proposition 11).
Hence, b cannot be the (23s + 1)-th power of an element of F2n . 2

For i not divisible by 3 we obtain a slightly more complex description of
some elements b satisfying the conditions of Theorem 12.

Proposition 15 [25] Let i, n, s be positive integers such that n ≥ 12, gcd(i, 2s) =
s, gcd(i, 3) = 1, gcd(n, 6s(23s + 1)) = 6s, and the function G be given by
(3.2). If b ∈ F26s is such that for any d ∈ F8 the element b+d+d2 is not the
(2s+ 1)-th power of an element of F26s then the function gb(x) = trn(bG(x))
is bent and has algebraic degree 4.

Proof. We have that i/s is odd and n/ gcd(i, n) is even because gcd(i, 2s) =
s and gcd(n, 6s(23s + 1)) = 6s. Then 2i + 1 is divisible by 2s + 1 due to
(3.5). Therefore if b is not the (2s + 1)-th power of an element of F2n then
it is not the (2i + 1)-th power of an element of F2n . Besides, since b ∈ F26s

then for any d ∈ F8 we have b+ d+ d2 ∈ F26s . Hence we need only to prove
that any element b ∈ F26s , which is not the (2s + 1)-th power of an element
of F26s , is not the (2s + 1)-th power of an element of F2n .

Since b ∈ F26s then there exists a primitive element α of F2n and a pos-
itive integer k such that b = αk(2n−1)/(26s−1). Since gcd(n, 6s(23s + 1)) = 6s
then, as shown in the proof of Proposition 11, we have gcd

(
23s + 1, (2n −

1)/(26s− 1)
)

= 1, and therefore gcd
(
2s + 1, (2n− 1)/(26s− 1)

)
= 1 because

2s + 1 is a divisor of 23s + 1. Hence b is the (2s + 1)-th power of an element
of F2n if and only if k is divisible by 2s + 1, that is, if and only if b is the
(2s + 1)-th power of an element of F26s . 2

For small values of s it is easy to count the exact numbers of elements
b ∈ F26s which satisfy the condition of Proposition 15. For instance, for
s = 2 there are 1736 such elements b, and for s = 4 there are 13172960
such elements. For s = 1 there are 12 such elements and these elements b
are zeros of one of the polynomials x6 + x + 1 and x6 + x4 + x3 + x + 1.
Hence, if in addition to conditions of Theorem 12 we have gcd(i, n) = 1 and
gcd(9, n) = 3 then Proposition 15 ensures the existence of elements satisfy-
ing the conditions of this theorem.

Thanks to computer investigations, we know that some of the con-
structed bent functions gb (Theorem 12) are neither in MM class nor in
PS class:

Proposition 16 [25] For n = 12 and i = 1, α a primitive element of F2n

(determined by MAGMA), the function trn(α19G(x)) is a bent function of
algebraic degree 4 which is neither in MM class nor in PS class, up to
EA-equivalence (that is, up to CCZ-equivalence).
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This shows by an example that having a vectorial function F with bent
components all of which are in the MM class, we can construct a function
F ′ CCZ-equivalent to F but which has some non-MM bent components.

Remark 9 [25] For n ≥ 10 the functions gb are not in class PSap, up to
EA- equivalence, because the degree of PSap functions is always n/2.

3.1.3 Further constructions?

Applying CCZ-equivalence to the quadratic APN function x3 + trn(x9), it
is possible to construct classes of nonquadratic APN mappings with some
bent components. The same affine transformations L as those which gave
respectively F and G from Gold functions, when they are applied to the
graph of x3 + trn(x9) (which is CCZ-inequivalent to Gold), give graphs
of functions as well, and some of the components of the resulting CCZ-
equivalent APN functions are bent. Indeed, let n be an even positive integer,
H : F2n → F2n , H(x) = x3 + trn(x9), then the following functions are CCZ-
equivalent to H (see [32])

1) the function with algebraic degree 3

x3 + trn(x9) + (x2 + x+ 1)trn(x3);

2) for n divisible by 6 the function with algebraic degree 4(
x+ tr3

n(x6 + x12) + trn(x)tr3
n(x3 + x12)

)3
+trn

((
x+ tr3

n(x6 + x12) + trn(x)tr3
n(x3 + x12)

)9)
.

The bent components of the functions above have the same algebraic
degrees as those of F , resp. G. We could check by a computer that for
small values of n the bent components of those functions are equivalent to
bent components of F and G, respectively. We do not know if in general
the resulting APN functions have bent components inequivalent to those of
F and G and it seems difficult to see this mathematically.

For n = 12 we give below another example illustrating the application
of CCZ-equivalence in constructions of bent functions.

Example 1 [25] Let α be a primitive element of F212 and P : F212 → F212 ,
P (x) = αx3 + α256x528 + α257x514. The function P is EA-equivalent to the
trinomial APN function from [14]. Let

L1 = tr3
12(y) + αtr3

12(α4x) + α2tr3
12(α16x) + α4tr3

12(α64x),

L2 = tr3
12(x) + αtr3

12(α4y) + α2tr3
12(α16y) + α4tr3

12(α64y).

Then the linear function (L1, L2) is a permutation of F2
212 and the function

P1(x) = L1(x, P (x)) is a permutation of F212 . Therefore, the function P ′ =
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P2 ◦P−1
1 , where P2(x) = L2(x, P (x)), is CCZ-equivalent to P . The function

tr12(α9P (x)) is bent and has algebraic degree 5, it is EA-inequivalent to any
function from MM classes (as checked with a computer). Obviously, it is
EA-inequivalent to any bent component of F, F ′, G, P or any PSap function
because of the algebraic degree.

Non-existence of APN permutations EA-equivalent to functions F
and G Finding APN permutations over F2n when n is even is a hard prob-
lem. Non-existence of such quadratic functions was proven in [130]. Hence
the APN function F ′(x) = x2i+1, gcd(i, n) = 1, n even, is EA-inequivalent
to any permutation. However, it is potentially possible that F ′ is CCZ-
equivalent to a nonquadratic APN permutation. For instance, the only
known example of an APN permutation for n even is constructed in [67] by
applying CCZ-equivalence to a quadratic APN function over F26 . From this
point of view the following facts are interesting.

Corollary 10 [25] Let n and i be positive integers and gcd(i, n) = 1. If n
is even then the APN function F given by (3.1) is EA-inequivalent to any
permutation over F2n. If gcd(n, 18) = 6 then the APN function G given by
(3.2) is EA-inequivalent to any permutation over F2n.

Proof. The function F has bent components by Proposition 10, and G
has bent components by Proposition 15. Therefore, F and G are not EA-
equivalent to any permutation. 2

3.1.4 New classes of bent vectorial functions in trace repre-
sentation

Let F be a function from F2n to itself and b ∈ F∗2n . For n divisible by m,
the (n,m)-function trmn (bF (x)) is bent if and only if, for any v ∈ F∗2m , the
Boolean function trn(bvF (x)) is bent. Hence we can obtain vectorial bent
functions from Theorem 11.

Theorem 13 [25] Let n ≥ 6 be an even integer divisible by m and i a
positive integer not divisible by n/2 and such that n/ gcd(i, n) is even. If
b ∈ F2n \F2i is such that for any v ∈ F∗2m, neither bv nor bv + 1 are the
(2i + 1)-th powers of elements of F2n, and the function F is given by (3.1)
then the function fb(x) = trmn (bF (x)) is bent and has algebraic degree 3.

In particular we obtain the following vectorial bent functions from Proposi-
tion 11.

Corollary 11 [25] Let n ≥ 6 be an even integer, i a positive integer not
divisible by n/2 and s a divisor of i such that i/s is odd and gcd(n, 2s(2s +
1)) = 2s. If b ∈ F22s \F2s and the function F is given by (3.1), then the
function fb(x) = trsn(bF (x)) is bent and has algebraic degree 3.
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Proof. Since b ∈ F22s \F2s then bv ∈ F22s \F2s for any v ∈ F∗2s . Hence by
Proposition 11 the functions trn(bvF (x)) are bent and cubic for all v ∈ F∗2s ,
and, therefore, trsn(bF (x)) is bent and has algebraic degree 3. 2

Theorem 12 also leads to new bent vectorial functions.

Theorem 14 [25] Let n be a positive integer divisible by 6, m > 1 a divisor
of n, and i a positive integer not divisible by n/2 such that n/ gcd(i, n) is
even. Let b ∈ F2n be such that, for any d ∈ F8 and any v ∈ F∗2m, bv+d+d2 is
not the (2i + 1)-th power of an element of F2n. If the function G is given by
(3.2) then the Boolean function gb(x) = trmn (bG(x)) is bent. If, in addition,
i is divisible by 3, and bv /∈ F2i for some v ∈ F∗2m then gb has algebraic degree
3. If i is not divisible by 3 then gb has algebraic degree at least 3, and it is
exactly 4 if n ≥ 12, and for some v ∈ F∗2m either bv /∈ F8 or tr3(bv) 6= 0.

Proposition 14 allows us to describe some particular cases of bent vectorial
functions of Theorem 14 for i divisible by 3.

Corollary 12 [25] Let i, n, s be positive integers such that i is not divisible
by n/2, gcd(i, 6s) = 3s, and gcd(n, 6s(23s + 1)) = 6s. If b ∈ F26s \F23s and
the function G is given by (3.2) then the function gb(x) = tr3s

n (bG(x)) is bent
and cubic.

Proof. Since b ∈ F26s \F23s then bv ∈ F26s \F23s for any v ∈ F∗23s . Hence by
Proposition 14 the functions trn(bvF (x)) are bent and cubic for all v ∈ F∗23s ,
and, therefore, tr3s

n (bF (x)) is bent and cubic. 2

Next corollary follows from Proposition 15 and refers to the case where i is
not divisible by 3.

Corollary 13 [25] Let i, n, s be positive integers such that n ≥ 12, gcd(i, 2s) =
s, gcd(i, 3) = 1, and gcd(n, 6s(23s + 1)) = 6s. If the function G is given
by (3.2) and b ∈ F26s is such that for any d ∈ F8 and any v ∈ F∗23s the
element bv + d + d2 is not the (2s + 1)-th power in F26s then the function
gb(x) = tr3s

n (bG(x)) is bent and has algebraic degree 4.

Since F ′(x) = x2i+1 is quadratic, then according to Corollary 3:

Corollary 14 [25] The bent functions fb and gb of Theorems 13 and 14 (and
Corollaries 11, 12 and 13, in particular) are CCZ-inequivalent to trmn (vF ′(x))
for any v ∈ F2n and any divisor m of n.

Remark 10 [25] To our knowledge there are only three known infinite
classes of vectorial bent functions expressed in trace representation trmn (F (x)):

the function trmn (x2n/2+1) (which is a Maiorana McFarland function), the
function trmn (wxd) where n is congruent to 2 mod 4, d = 2i + 1 is a Gold
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exponent (with (i, n) = 1) and w is not a cube, and the function trmn (wxd)
where n is congruent to 2 mod 4, d = 4i−2i+ 1 is a Kasami exponent (with
(i, n) = 1) and w is not a cube (see [71, 109]). The functions we obtain in
this section are inequivalent to these functions and so they are new in this
sense: Corollary 14 shows that the constructed vectorial bent functions are
not CCZ-equivalent to the functions with Gold exponents indicated above;
inequivalence to the functions above with Kasami eponents can be easily
seen for any n divisible by 4 (because Kasami type bent functions are not
defined then) and any n divisible by 6 since the constructed bent vectorial
functions have algebraic degree 3 or 4 while for n divisible by 6 there exists
no Kasami function of algebraic degree 3 or 4 (Kasami type bent functions
have algebraic degree i+ 1).

3.2 On Bent Functions Associated to AB Func-
tions

In [46], APN and AB functions are characterized by means of associated
Boolean functions. For a given function F from F2n to itself and for any
a, b ∈ F2n , define the Boolean function γF over F2

2n as

γF (a, b) =

{
1 if a 6= 0 and F (x+ a) + F (x) = b has solutions,
0 otherwise.

Note that for any power function F (x) = xd we have γF (a, b) = γF (1, b/ad)
for any a, b ∈ F2n , a 6= 0.

The theorem below shows connections between properties of F and γF .

Theorem 15 [46] Let F be a function from F2n to itself. Then the following
properties hold:

(i) F is APN if and only if γF has weight 22n−1 − 2n−1;

(ii) F is AB if and only if γF is bent;

(iii) if F is APN then the function b→ γF (a, b) is balanced for any a 6= 0;

(iv) if F is an APN permutation then the function a→ γF (a, b) is balanced
for any b 6= 0.

In addition, CCZ-equivalence and EA-equivalence result in the equivalence
of the associated functions γF .

Proposition 17 [27] Let F and F ′ be functions from F2n to itself. If F
and F ′ are CCZ-equivalent then there exists an affine permutation L of F2

2n

such that
γF ′ = γF ◦ L.
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If F and F ′ are EA-equivalent then there exist affine permutations A1, A2

and an affine function A such that for any a, b ∈ Fn2 ,

γF ′(a, b) = γF
(
A2(a) +A2(0), A−1

1 (A(a) + b+A(0) +A1(0))
)
.

Indeed, if F ′ = A1 ◦ F ◦ A2 + A then the derivative DaF
′(x) of F ′ equals

A1(DA2(a)+A2(0)F (A2(x))) + A(a) + A(0) + A1(0). Proposition 17 implies
that all affine invariants of γF (as weight, differential and linear properties,
algebraic degree, et al.) can be used as CCZ-invariants for F .

Hence, although studying γF is interesting by itself (see [46]), there are
also practical reasons for it: because they can be a source of potentially
new bent functions when F is AB and because affine invariants of γF are
CCZ-invariants for F . However, in general it may be a difficult matter to
determine γF for a given F . Up to now representations of γF have been de-
termined only for Gold and inverse power APN functions while determining
γF for the rest of AB power functions has been an open problem, see [46].
In the present section we find the representation of γF for all known power
AB functions and for almost all known families of APN polynomials. We
also try to determine whether these bent functions (when F is AB) belong
to the main known classes of bent functions. The left open cases of APN
functions to determine γF are the Dobbertin power APN functions and APN
polynomials (8-10) from Table 6.

3.2.1 Power AB functions

The representations of functions γF were found for Gold and inverse power
functions in [46]:

1. Let F (x) = x2i+1, gcd(i, n) = 1, then

γF (a, b) = trn(
b

a2i+1
) with

1

0
= 0.

2. Let F (x) = x2n−2 then

γF (a, b) = trn
( 1

ab

)
+ 1 + ∆0(a) + ∆0(b) + ∆0(a)∆0(b) + ∆0(ab+ 1)

where ∆0(x) equals 1 for x = 0 and 0 otherwise.

Below we find the function γF for Kasami, Welch and Niho power APN
functions using the works of Dobbertin [77, 74, 75] and by this we solve the
open problem mentioned in [46].

Welch case Let n = 2m + 1 and F (x) = xd with d = 2m + 3. Then
according to [75] we have

F (x+ 1) + F (x) + 1 = q(x2m + x)
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for a permutation polynomial

q(x) = x2m+1+1 + x3 + x.

Then the equation F (x+ 1) + F (x) = b is equivalent to the equation

q(x2m + x) = b+ 1.

Hence,

γF (a, b) = γF (1, b/ad) =

{
trn
(
q−1(b/ad + 1)

)
+ 1 if a 6= 0,

0 otherwise.

Niho case Let n = 2m+ 1 and r = m/2 if m is even and r = (3m+ 1)/2
if m is odd (i.e. 4r + 1 ≡ 0 mod n). Then the Niho power function over
F2n is F (x) = xd with d = 22r + 2r − 1. The APN property of the Niho
function was proven by Dobbertin [74] and we get γF using this proof.

We have

F (x+ 1) + F (x) + 1 =

{
1

q
(

(x2r+x)2r−1+1
) if x /∈ F2

0 otherwise
(3.8)

where

q(x) = x22r+1+2r+1+1 + x22r+1+2r+1−1 + x22r+1+1 + x22r+1−1 + x

is a permutation. Using (3.8) we get

γF (a, b) =

{
1 if b = ad, a 6= 0,

trn

((
q−1
(

ad

b+ad

)
+ 1
) 1

2r−1

)
+ 1 otherwise.

Kasami case Let F (x) = xd with d = 22i − 2i + 1, gcd(i, n) = 1, 2 ≤ i <
n/2. The APN property of the Kasami function was proven by Dobbertin
[77]. According to the proof, we have

F (x+ 1) + F (x) + 1 = 1/qα(x2i + x)

for a permutation polynomial qα such that

qα(x) =
( i′∑
j=1

x2ji + α trn(x)
)
x2n−2i ,

where i′ ≡ 1/i mod n, and, α = 0 if i′ is odd and α = 1 otherwise. Then
the equation F (x+ 1) + F (x) = b is equivalent to the equation

1

qα(x2i + x)
= b+ 1,
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or

x2i + x = q−1
α

( 1

b+ 1

)
.

Hence

γF (a, b) = γF (1, b/ad) =

 trn
(
q−1
α ( ad

b+ad
)
)

+ 1 if b 6= ad, a 6= 0,

1 if b = ad, a 6= 0,
0 if a = 0.

For α = 0, Dobbertin determined the inverse of the permutation qα:

q−1
0 (1/x) = R(x) =

i′∑
i=1

Ai(x) +Bi′(x),

where

A1(x) = x,

A2(x) = x2i+1,

Ak+2(x) = x2(k+1)i
Ak+1(x) + x2(k+1)i−2ikAk(x), k ≥ 1,

B1(x) = 0,

B2(x) = x2i−1,

Bk+2(x) = x2(k+1)i
Bk+1(x) + x2(k+1)i−2ikBk(x), k ≥ 1.

Hence for α = 0 we have

γF (a, b) = γF (1, b/ad) =

{
trn
(
R(b/ad + 1)

)
+ 1 if a 6= 0,

0 otherwise.

Relation to completed MM class and to PSap Many bent functions
found in trace representation (listed e.g. in [45] and recalled in Section
1.1.1) are in the completed MM class. However, bent functions γF corre-
sponding to Kasami (when n is odd), Welch and Niho functions are not
in general in the completed MM class. Indeed, Kasami, Welch and Niho
functions are CCZ-inequivalent to generalized crooked functions for n = 7, 9
(see [84]). In Proposition 18 below, we observe that, for n odd, a function
F is CCZ-equivalent to a generalized crooked function if and only if γF is
in the completed MM class. Hence, for n = 7, 9 the functions γF related to
the Kasami, Welch and Niho functions are not in the completed MM class.

For n = 7, 9 the functions γF related to the Kasami, Welch and Niho
functions have algebraic degree n− 1 and, therefore, are not in PSap.
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3.2.2 Quadratic APN and AB functions

For any quadratic function, for every non-zero vector a,

F (x) + F (x+ a) = ϕF (x, a) + F (0) + F (a)

where

ϕF (x, y) = F (0) + F (x) + F (y) + F (x+ y)

is bilinear. The set

Ea = {F (x) + F (x+ a) : x ∈ Fn2}

is then an affine subspace of Fn2 . If F is APN, then Ea has cardinality 2n−1

and so is an affine hyperplane. Therefore, there exists a unique non-zero
vector G(a) and a unique bit g(a) such that

Ea = {y ∈ Fn2 |G(a) · y = g(a)}.

Hence

γF (a, b) = G(a) · b+ g(a) + 1

for every a 6= 0 and every b. Defining G(0) = 0 and g(0) = 1 makes this
equality valid for any a and b.

For n odd, the fact that γF is in MM class (in the sense that it is
affine with respect to b, for every a) is characteristic of generalized crooked
functions.

Proposition 18 [27] A function F is generalized crooked if and only if γF is
affine with respect to b. If n is odd then F is CCZ-equivalent to a generalized
crooked function if and only if γF is in the completed MM class of bent
functions.

Hence the open problem of existence of non-quadratic generalized crooked
functions is equivalent to the question of existence of non-quadratic APN
functions whose γ functions are affine with respect to b.

Below we determine γ function for the known classes of quadratic APN
functions.

Cases (1) and (2) of APN polynomials Below we find the γ functions
for the family of APN binomials (1) and (2) of Table 6 constructed in [30].
These functions are AB for n odd, and therefore, their γ functions are bent.

Let s, k be positive integers, k odd, such that gcd(k, 3) = gcd(s, 3k) = 1,
and i = sk mod 3, t = 3− i, n = 3k, and α a primitive element of F∗2n . We
consider the function

F (x) = x2s+1 + α2k−1x2ik+2tk+s (3.9)



70 CHAPTER 3. BENT FUNCTIONS

which is APN on F2n and which is an AB permutation when n is odd (see
Theorem 23 and [30]).

Assume first that i = 2. For every u, v ∈ F2n , v 6= 0, we consider the
equation F (x) + F (x + v) = u. Following the same steps as in the proof
of Theorem 23 we get that this equation has solutions if and only if the
equation

∆a(x) = d (3.10)

has solutions for

a =
(
αv2k+s+2s+1−2k(2s−1)

)2k−1
, (3.11)

d = (F (v) + u)v−(2s+1), (3.12)

∆a(x) = a
(
x22k + x2k+s

)
+ x2s + x. (3.13)

Denoting b = a2k and

T1(d) = bd2s + a2sd2k ,

T2(d) =
1

a(b+ 1)

(
bd+ ad2k + abd22k

)
,

T3(d) = T1(d) + a2sb(T2(d))2s ,

T4(d) = T3(d) +
a2s(b+ 1)2s + (a+ 1)2sb

(b+ 1)2s
T2(d),

P (a) =
(ab)2s+1 + (ab)2s + a2sb+ a2s + ab+ b

(b+ 1)2s+1a
,

T5(d) = (T4(d))2s + P (a)2sT2(d),

T6(d) =
a+ 1

ab+ a
P (a)2s−1T4(d) + T5(d),

we get (again following the proof of Theorem 23) that any solution of (3.10)
is also a solution for

P (a)2s(b+ 1)2s
(
x22s + x2s

)
= T6(d), (3.14)

where P (a)2s(b+ 1) 6= 0. Denote:

f(d) = trn
(
P (a)−2s(b+ 1)−2sT6(d)

)
. (3.15)

Since the function T6(d) is linear then either f ≡ 0 or it is balanced. We
conjecture that f(d) is balanced for any a satisfying (3.11). Hence, since F
is APN, and if the conjecture is true, then (3.10) has solutions if and only
if (3.14) does. That is,

γF (v, u) =

{
1 + f

(
F (v)+u
v2s+1

)
if v 6= 0,

0 othewise.
(3.16)
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For i = 1 we get the function F (x) = x2s+1 + α2k−1x2k+22k+s and

F1(x) = α−22k(2k−1)F (x)22k = α−22k(2k−1)x22k(2s+1) + x2k+s+1,

that is,

γF (v, u) = γF1(v, (uα1−2k)22k),

and F1 is of the type (3.9) with i = 2 and s′ = s+ k.
Using the proof of Theorem 24 we similarly find the γ functions for the

binomials with n divisible by 4.

Case (5) of APN polynomials Let n be any positive integer and c ∈
F∗2n . Then according to [31, 32] the function F (x) = x3 + c−1 trn(c3x9) is
APN over F2n (and AB for n odd). It is also proven in [31, 32] that for n
even F defines two different (up to CCZ-equivalence) functions: with c = 1
and c a primitive element of F2n , while for n odd only one function (see
Section 4.3).

We have:

F (x+ a) + F (x) + F (a) = a2x+ ax2 + c−1 trn(c3(a8x+ ax8))

= a3
(
y + c−1a−3 trn(c3a9(y + y2 + y4))

)
,

where y = (x/a)2 + x/a. Denoting

F ′a(x) = x+ c−1a−3 trn(c3a9(x+ x2 + x4))

we easily compute

F ′a ◦ F ′a(x) = x+ c−1a−3 trn(c3a9(x+ x2 + x4)) trn(c−1a−3).

Let trn(c−1a−3) = 0. Then F ′a is involutive, and F (x + a) + F (x) = b has
solutions if and only if

y = F ′a
(
a−3(b+ F (a))

)
satisfies trn(y) = 0, that is,

γF (a, b) = 1 + trn

(
F ′a
(
a−3(b+ F (a))

))
= 1 + trn

(
a−3b+ 1

)
.

Let trn(c−1a−3) = 1. Denoting

d = a−3(b+ F (a)) = a−3b+ 1 + c−1a−3 trn(c3a9)

we get that F ′a(y) = d if and only if y equals d if

trn(c3a9(d+ d2 + d4)) = 0
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and

d+ c−1a−3 if trn(c3a9(d+ c−1a−3 + d2 + c−2a−6 + d4 + c−4a−12)) = 1.

Note that

trn(c3a9(d+ c−1a−3 + d2 + c−2a−6 + d4 + c−4a−12))

= trn(c3a9(d+ d2 + d4)) + trn(c2a6 + ca3 + c−1a−3)

= trn(c3a9(d+ d2 + d4)) + 1.

Hence F ′a(y) = d has solutions y ∈ {d, d+ c−1a−3} if and only if

trn(c3a9(d+ d2 + d4)) = 0.

Since trn(c−1a−3) = 1 then F ′a(y) = d has exactly one solution satisfying
trn(y) = 0. Therefore, when trn(c−1a−3) = 1, we have

γF (a, b) = 1 + trn
(
c3a9(d+ d2 + d4)

)
= 1 + trn

(
c3(a6b+ a3b2 + a−3b4)

)
(the rest of the terms vanishing). Hence,

γF (a, b) = 1 + trn(c−1a−3) trn
(
c3(a6b+ a3b2 + a−3b4)

)
+
(
1 + trn(c−1a−3)

)
trn
(
a−3b+ 1

)
= trn

(
h(a)b

)
+ trn(c−1a−3),

where

h(a) = trn(c−1a−3)(a−3 + c3a6 + c2n−1+1a2n−1+1 + c3·2n−2
a−3·2n−2

) + a−3.

Clearly γF has algebraic degree n− 1 and therefore it is not in PSap.

Cases (6) and (7) of APN polynomials Let n be any positive integer
divisible by 3 and c ∈ F∗2n , i ∈ {1, 2}. Then the function

F (x) = x3 + c−1 tr3
n(c3x9 + c6x18)i

is APN over F2n and it is AB when n is odd (see [31] and Corollary 32). For
n even F defines four different (up to CCZ-equivalence) functions and only
two for n odd.

For any a ∈ F∗2n we denote

v = c3a9,

w = c−1a−3,

z = ca3,
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and we have

F (x+ a) + F (x) + F (a) = a3(y2 + y) + c−1 tr3
n

(
v(y8 + y) + v2(y16 + y2)

)i
= a3t+ c−1 tr3

n

(
(v + v2n−2

)t+ (v + v2)(t2 + t4)
)i

where y = x/a and t = y + y2. Denoting

F ′a(x) = x+ w tr3
n

(
(v + v2n−2

)x+ (v + v2)(x2 + x4)
)i
,

d = a−3(F (a) + b) = a−3b+ 1 + w tr3
n(v + v2)i,

we see that γF (a, b) = 1, a ∈ F∗2n , if and only if the system{
F ′a(x) = d
trn(x) = 0

has solutions. Clearly, if F ′a(x) = d then for some u ∈ F8

x = d+ wu,

u = tr3
n

(
(v + v2n−2

)d+ (v + v2)(d2 + d4)
)i

+ tr3
n

(
(v + v2n−2

)wu+ (v + v2)(w2u2 + w4u4)
)i
.

We denote

gu(a, b) = u+ tr3
n

(
(v + v2n−2

)d+ (v + v2)(d2 + d4)
)i

+ tr3
n

(
(v + v2n−2

)wu+ (v + v2)(w2u2 + w4u4)
)i

fu(a, b) =
(
1 + trn(d+ wu)

)
∆0(gu(a, b)).

We see that F ′a(x) = d has a solution satisfying trn(x) = 0 if and only if
fu(a, b) = 1 for some u ∈ F8.

Note that F ′a(x) is a permutation if tr3
n(w) ∈ F2 and 2-to-1 otherwise.

Indeed, since F ′a is linear it is enough to know the number of solutions of
F ′a(x) = 0. Then we get (using tr3

n(v2n−2
w) = tr3

n(w2))

x = wu, u ∈ F8,

u =
(
u tr3

n(z2 + w2) + u2 tr3
n(z + z4) + u4 tr3

n(w + z2)
)i
.

Hence the number of solutions of F ′a(x) = 0 is equal to the number of
solutions of

x+
(
x tr3

n(z2 + w2) + x2 tr3
n(z + z4) + x4 tr3

n(w + z2)
)i

= 0

in F8. Since all coefficients of that equation are in F8 then it is easy to check
with a computer that it has one solution if tr3

n(w) ∈ F2 and 2 otherwise.
Let α be a primitive element of F∗8. Since F ′a(x) = d can have at most 2
solutions then

γF (a, b) =
∑
u∈F8

f0(a, b)fu(a, b) +
∑

0≤j≤k≤6

fαj (a, b)fαk(a, b)

if a 6= 0 and equals 0 otherwise.
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Cases (3), (4) and (11) of APN polynomials As proven in [43], the
families of APN functions (3), (4) and (11) from Table 6 are particular cases
of Theorem 1 in [43]. Hence, the functions γ related to these three classes
as well as all the classes which can be deduced from this theorem can be
treated together:
Let i, j be integers such that gcd(n/2, i− j) = 1, and let s 6= 0, t 6= 0, u and
v be elements of F2n/2 such that the polynomial

sX2i+2j + uX2i + vX2j + t

has no root in F2n/2 , then

F (x, y) = (x y,G(x, y)),

where
G(x, y) = sx2i+2j + ux2iy2j + vx2jy2i + ty2i+2j ,

is APN [43]. We shall need the following well-known lemma, whose proof is
recalled for self-containment:

Lemma 3 [27] Let i and j be two integers such that gcd(n/2, i− j) = 1, let
k be the inverse of 2i−j − 1 modulo 2n/2 − 1 and let a 6= 0, b 6= 0, c ∈ F2n/2.

Then the equation ax2j + bx2i = c has solutions if and only if cbk

ak2
i−j = cbk

ak+1

has null trace.

Proof. The equation ax2j + bx2i = c is equivalent to b2
−j
x2i−j + a2−jx =

c2−j . Let d be the element of F2n/2 such that b2
−j

d =
(
a2
−j

d

)2i−j

, that is,

d =
(
a2
i−2j

b2
−j

)k
, then we have

b2
−j
x2i−j + a2−jx

d
=

(
a2−j

d
x

)2i−j

+
a2−j

d
x =

c2−j

d

and since gcd(n/2, i − j) = 1, this equation admits solutions if and only if
c2
−j

d has null trace, that is, c

d2
j has null trace. 2

For every non-zero (a, b), we have γF (a, b) = 1 if and only if the equation

F (x, y) + F (x+ a, y + b) = (c, d)

has solutions, that is, if and only if the equation

(bx+ ay, s(a2ix2j + x2ia2j ) + u(a2iy2j + x2ib2
j
)

+v(a2jy2i + x2jb2
i
) + t(b2

i
y2j + y2ib2

j
))

= (bx+ ay, (sa2i + vb2
i
)x2j + (sa2j + ub2

j
)x2i

+(ua2i + tb2
i
)y2j + (va2j + tb2

j
)y2i)

= (c+ ab, d+G(a, b))
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has solutions. For a = 0 and b 6= 0, denoting c′ = c
b , the first equation is

equivalent to x = c′ and then the second is equivalent to

t(b2
i
y2j + b2

j
y2i) = d+ tb2

i+2j + vb2
i
c′

2j
+ ub2

j
c′

2i
.

Then

γF (0, b) = trn/2

(
(d+ tb2

i+2j + vb2
i
c′2

j

+ ub2
j
c′2

i

)(tb2
j
)k

(tb2i)k+1

)
+ 1.

For a 6= 0, replacing x by ax and denoting c′ = c
a + b, the first equation is

equivalent to y = bx+ c′ and then the second is equivalent to

(sa2i+2j + va2jb2
i

+ ua2ib2
j

+ tb2
i+2j )x2j

+(sa2i+2j + ua2ib2
j

+ va2jb2
i

+ tb2
i+2j )x2i

= d+G(a, b) + (ua2i + tb2
i
)c′

2j
+ (va2j + tb2

j
)c′

2i

= d+ sa2i+2j + tb2
i+2j + (ua2i + tb2

i
)
c2j

a2j
+ (va2j + tb2

j
)
c2i

a2i
.

Then

γF (a, b) = trn/2

(
g(a, b)

h(a, b)

)
+ 1,

where

g(a, b) = (d+ sa2i+2j + tb2
i+2j + (ua2i + tb2

i
)
c2j

a2j
+ (va2j + tb2

j
)
c2i

a2i
)

×(sa2i+2j + ua2ib2
j

+ va2jb2
i

+ tb2
i+2j )k,

h(a, b) = (sa2i+2j + va2jb2
i

+ ua2ib2
j

+ tb2
i+2j )k+1.

3.3 On Dillon’s class H of bent functions

Let throughout this section n be even and n = 2m. We are going to analyze
all known univariate representations of Niho bent functions for their rela-
tion to the completed Maiorana-McFarland class. In particular, we prove
that two of the known families of Niho bent functions do not belong to the
completed MM class [29]. The latter result gives a positive answer to an
open problem whether the class of bent functions introduced by Dillon in
his thesis of 1974 differs from the completed class of Mayarana-McFarland
functions.

As it is previously mentioned, Niho bent functions (1.5) of case (2) (re-
called in Section 1.1.1) belong to the completed Maiorana-McFarland class.
Opposite to that, below we prove that Niho bent functions (1.4) of case (1)
do not belong to the completed MM class. This is done using Proposition 2
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that gives a criterion for a function to belong to this class. The relation
between Niho bent functions of case (3) and the completed MM class still
remains unknown.

Theorem 16 [29] Niho bent functions

f(t) = trm(x2m+1) + trn(xd)

over F22m with d = (2m − 1)3 + 1 do not belong to the completed MM class
for m > 3.

Proof. Note that d = 2(2m + 2m−1 − 1) and therefore,

f(x) = trm(x2m+1) + trn(xd
′
)

for d′ = 2m + 2m−1 − 1. Note further that

d′ =
m∑

i=0,i 6=m−1

2i .

The 2-weight of d′ is equal to m. Assume f belongs to the completed MM
class. Then by Proposition 2 there exists an m-dimensional vector space
V ⊂ F22m such that the second-order derivatives of f

Da,bf(x) = f(x+ a+ b) + f(x+ a) + f(x+ b) + f(x)

vanish for any a, b ∈ V . Take m > 3, select and fix a pair of nonzero a, b ∈ V .
Obviously, Da,bf equals to the sum of the second-order derivative of

trm(x2m+1), which is a constant trm(a2mb + ab2
m

), and the second-order
derivative of trn(xd

′
). Define a set E consisting of all possible numbers e

such that e =
∑m

i=0,i 6=m−1 ei2
i with ei ∈ {0, 1}. The binary expansion of

any element e ∈ E is

e = (0 . . . 0︸ ︷︷ ︸
m−1

em 0 em−2 em−3 . . . e1 e0) .

If (d′2m−1...d
′
0) denotes the binary expansion of d′ then the set E is the set

of all e such that 0 ≤ e ≤ 22m − 1 and ei ≤ d′i for all i, 0 ≤ i ≤ 2m− 1.
Denote e′ = d′ − e ∈ E for any e ∈ E. Then we easily get that

(x+ a)d =
∑
e∈E

aete
′

and then the second-order derivative of td
′

is

xd
′
+ (x+ a)d

′
+ (x+ b)d

′
+ (x+ a+ b)d

′

= xd
′
+
∑
e∈E

aexe
′
+
∑
e∈E

bexe
′
+
∑
e∈E

(a+ b)exe
′
. (3.17)
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Fix ē = 22 + 1 which belongs to E since m > 3, and then

ē′ = (0 ... 0︸ ︷︷ ︸
m−1

1 0 1 ... 1︸ ︷︷ ︸
m−4

0 1 0) .

It is easy to note that all cyclic shifts modulo (2n−1) of the binary expansion
of ē′ are distinct. Moreover, ē′ is not equal to a cyclic shift of any other vector
e ∈ E. Thus, after applying the trace function to (3.17) and collecting
coefficients at xē

′
, we obtain this equal to c = aē + bē + (a+ b)ē.

SinceDa,bf vanishes then the univariate polynomial representing it should
be a zero-polynomial. This in particular, means that c = a4b+ ab4 = 0 and
(a/b)3 = 1. Thus, a = ξib for some i ∈ {0, 1, 2} and ξ being a primitive
element of F4. If |V | = 2m > 4 then there exists a pair of nonzero elements
a, b ∈ V that are not related like this and which does not allow Da,bf to van-
ish. This shows that there cannot exist a vector space of dimension greater
than 2 such that all second-order derivatives in the direction of its elements
vanish. This contradiction completes the proof. 2

Note that the cases with m = 1, 2 of the function in Theorem 16 result
in quadratic bent functions that all belong to the completed MM class. We
also checked with a computer that the case m = 3 corresponds to the bent
function belonging to the completed MM class as well.

Further we will need the folloing lemma.

Lemma 4 [29] Take even m > 2 and interpret 1
3 as an inverse of 3 modulo

2m + 1. Then the exponent 2d2 = (2m − 1)1
3 + 2 has the binary weight m.

Proof. First, note that 1/3 modulo 2m + 1 is equal to (2m + 2)/3. Then

2d2 =
2n − 1

3
+

2m − 1

3
+ 2

=

m−1∑
i=0

22i +

m/2−1∑
i=0

22i + 2

=

m/2−1∑
i=0

22i+1 +

m−1∑
i=m/2

22i + 2

whose binary weight equals m if m > 2. 2

Theorem 17 [29] Niho bent functions

f(x) = trm(x2m+1) + trn(xd)

over F22m with d = 1
6(2m−1)+1 and m even, do not belong to the completed

MM class for m > 2.
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Proof. It follows from the proof of Lemma 4 that

d = 2
(m/2−2∑

i=0

22i+1 +

m−2∑
i=m/2−1

22i + 1
)
.

Hence, denoting d′ = d/2 we get

f(x) = trm(x2m+1) + trn(xd
′
).

Further, the proof goes similarly to the previous theorem.

For even m ≥ 4, define a set E consisting of all possible numbers e with
the following binary expansion

(0 0 0 e2m−4 0︸ ︷︷ ︸ . . . em 0︸︷︷︸︸ ︷︷ ︸
m/2−1

em−2 em−3 0 em−5︸ ︷︷ ︸ . . . 0 e1︸︷︷︸︸ ︷︷ ︸
m/2−2

e0)

with ei ∈ {0, 1}. Denote e′ = d− e ∈ E for any e ∈ E. Then we have

(x+ a)d =
∑
e∈E

aexe
′
.

Take ē = 2m−2 + 1 and then, since m > 3,

ē′ = (0 0 0 1 0︸︷︷︸ . . . 1 0︸︷︷︸︸ ︷︷ ︸
m/2−1

0 1 0 1︸︷︷︸ . . . 0 1︸︷︷︸︸ ︷︷ ︸
m/2−2

0) .

All cyclic shifts modulo (2n − 1) of the binary expansion of ē′ are distinct.
Moreover, ē′ is not equal to a cyclic shift of any other vector e ∈ E. Thus,
after applying the trace function to (3.17) and collecting coefficients at xē

′
,

we obtain this equal to c = aē + bē + (a+ b)ē.

Assume f belongs to the completed MM class. Then by Proposition 2
there exists an m-dimensional vector space V ⊂ F22m such that Da,bf van-
ish for any a, b ∈ V . Since Da,bf is equal to the sum of a constant and the
second-order derivative of trn(xd

′
), then c = 0 for all a, b ∈ V . We have

c = a2m−2
b+ ab2

m−2
= 0 and if ab 6= 0 then (a/b)2m−2−1 = 1. Thus, a = ub

for some u ∈ F∗2m−2 . Note that gcd(m − 2, 2m) ∈ {2, 4} for m > 4 and is
equal to 2 for m = 4. Therefore, since V ⊂ F22m , for a fixed nonzero a ∈ V
there exist at most 3 values of b ∈ V that are related to a in this way if
m = 4 and at most 15 values if m > 4. Hence, the dimension of V is strictly
smaller than m. This contradiction completes the proof. 2

Note that the remaining case with m = 2 in Theorem 17 results in the
quadratic bent function that obviously belongs to the completed MM class.
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Remark 11 [29] Inserting coefficients into the trace terms of the analyzed
bent functions does not change anything in the proofs of Theorems 16 and
17. Thus, the results of Theorems 16 and 17 also apply to all Niho bent
functions of case (1).

In [68] Dillon showed that the classH intersects with Maiorana-McFarland
class and it has remained an open question whether H is contained in com-
pleted MM class. Due to Theorems 16 and 17 we can reply this question. In-
deed, the class H differs fromH only by a linear term: take G(z) = F (z)+µz
in the definitions of H and H and get f(x, y) = g(x, y) + trm((µ + 1)y).
Hence, the completed classes of H (that is, the class of all bent functions
EA-equivalent to those in H) and the completed class of H coincide. On
the other hand, the functions of Theorems 16 and 17 belong to H and do
not belong to the completed MM class.

Corollary 15 [29] Dillon’s class H of bent functions is not contained in the
completed MM class, that is, there are functions in H which do not belong
to the completed MM class.

3.4 Bent functions in odd characteristics

We prove below that the non-quadratic cases of p-ary bent functions listed
in Table 1 do not belong to the completed MM class. We also show that
in contrast to the binary case, the completed MM class does not cover all
quadratic bent functions even when n is even.

Theorem 18 [28] Let p be any odd prime, k any positive integer, n = 4k
and

d = p3k + p2k − pk + 1.

Then the bent function
f(x) = trn(xd + x2)

over Fpn does not belong to the completed MM class.

Proof. Assume that f is EA-equivalent to a function from completed MM
class. Then there exists a 2k-dimensional vector space V ⊂ Fp4k such that
the second order derivative of f

Da,bf(x) = f(x+ a+ b)− f(x+ a)− f(x+ b) + f(x) (3.18)

vanishes for any a, b ∈ V . Clearly Da,bf equals the sum of the second order
derivative of trn(x2), which is constant and equals 2trn(ab), and the second
order derivative of trn(xd).

Note first that

d = p3k + 1 + (p− 1)

k−1∑
i=0

pk+i
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and therefore it has the p-ary representation

d =
(

0 ... 0︸ ︷︷ ︸
k−1

1 0 ... 0︸ ︷︷ ︸
k

p− 1 ... p− 1︸ ︷︷ ︸
k

0 ... 0︸ ︷︷ ︸
k−1

1
)
.

In (x+ a)d all the monomials have the form xt with

t =
(

0 ... 0︸ ︷︷ ︸
k−1

t3k 0 ... 0︸ ︷︷ ︸
k

t2k−1 ... tk︸ ︷︷ ︸
k

0 ... 0︸ ︷︷ ︸
k−1

t0
)

(3.19)

where t0, t3k ∈ {0, 1}, tk, ..., t2k−1 ∈ {0, 1, ..., p − 1}. In trn((x + a + b)d −
(x+ a)d − (x+ b)d + xd) the coefficient of the monomial xt

′
with

t′ =
(

0 ... 0︸ ︷︷ ︸
2k

p− 1 ... p− 1︸ ︷︷ ︸
k

0 ... 0︸ ︷︷ ︸
k

)
is

(a+ b)p
3k+1 − ap3k+1 − bp3k+1 = ap

3k
b+ abp

3k
.

Indeed, the numbers t′pi mod (pn−1), 1 ≤ i ≤ n−1, are cyclic shifts of the
vector t′, and it is easy to note that t′ 6= t′pi mod (pn − 1), 1 ≤ i ≤ n− 1.
It is also obvious that, any cyclic shift of any vector t, t 6= t′, of the form
(3.19) is different from t′.

If Da,bf ≡ 0 for some a, b 6= 0 then all coefficients of the monomials in
Da,bf must equal 0, and, in particular, we get for the coefficient of xt

′

ap
3k
b+ abp

3k
= 0. (3.20)

If there exists a 2k-dimensional vector space V such that Da,bf ≡ 0 for all

a, b ∈ V then Da,af ≡ 0 for all a ∈ V , and therefore 2ap
3k+1 = 0 by (3.20),

a contradiction which shows that V cannot exist. 2

Theorem 19 [28] Let p be any odd prime, k ≥ 3 an odd integer, n = 2k, ξ
primitive in F3n and

d =
3n − 1

4
+ 3k + 1.

Then the ternary bent function

f(x) = trn(ξ
3k+1

4 xd)

over F3n does not belong to the completed MM class.

Proof. We have

d = 3k + 1 + 2

k−1∑
i=0

32i

= 3 + 3k + 2
k−1∑
i=1

32i

=
(

0 2︸︷︷︸ ... 0 2︸︷︷︸︸ ︷︷ ︸
(k−1)/2

1 2 0︸︷︷︸ ... 2 0︸︷︷︸︸ ︷︷ ︸
(k−3)/2

2 1 0
)
.
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Assume there exists an n/2-dimensional vector space V ⊂ F3n such that

Da,bf(x) = trn
(
ξ

3k+1
4 ((x+ a+ b)d − (x+ a)d − (x+ b)d + xd)

)
vanishes for any a, b ∈ V . Let k be odd. In (x+ a)d all the monomials have
the form xt with

t =
(

0 tn−2 ... 0 tk+1 tk tk−1 0 ... t4 0 t2 t1 0
)

(3.21)

where t1, tk ∈ {0, 1}, t2i ∈ {0, 1, 2}, 1 ≤ i ≤ k − 1. Among them we choose
t′ =

(
0 2 ...0 2 0 0

)
, that is, in t′ we take t1, tk = 0, t2i = 2, 1 ≤ i ≤ k−1. It

is easy to see that t′ 6= t′pi mod (pn− 1), 1 ≤ i ≤ n− 1 and that, any cyclic
shift of any vector t, t 6= t′, of the form (3.21) is different from t′. Therefore,

in trn
(
ξ

3k+1
4

(
(x+ a+ b)d − (x+ a)d − (x+ b)d + xd

))
the coefficient of the

monomial xt
′

is

ξ
3k+1

4
(
(a+ b)3k+3 − a3k+3 − b3k+3

)
= ξ

3k+1
4
(
a3kb3 + a3b3

k)
.

If Da,bf ≡ 0 then all coefficients of the monomials in Da,bf must equal 0,

and in particular choosing a = b we get 2ξ
3k+1

4 a3k+3 = 0 for any a ∈ V , a
contradiction which shows that V cannot exist, and therefore, f does not
belong to the completed MM class. 2

Theorem 20 [28] Let p be any odd prime, n a positive integer, 3 ≤ k ≤ n
odd with gcd(k, n) = 1, c ∈ F∗3n and

d =
3k + 1

2

Then the ternary bent function

f(x) = Trn(cxd)

over F3n does not belong to the completed MM class.

Proof. Note that

d = 3k−1 + ...+ 32 + 3 + 2 =
(

0 ... 0︸ ︷︷ ︸
n−k

1 ... 1︸ ︷︷ ︸
k−1

2
)
.

Assume that f is EA-equivalent to a function from the class MM. Then
there exists an n/2-dimensional vector space V ⊂ F3n such that

Da,bf(x) = trn
(
c
(
(x+ a+ b)d − (x+ a)d − (x+ b)d + xd

))
vanishes for any a, b ∈ V . In (x + a)d all the monomials have the form xt

with
t =

(
0 ... 0︸ ︷︷ ︸
n−k

tk−1 ... t1 t0
)

(3.22)
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where t0 ∈ {0, 1, 2}, t1, ..., tk−1 ∈ {0, 1}. In Da,bf the coefficient of the
monomial xt

′
with

t′ =
(

0 ... 0︸ ︷︷ ︸
n−k+2

1 ... 1︸ ︷︷ ︸
k−3

2
)

is

c
(
(a+ b)3k−1+3k−2 − a3k−1+3k−2 − b3k−1+3k−2)

= c
(
a3k−1

b3
k−2

+ a3k−2
b3
k−1)

.

Indeed, the numbers t′pi mod (pn−1), 1 ≤ i ≤ n−1, are cyclic shifts of the
vector t′, and it is easy to note that t′ 6= t′pi mod (pn − 1), 1 ≤ i ≤ n− 1.
It is also obvious that, any cyclic shift of any vector t, t 6= t′, of the form
(3.22) is different from t′.

If Da,bf ≡ 0 for some a, b 6= 0 then all coefficients of the monomials

in Da,bf must equal 0, and, in particular, the coefficient c
(
a3k−1

b3
k−2

+

a3k−2
b3
k−1)

of xt
′

is 0. If there exists a 2k-dimensional vector space V such
that Da,bf ≡ 0 for all a, b ∈ V then Da,af ≡ 0 for all a ∈ V , and therefore

2ca3k−1+3k−2
= 0, a contradiction. 2

Theorem 21 [28] Let p be any odd prime, k a positive integer, n = 2k and
c ∈ F∗pn. If the equation

(cx2)p
k−1 = −1

has solutions then the bent function

f(x) = trn(cx2)

over Fpn belongs to the completed MM class. In particular, f belongs to the

completed MM class if cp
k−1 = −1.

Proof. Let u ∈ Fp2k . Then for any a, b ∈ uFpk we get a = ua′, b = ub′ for
some a′, b′ ∈ Fpk , and

Da,bf(x) = 2trn(cab) = 2trk
(
a′b′trkn(cu2)

)
= 2trk

(
a′b′(cu2 + (cu2)p

k
)
)
.

If u is a solution for the equation (cx2)p
k−1 = −1 then cu2 +(cu2)p

k
= 0 and

therefore Da,bf vanishes for any a, b ∈ uFpk . In particular if cp
k−1 = −1

then Da,bf vanishes for any a, b ∈ Fpk . 2

Remark 12 The theorem above has been generalized recently in [49]. For
an even integer n, the monomial bent function f(x) = trn(axp

j+1) over Fpn
with 0 ≤ j ≤ n and n/ gcd(j, n) odd, belongs to the completed MM class if
and only if
- p = 1 mod 4 and a is a nonsquare in Fpn , or
- p = 3 mod 4, n = 2 mod 4, and a is a square in Fpn , or
- p = 3 mod 4, n = 0 mod 4, and a is a nonsquare in Fpn .
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Theorem 22 [28] Let p be any odd prime, k ≥ 3 and t positive integers such

that gcd(t, 3k + 1) = 1. Let also n = 2k, c ∈ F∗3n such that K(c3k+1) = 0
and

d = t(3k − 1).

Then the bent function
f(x) = trn(cxd)

over F3n does not belong to the completed MM class when t = 3i + w for
some nonnegative i and 0 ≤ w ≤ 2.

Proof. We just sketch the proof here since it is similar to the ones of
Theorems 18-20. We can assume without loss of generality that 0 ≤ i ≤ k−1.

Let first w = 0. Then we can assume that i = 0. We have

d = 3k − 1 = 2(3k−1 + 3k−2 + ...+ 1) =
(

0 ... 0︸ ︷︷ ︸
k

2 ... 2︸ ︷︷ ︸
k

)
.

In (x+ a)d all the monomials are of the type xt with

t = ( 0 ... 0 tk−1 ... t0 )

where t0, ..., tk−1 ∈ {0, 1, 2}. Let

t′ =
(

0 ... 0︸ ︷︷ ︸
k

2 ... 2︸ ︷︷ ︸
k−2

1 1
)
.

It is easy to note that t′ 6= t′pi mod (pn − 1), 1 ≤ i ≤ n − 1 and that
any cyclic shift of any vector t, t 6= t′, of the form above is different from
t′. Hence xt

′
has the coefficient 4a4 in (x + a)d, and therefore it has the

coefficient
4c((a+ b)4 − a4 − b4) = 4c(ab3 + a3b)

in Da,bf . If Da,af ≡ 0 for some a ∈ F∗3n then a4 = 0, a contradiction.
Let w = 1. Then we have

d = (3i + 1)(3k − 1) = 3i+k + 3i + 2
k−1∑

j=0,j 6=i
3j

=
(

0 ... 0︸ ︷︷ ︸
k−i−1

1 0 ... 0︸ ︷︷ ︸
i

2 ... 2︸ ︷︷ ︸
k−i−1

1 2 ... 2︸ ︷︷ ︸
i

)
.

Denoting
t′ =

(
0 ... 0︸ ︷︷ ︸

k

2 ... 2︸ ︷︷ ︸
k−i−1

0 2 ... 2︸ ︷︷ ︸
i

)
we see that the monomial xt

′
has the coefficient

c((a+ b)3k+i+3i − a3k+i+3i − b3k+i+3i) = c(a3k+ib3
i

+ a3ib3
k+i

)
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in Da,bf . If Da,af ≡ 0 for some a ∈ F∗3n then a3k+i+3i = 0, a contradiction.
Let w = 2. Then 1 ≤ i ≤ k − 1 and we have

d = (3i + 2)(3k − 1) = 3i+k + 3k + 3i + 1 + 2
k−1∑

j=1,j 6=i
3j

=
(

0 ... 0︸ ︷︷ ︸
k−i−1

1 0 ... 0︸ ︷︷ ︸
i−1

1 2 ... 2︸ ︷︷ ︸
k−i−1

1 2 ... 2︸ ︷︷ ︸
i−1

1
)
.

Denoting t′ =
(

0 ... 0︸ ︷︷ ︸
k−i−1

1 0 ... 0︸ ︷︷ ︸
i−1

1 2 ... 2︸ ︷︷ ︸
k−i−1

0 2 ... 2︸ ︷︷ ︸
i−1

0
)

we see that the mono-

mial xt
′

has the coefficient

c((a+ b)3i+1 − a3i+1 − b3i+1) = c(ab3
i

+ a3ib)

in Da,bf . If Da,af ≡ 0 for some a ∈ F∗3n then a3i+1 = 0, a contradiction. 2



Chapter 4

Constructions of infinite
classes of APN and AB
polynomials

In this section we construct seven out of eleven known infinite families of
quadratic APN polynomials CCZ-inequivalent to power functions, four of
which are also AB when n is odd [26, 30, 31, 32].

In Section 4.1 we introduce two infinite classes of quadratic APN func-
tions for n divisible by 3, resp. 4. We prove that for n odd these functions are
AB permutations. Since AB permutations taking 0 value at 0 are crooked
[5], then the introduced AB binomials are crooked. This binomials and the
well-known Gold AB functions are the only known families of crooked func-
tions. We show that, for n ≥ 12, these functions are EA-inequivalent to
power mappings and CCZ-inequivalent to Gold, Kasami, inverse and Dob-
bertin functions. This implies that for n even they are CCZ-inequivalent
to all known APN functions. In particular, for n = 12, 20, 24, they are
CCZ-inequivalent to any power mappings. These classes of binomials are
the firstly found classes of APN functions CCZ-inequivalent to power map-
pings. Besides, they are the first counterexamples for the conjecture of [46]
on nonexistence of quadratic AB functions inequivalent to the Gold maps.
Further we discuss the possibility of generalization of the introduced APN
binomials for other divisors of n.

In Section 4.2 we develop the method for constructing differentially 4-
uniform quadratic polynomials introduced by Dillon [68] by proposing its
various generalizations. We construct a new infinite class of quadratic APN
trinomials and a new potentially infinite class of quadratic APN hexanomials
which we conjecture to be CCZ-inequivalent to power functions for n ≥ 6
and we confirm this conjecture for n ≤ 10.

We present in Section 4.3 a method for constructing new quadratic APN
functions from known ones. Applying this method to the Gold power func-

85
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tions we construct an APN function x3 + trn(x9) over Fn2 . It is proven that
for almost all n ≥ 7 this function is CCZ-inequivalent to the Gold functions,
and in the case 7 ≤ n ≤ 10 it is CCZ-inequivalent to any power mapping
(and, therefore, to any APN function belonging to one of the families of
APN functions known so far). This was the first APN polynomial CCZ-
inequivalent to power functions with all coefficients in F2 and is still the
only one which is defined for any n.

Section 4.4 is a continuation of the previous section. We give sufficient
conditions on linear functions L1 and L2 from F2n to itself such that the
function L1(x3) + L2(x9) is APN over F2n . We show that this can lead to
many new cases of APN functions. In particular, we get two families of APN
functions x3+a−1 tr3

n(a3x9+a6x18) and x3+a−1 tr3
n(a6x18+a12x36) over F2n

for any n divisible by 3 and a ∈ F∗2n . We prove that for n = 9, these families
are pairwise different and differ from all previously known families of APN
functions, up to the most general equivalence notion, the CCZ-equivalence.
We also investigate further sufficient conditions under which the conditions
on the linear functions L1 and L2 are satisfied.

4.1 Classes of APN binomials over F23k and F24k

Let s, k, p be positive integers such that gcd(k, p) = gcd(s, pk) = 1, and
i = sk mod p, t = p− i, n = pk. In this section we prove that the function

F (x) = x2s+1 + wx2ik+2tk+s (4.1)

is APN on F2n when p = 3, 4 (under some conditions on the element w ∈ F∗2n)
and we also show that, most probably, other values of parameter p do not
define classes of APN functions.

APN binomials over F23k The following theorem introduces a large class
of quadratic binomial APN functions for n divisible by 3.

Theorem 23 [30] Let s and k be positive integers with gcd(s, 3k) = 1, and
t ∈ {1, 2}, i = 3− t, n = 3k. Furthermore let

d = 2ik + 2tk+s − (2s + 1),

g1 = gcd(23k − 1, d/(2k − 1)),

g2 = gcd(2k − 1, d/(2k − 1)),

and let w ∈ F∗2n have the order 22k + 2k + 1 (i.e. w = α2k−1 for some
primitive element α of F∗2n). If g1 6= g2 then function (4.1) is almost perfect
nonlinear on F2n (and is almost bent when k is odd).
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Proof. To prove the theorem it is enough to consider only the case i = 2.
Indeed, for i = 1 we get the function

F (x) = x2s+1 + wx2k+22k+s

which is EA-equivalent to

F ′(x) = w−22kF (x)22k = w−22kx22k(2s+1) + x2k+s+1.

The coefficient w−22k has the order 22k + 2k + 1 if and only if w does, and
it is easy to note that F ′ is of the type (4.1) with i = 2 and s′ = s + k,
d′ = −22kd mod (23k − 1). So F is APN if and only if F ′ is APN.

Thus, without loss of generality we assume i = 2. We have to show that
for every u, v ∈ F2n , v 6= 0, the equation

F (x) + F (x+ v) = u

has at most 2 solutions. We have

F (x) + F (x+ v) = α2k−1
(
x22k+2k+s + (x+ v)22k+2k+s

)
+x2s+1 + (x+ v)2s+1

= α2k−1v22k+2k+s
((x

v

)22k

+
(x
v

)2k+s
)

+v2s+1

((x
v

)2s

+
(x
v

))
+ α2k−1v22k+2k+s + v2s+1.

As this is a linear equation in x it is sufficient to study the kernel of the
corresponding linear mapping. Note furthermore that

v22k+2k+s−(2s+1) = v(2k−1)(2k+s+2s+1−2k(2s−1)).

To simplify notation we define

a =
(
αv2k+s+2s+1−2k(2s−1)

)2k−1
.

After replacing x by vx and dividing by v2s+1, we finally see that the equa-
tion F (x) + F (x + v) = u admits 0 or 2 solutions for every v ∈ F∗2n if and
only if, denoting

∆a(x) = a
(
x22k + x2k+s

)
+ x2s + x,

the equation ∆a(x) = 0 has at most two zeros or, equivalently, that the only
solutions are x = 0 and x = 1.
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The following step can be seen as a very basic application of the multi-
variate method introduced by Dobbertin [78]. If we denote y = x2k , z = y2k

and b = a2k , c = b2
k

the equation ∆a(x) = 0 can be rewritten as

a(z + y2s) + (x2s + x) = 0.

By definition, a is always a (2k−1)-th power and thus abc = 1. Besides, a /∈
F2 (as it is confirmed further). Considering also the conjugated equations
we derive the following system of equations

f1 = ∆a(x) = a(z + y2s) + x2s + x = 0

f2 = f2k
1 = b(x+ z2s) + y2s + y = 0

f3 = f22k
1 = 1

ab(y + x2s) + z2s + z = 0.

The aim now is eliminating y and z from these equations and finally getting
an equation in x only. First we compute

R1 = b(f1)2s + a2sf2

= a2sby22s + a2sy2s + a2sy + bx22s + bx2s + a2sbx

and

R2 =
1

a(b+ 1)
(bf1 + af2 + abf3)

= y2s +
a+ 1

ab+ a
y +

1

a
x2s +

ab+ b

ab+ a
x

to eliminate z. To eliminate y22s we compute

R3 = R1 + a2sb(R2)2s =
a2s(b+ 1)2s + (a+ 1)2sb

(b+ 1)2s
y2s

+ a2sy +
a2sb2

s+1 + b

b2s + 1
x2s + a2sbx.

Using equations R2 and R3 we can eliminate y2s by computing

R4 = R3 +
a2s(b+ 1)2s + (a+ 1)2sb

(b+ 1)2s
R2

= P (a)(y + (b+ 1)x2s + bx),

where

P (a) =
(ab)2s+1 + (ab)2s + a2sb+ a2s + ab+ b

(b+ 1)2s+1a
.

Computing

R5 = (R4)2s + P (a)2sR2 = P (a)2s

×
(
a+ 1

ab+ a
y + (b2

s
+ 1)x22s +

ab2
s

+ 1

a
x2s +

ab+ b

ab+ a
x

)
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we finally get our desired equation by

R6 =
a+ 1

ab+ a
P (a)2s−1R4 +R5

= P (a)2s(b+ 1)2s
(
x22s + x2s

)
.

Obviously if x is a solution of ∆a(x) = 0 then R6(x) = 0. For P (a)2s(b+1) 6=
0 this is equivalent to x = 0, 1. Thus to prove the theorem, it is sufficient to
show that P (a) does not vanish for elements a fulfilling the equation

a =
(
αv2k+2s+1

)2k−1
(4.2)

Note that, if a satisfies (4.2), then a is not a (2k + 2s + 1)-th power, since

α2k−1 is not: g2 = gcd(2k − 1, 2k + 2s + 1) is by hypothesis a strict divisor
of g1 = gcd(2n − 1, 2k + 2s + 1) and α being a primitive element, it cannot
be a (g1/g2)-th power.

Consequently, it is sufficient to show, that if P (a) = 0 then a is a (2k +
2s + 1)-th power. For a /∈ F2 the equation P (a) = 0 is equivalent to

a =

(
a+ 1

c+ 1

)2s+1

c2s+1

(
b+ 1

a+ 1

)
a =

(
a+ 1

c+ 1
c

)2k+2s+1

,

as can be easily seen by dividing this equality by a, simplifying it by (a+1),
and then expanding it, using that c = 1/ab. Note that the right hand side
is always a (2k + 2s + 1)-th power. This proves the theorem. 2

From Theorem 23 we get the following corollary as a special case.

Corollary 16 [30] Let s and k be positive integers such that gcd(k, 3) =
gcd(s, 3k) = 1, and i = sk mod 3, t = 3− i, n = 3k, and w ∈ F∗2n have the
order 22k + 2k + 1. Then the function

F (x) = x2s+1 + wx2ik+2tk+s

is APN on F2n (and is AB when n is odd).

Proof. We only have to verify that in this case the greatest common divisors

g1 = gcd(2n − 1, 2k+s + 2s + 1− 2k(2s − 1)(i− 1))

g2 = gcd(2k − 1, 2k+s + 2s + 1− 2k(2s − 1)(i− 1))

are not equal. Obviously g2 is always coprime with 7 and it can be easily
checked that g1 is always divisible by 7. Indeed, for instance, if k mod 3 = s
mod 3 = 1 then i = 1 and k = 3k′+ 1, s = 3s′+ 1 for some k′, s′, and we get

g1 = 2k+s + 2s + 1 = 4(23(k′+s′) − 1) + 2(23s′ − 1) + 7.
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2

The next proposition shows that the functions from Corollary 16 are
permutations if k is odd. Moreover computer investigations show that most
probably, if k is odd their inverses have algebraic degree (3k + 1)/2.

Proposition 19 [30] The APN functions of Corollary 16 are bijective if
and only if k is odd.

Sketch of proof. If k is even then, since gcd(s, 3k) = 1, s must be odd and
therefore 2s + 1 is divisible by 3 as well as 2ik + 2tk+s = 2ik(1 + 2(t−i)k+s).
We have F (x) = F (γx) for every γ ∈ F∗4.

To prove that F is bijective when k is odd, we use the same steps as
in the proof of Theorem 23. Assume i = 1 (the proof for the case i = 2 is
similar). We have to show that the equation F (x) + F (x+ v) = 0 does not
have a non zero solution v for any x. Doing the same computations as in
the proof of Theorem 23 we have this time to look at the following system
of equations

f1 = a(z + y2s + 1) + x2s + x+ 1 = 0

f2 = b(x+ z2s + 1) + y2s + y + 1 = 0

f3 = 1
ab(y + x2s + 1) + z2s + z + 1 = 0.

Now, doing the same elimination of y and z as before, we end up with

P (a)2s(x2s + x+ 1) = 0,

where P is as in the proof of Theorem 23. By taking the power 2s of
x2s + x + 1 = 0 and substituting x2s = x + 1 we get x22s = x which is
equivalent to x ∈ F2j where j = gcd(2s, 3k). If k is odd then j = 1 and
the only possible solutions could be 0 or 1 but they obviously do not satisfy
x2s + x+ 1 = 0. 2

Remark 13 1. The APN binomials of Corollary 16 have been generalized
to APN trinomials in [14]. Let v ∈ F2k and the function F be as in Corol-

lary 16 with i = 1, w = α2k−1 (where α is primitive in F23k), then the

function F (x) + α2kvx2k+s+2s is also APN (it is a particular case of func-
tions (8-10) in Table 6). In [13] these trinomials were extended to the family
of quadrinomials corresponding to cases (8-10) in Table 6 of known APN
polynomials. Note that Theorem 23 covers a larger class of APN functions
than the one of Corollary 16 as can be seen by checking the conditions on the
greatest common divisors for small values of k and s, that is, APN quadri-
nomials (8-10) of Table 6 do not cover all the functions of Theorem 23.
2. Since for n odd the functions of Corollary 16 are AB then it com-
pletely determines their Walsh spectrum. It is shown in [15] that for n
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even these functions have the same Walsh spectrum as Gold functions, that
is, {0,±2n/2,±2(n+2)/2}. In [18] it is proven that the quadrinomials (8-10)
have the same property.
3. It is further proven in [19] that when relaxing conditions of gcd(s, 3k) = 1
to gcd(s, 3k) = r with k/r odd, the binomials of Corollary 16 are still per-
mutations whose derivatives are 2r-to-1 mappings. It is left as a problem to
prove that the APN quadrinomials (8-10) have the same properties as the
binomials when relaxing the conditions.
4. Since every quadratic AB permutation taking 0 value at 0 is crooked then
the AB binomials of Theorem 23 (and Corollary 16) are crooked. This bi-
nomials and the well-known Gold AB functions are the only known families
of crooked functions.

APN binomials over F24k The following theorem presents another class
of APN binomials defined for n divisible by 4.

Theorem 24 [30] Let s and k be positive integers such that s ≤ 4k − 1,
gcd(k, 2) = gcd(s, 2k) = 1, and i = sk mod 4, t = 4− i, n = 4k. If w ∈ F∗2n
has the order 23k + 22k + 2k + 1 (i.e. w = α2k−1 for some primitive element
α of F∗2n) then the function

F (x) = x2s+1 + wx2ik+2tk+s

is APN on F2n.

Proof. Repeating the first steps of Theorem 23 we see that F is APN if
and only if, for every u ∈ F∗2n the equation ∆a(x) = 0 with

a = α2k−1u2ik+2tk+s−2s−1,

∆a(x) = a
(
x2ik + x2tk+s

)
+ x2s + x,

has the only solutions 0 and 1.
From now on we consider the cases i = 1 and i = 3 separately.
Case 1 (i = 3, t = 1) Applying Dobbertin’s multivariate method we

denote y = x2k , z = y2k , t = z2k , b = a2k , c = b2
k
, d = c2k , and then rewrite

the equation ∆a(x) = 0 as

a(t+ y2s) + x2s + x = 0.

Since
2ik + 2tk+s − 2s − 1 = 23k + 2k+s − 2s − 1

= (2k − 1)(22k + 2k + 2s + 1)

then the element a is always the (2k − 1)-th power and thus

abcd = a1+2k+22k+23k = 1.
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Considering also the conjugated equations obtained by raising the equation
∆a(x) = 0 at the powers 2k, 22k and 23k we derive the following system of
equations

f1 = ∆a(x) = a(t+ y2s) + x2s + x = 0

f2 = f2k
1 = b(x+ z2s) + y2s + y = 0

f3 = f2k
2 = c(y + t2

s
) + z2s + z = 0

f4 = abcf2k
3 = z + x2s + abc(t2

s
+ t) = 0.

Now we eliminate y, z and t from these equations to get an equation in x
only. We consider

R1 = bcf1 + abcf2 + abf3 + f4

= ab(bc+ 1)z2s + (ab+ 1)z + (bc+ 1)x2s

+bc(ab+ 1)x

and

R2 = cf2s

1 + a2sc(f2s

2 + f2) + a2sf3

= a2sb2
s
cz22s + a2s(bc+ 1)z2s + a2sz

+cx22s + c(ab+ 1)2sx2s + a2sbcx

to eliminate t and y. To eliminate z22s we compute

R3 = cR2s

1 + (bc+ 1)2sR2

= (c(ab+ 1)2s + a2s(bc+ 1)2s+1)z2s

+a2s(bc+ 1)2sz + c(ab+ 1)2sx2s

+a2sbc(bc+ 1)2sx.

Using equations R1 and R3 we can eliminate z2s :

R4 = ab(bc+ 1)R3 + (c(ab+ 1)2s + a2s(bc+ 1)2s+1)R1

= P (a)(z + (bc+ 1)x2s + bcx),

where
P (a) = c(ab+ 1)2s+1 + a2s(bc+ 1)2s+1.

Below we shall show that P (a) 6= 0, thus we can denote

R5 =
R4

P (a)
= z + (bc+ 1)x2s + bcx.

Computing

R6 = R1 + ab(bc+ 1)R2s

5

= (ab+ 1)z + ab(bc+ 1)2s+1x22s

+(ab2
s+1c2s + 1)(bc+ 1)x2s + bc(ab+ 1)x
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we finally get

R7 = (ab+ 1)R5 +R6

= ab(bc+ 1)2s+1
(
x22s + x2s

)
.

If x is a solution of ∆a(x) = 0 then R7(x) = 0, which is equivalent to x = 0, 1
when P (a) 6= 0 and bc+ 1 6= 0. Thus, it is sufficient to show that P (a) and
bc+ 1 do not vanish when

a = α2k−1u23k+2k+s−2s−1. (4.3)

Suppose bc = 1, that is, a22k+2k = 1 or equivalently a2k+1 = 1. We have

a2k+1 =
(
αu2k+2s

)22k−1

because

(23k + 2k+s − 2s − 1)(2k + 1) ≡ (22k − 1)(2k + 2s) mod (24k − 1).

Since a2k+1 = 1 then αu2k+2s should be the (22k+1)-th power of an element
of the field. We have 2k + 2s = 2s(2k−s + 1) = 2s(22p + 1) with some p
odd. Indeed, ks mod 4 = 3, then k mod 4 6= s mod 4 for odd k, s, and
k − s = 2p for some p odd.

The numbers 22p + 1 and 22k + 1 are divisible by 5 because p, k are odd.
We get that u2k+2s is the fifth power of an element of the field and αu2k+2s is
not (since α is a primitive element). Therefore αu2k+2s is not the (22k+1)-th
power of an element of the field. A contradiction.

Let c(ab+ 1)2s+1 + a2s(bc+ 1)2s+1 = 0. Since bc+ 1 6= 0 then ab+ 1 6= 0
and we get

c

a2s
=

(
bc+ 1

ab+ 1

)2s+1

.

Note that since n is even and s is odd then 2n − 1 and 2s + 1 are divisible
by 3. Therefore c/a2s is the third power of an element of the field. We have

c/a2s = a22k−2s = a2s(22k−s−1)

and 23k + 2k+s− 2s− 1 = 2s(23k−s− 1) + (2k+s− 1). The numbers 23k−s− 1
and 2k+s−1 are divisible by 3 since 3k− s and k+ s are even. On the other
hand 2k − 1 and 22k−s− 1 are not divisible by 3 since k and 2k− s are odd.
We get

a2s(22k−s−1) = α2s(22k−s−1)(2k−1)u2s(22k−s−1)(23k+2k+s−2s−1).

Obviously c/a2s is not the third power of an element of the field and therefore
it is not a (2s + 1)-th power. A contradiction.
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Case 2 (i = 1, t = 3) It is obvious that the function F (x) = x2s+1 +

wx2k+23k+s is EA-equivalent to F ′(x) = w−23kx23k(2s+1) + x22k+s+1. The

coefficient w−23k has the order 23k + 22k + 2k + 1 if and only if w does. Since
sk mod 4 = 1 then s mod 4 = k mod 4 and (2k + s)k mod 4 = 3. So it
follows from the first case that F ′ is APN, and therefore so is F . 2

Remark 14 1. Note that it follows from the proofs of Theorems 23 and 24
that the element w of the function of Corollary 16 and Theorem 24 can be
of a more general form, that is, if n = pk, p = 3, 4, then w has the order h
divisible by 2n−1

2k−1
such that gcd(2n−1

h , 2p − 1) = 1 (in other words w = αe,

where α is some primitive element of F∗2n , e is a multiple of 2k − 1 and co-
prime with 2p − 1). However, this can hardly give new (up to equivalence)
cases of functions.
2. In [8] a common proof of APN properties for the classes of Corollary
16 and Theorem 24 is found. However, this proof is based on the same
ideas as the proofs of Corollary 16 and Theorem 24: it does not give better
understanding of APN binomials neither leads to more general classes which
would include the functions of Corollary 16 and Theorem 24. Moreover,
as observed before, not all functions of Theorem 23 are covered by these
description.
3. It is shown in [15] that the binomials of Theorem 24 have the same Walsh
spectrum as Gold functions, that is, {0,±2n/2,±2(n+2)/2}.

Further APN binomials? In [83] the first two quadratic APN functions
CCZ-inequivalent to power mappings were introduced. The first one is the
binomial

x3 + wx36 (4.4)

over F210 , where w has the order 3 or 93; the second is x3 + wx528 over
F212 , where w has the order 273 or 585 (which gives only one function up
to equivalence). The second one is classified into families of APN binomilas
by Theorems 23 and 24 while the first one still stays as an isolated example.
Below we disscuss the existence of further examples of APN binomials dif-
ferent from the ones of Theorems 23 and 24 and the sporadic example (4.4).
For simplicity we consider only the case s = 1.

Proposition 20 [30] Let k, p be positive integers and n = pk, gcd(k, p) = 1,
i = k mod p, m = p − i, α a primitive element of F2n. Then, for the
function

F (x) = x3 + α2k−1x2ik+2tk+1

over F2n, the following holds:

1) for p = 2 and any k ≥ 2, the function F is not APN;

2) for k = 1 and any p, the function F is EA-equivalent to x3;
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3) for 2 ≤ k ≤ 30 and 5 ≤ p ≤ 30, the function F is not APN.

Proof. For p = 2, we have i = m = 1 and F (x) = x3 + α2k−1x2k+2k+1
=

L(x3) where L(x) = x+α2k−1x2k is 2k-to-1. For any nonzero a, the function
L(x3)+L((x+a)3) = L(x3 +(x+a)3) cannot be 2-to-1 when k > 1 (because
L is 2k-to-1). Therefore, F is not APN.

Let k = 1 and p be any integer, then n = p and F (x) = x3 + αx2+2n =
(1 + α)x3.

The third claim was confirmed with a computer. 2

Note that we also tried to find quadratic APN binomials of a more general
form, however we could not find any new APN functions this way. The next
fact summarizes these (negative) results.

Fact 1 [30] Let k, p < 12, n = pk and α be a primitive element of F2n.
Furthermore, let 0 < i < k, 0 < j < p and d be a divisor of 2n − 1. Then
the function

F (x) = x3 + αdx2pi+2kj

is APN over F2n if and only if it is equivalent to known cases, i.e. to the Gold
cases, to the sporadic case (4.4) or to the classes presented in Theorems 23
and 24. 2

CCZ-inequivalence to known power APN functions We prove below
that the new APN functions introduced in Corollary 16 and Theorem 24 are
not CCZ-equivalent to the Gold, Kasami, inverse and Dobbertin functions.

Without loss of generality a Gold function F (x) = x2s+1 and a Kasami
function K(x) = x4r−2r+1 can be considered under conditions 1 ≤ s < n

2 ,
2 ≤ r < n

2 , since this exhausts all different cases (under EA-equivalence).
Besides, we can consider only the case i = 1 for our binomials as it follows
from the proofs of Theorems 23 and 24.

We first prove the EA-inequivalence between the APN binomials and all
power functions.

Theorem 25 [30] Let n be a positive integer and let s, j, q be three nonzero
elements of Z/nZ such that q 6= ±s. If one of the following conditions holds

1. j /∈ {±s,±q, 2s, s± q},

2. j /∈ {±s,±q,±s− q,−2q},

3. j /∈ {s,−q, 2s− q, s− 2q, s± q, 2s},

4. j /∈ {s,−q, 2s− q, s− 2q,±s− q,−2q},

then the function F (x) = x2s+1 +ax2j(2q+1) with a ∈ F∗2n is EA-inequivalent
to power functions on F2n.
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Proof. Suppose the function F is EA-equivalent to a power function. Since
F is quadratic and EA-transformation does not change the algebraic degree
of a function then F is EA-equivalent to x2r+1 for some nonzero r ∈ Z/nZ
(see [34]). Therefore, there exist affine permutations L1, L2 and an affine
function L′ such that

L1 ◦ F = (L2)2r+1 + L′.

Expressing L1(x), L2(x) and L′(x) as sums of linearized polynomials and
constants and reducing the resulting exponents modulo 2n − 1 leads to an
equation whose degree is at most 2n−1 + 2n−2 (since the 2-weights of the
exponents are at most 2) and which has 2n solutions. Hence the equation
must be an identity.

Since the functions are quadratic, we can assume without loss of gener-
ality that L1 and L2 are linear:

L1(x) =
∑

m∈Z/nZ

bmx
2m ,

L2(x) =
∑

p∈Z/nZ

cpx
2p .

Then we get ∑
m∈Z/nZ

bmx
2m(2s+1) +

∑
m∈Z/nZ

bma
2mx2m+j(2q+1)

=
∑

l,p∈Z/nZ

cpc
2r

l x
2l+r+2p + L′(x). (4.5)

On the left hand side of the identity (4.5) we have only items of the type
x2m(2s+1), x2m+j(2q+1), with some coefficients. Therefore this must be true
also for the right hand side of the identity.

We shall show that under some conditions on s, j, q, the equality above
is satisfied only if bm = 0 for every m ∈ Z/nZ. A contradiction.

If bm 6= 0 for some m, then the coefficients of the items x2m(2s+1) and
x2m+j(2q+1) are not zero on the left hand side of the identity (4.5) since
q 6= ±s. Hence this is also true for the right hand side of (4.5), that is,

cmc
2r

m+s−r 6= cm+sc
2r

m−r, (4.6)

cm+jc
2r

m+j+q−r 6= cm+j+qc
2r

m+j−r. (4.7)

The items of the type x2m+2m+j
are missing in the left hand side of (4.5)

when j 6= ±s,±q. And we have no item of the kind x2m+j+2m+s
in the left

hand side of (4.5) when j − s 6= ±s,±q, that is, j 6= 2s, s± q.
Thus, if these conditions are satisfied, then from the right hand side of

(4.5) we get the following equalities with cm, c
2r
m+s−r, cm+s, c

2r
m−r, cm+j , c

2r
m+j−r:

cmc
2r

m+j−r = cm+jc
2r

m−r, (4.8)
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cm+jc
2r

m+s−r = cm+sc
2r

m+j−r. (4.9)

Assume cm+j−r, cm+s−r 6= 0. If cm−r 6= 0 then we get from (4.6), (4.8),
(4.9):

cmc
−2r

m−r 6= cm+sc
−2r

m+s−r,

cmc
−2r

m−r = cm+jc
−2r

m+j−r,

cm+jc
−2r

m+j−r = cm+sc
−2r

m+s−r,

and we come to an obvious contradiction. If cm−r = 0 then from (4.8) and
since cm+j−r 6= 0 we get cm = 0. But cm−r = cm = 0 contradicts (4.6).
Therefore, either cm+j−r or cm+s−r equals 0.

Assume first that cm+j−r = 0. Then from (4.7) we get cm+j 6= 0; then
from (4.8), (4.9) we get cm+s−r = cm−r = 0, that is in contradiction with
(4.6). Therefore, cm+j−r 6= 0.

Assume now that cm+s−r = 0. Then from (4.6) we get cm+s 6= 0; then
from (4.9) we get cm+j−r = 0. Then from (4.7) we get cm+j 6= 0, which in
its turn gives cm−r = 0 because of (4.8). Thus, we get cm+s−r = cm−r = 0
which contradicts (4.6).

Therefore, if j 6= ±s,±q, 2s, s±q then F is EA-inequivalent to quadratic
power functions.

Using similar arguments we get below other conditions on s, q, j which
are also sufficient.

Let q 6= ±s and j 6= ±s,±q,±s − q,−2q. Then we have inequalities
(4.6), (4.7), and the equality (4.8). Besides, we have no items of the kind
x2m+j+q+2m in the left hand side of (4.5) when j + q 6= ±s,±q, that is,
j 6= ±s− q,−2q. Thus, from (4.5) we get the following equality

cmc
2r

m+j+q−r = cm+j+qc
2r

m−r. (4.10)

Let cm+j+q−r, cm+j−r 6= 0. If also cm−r 6= 0 then we get from (4.7),
(4.8), (4.10)

cm+jc
−2r

m+j−r 6= cm+j+qc
−2r

m+j+q−r,

cmc
−2r

m−r = cm+jc
−2r

m+j−r,

cmc
−2r

m−r = cm+j+qc
−2r

m+j+q−r,

and we come to a contradiction. If cm−r = 0 then it follows from (4.8)
that cm = 0. But cm = cm−r = 0 contradicts (4.6). Therefore, either
cm+j+q−r = 0 or cm+j−r = 0.

If cm+j−r = 0 then cm+j , cm+j+q−r 6= 0 by (4.7). Since cm+j−r = 0 and
cm+j 6= 0 then it follows from (4.8) that cm−r = 0. Since cm+j+q−r 6= 0 and
cm−r = 0 then cm = 0 by (4.10). But cm−r = cm = 0 contradicts (4.6).

If cm+j+q−r = 0 then from (4.7) we get cm+j+q, cm+j−r 6= 0. Since
cm+j+q−r = 0 and cm+j+q 6= 0 then cm−r = 0 from (4.10). We have cm = 0
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from (4.8) since cm+j−r 6= 0 and cm−r = 0. But cm = cm−r = 0 contradicts
(4.6).

Thus, if j 6= ±s,±q,±s− q,−2q then the function F is EA-inequivalent
to power functions.

The proofs of the third and the fourth claim of the theorem are similar
to those for the first and the second cases. That is why further we give
only the sketch of the proofs. No items of the kind x2m+j+q+2m occur in the
left hand side of (4.5) when j 6= 2s − q, s,−q, s − 2q. This way we get the
following equality

cm+sc
2r

m+j+q−r = cm+j+qc
2r

m+s−r. (4.11)

The equalities (4.9) and (4.11) are in contradiction with inequalities (4.6)
and (4.7). Thus the condition j 6= 2s− q, s,−q, s− 2q, s± q, 2s is sufficient
for F to be EA-inequivalent to power functions. The same is true when
we consider the equalities (4.10) and (4.11) with the condition j 6= 2s −
q, s,−q, s− 2q,±s− q,−2q. 2

Corollary 17 [30] The function of Corollary 16 is EA-inequivalent to power
functions when k ≥ 4.

Proof. The function F corresponds to the first case in the hypotheses of
Theorem 25. Indeed, if i = 1 then in terms of Theorem 25 we have j = k,
q = k + s and the conditions q 6= ±s, j 6= ±s,±q, s ± q, 2s are equivalent
to k + s 6= ±s, k 6= s, 3k − s, k + s, 2k − s, k + 2s, 2k, 2s which are satisfied
since k ≥ 4 and gcd(k, 3) = gcd(s, 3k) = 1. Hence, the function F is EA-
inequivalent to power functions by Theorem 25. 2

Corollary 18 [30] The functions of Theorem 24 are EA-inequivalent to
power functions when k ≥ 3.

Proof. The function F satisfies the conditions of Theorem 25. If i = 1 then
j = k and q = 2k + s. The conditions q 6= ±s, j 6= ±s,±q, 2s, s ± q are
satisfied when k ≥ 3 because k, s are odd, n = 4k, gcd(s, 4k) = 1. 2

To prove CCZ-inequivalence of the APN binomials with Gold and Kasami
functions we need the following observation. By definition, functions F and
G from F2n to itself are CCZ-equivalent if and only if there exists an affine
automorphism L = (L1, L2) of F2n × F2n such that

y = F (x)⇔ L2(x, y) = G(L1(x, y)).

The function L1(x, F (x)) has to be a permutation too. Indeed, suppose that
there exists x 6= x′ such that L1(x, F (x)) = L1(x′, F (x′)), then since L is
a permutation, we would have L2(x, F (x)) 6= L2(x′, F (x′)), a contradiction
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since L2(x, F (x)) = G(L1(x, F (x))) and L2(x′, F (x′)) = G(L1(x′, F (x′))).
Note also that, conversely, if F and L = (L1, L2) are respectively a function
and an affine automorphism such that the function L1(x, F (x)) is a permu-
tation, then the relation L2(x, F (x)) = G(L1(x, F (x))) defines a function G
which is CCZ-equivalent to F .

Theorem 26 [30] Let n be a positive integer, let r, s, q be three nonzero
elements of Z/nZ and j an element of Z/nZ. Let a be a nonzero element of
F2n. Assume that s 6= ±q and one of the following two conditions is satisfied
1) j /∈ {−q,±s,±s− q, s− r,−r, s− r − q,−r − q};
2) j /∈ {−q,±s,±s− q, s+ r, r, s+ r − q, r − q}.
If F (x) = x2s+1 +ax2j(2q+1) is CCZ-equivalent to the function G(x) = x2r+1

with gcd(r, n) = 1 then F and G are EA-equivalent.

Proof. Suppose that F (x) and G(x) are CCZ-equivalent, that is, there
exists an affine automorphism L = (L1, L2) of F2n × F2n such that y =
F (x) ⇔ L2(x, y) = G(L1(x, y)). This implies then L1(x, F (x)) is a permu-
tation and L2(x, F (x)) = G(L1(x, F (x))). Writing L1(x, y) = L(x) + L′(y)
and L2(x, y) = L′′(x) + L′′′(y) gives

L′′(x) + L′′′(F (x)) = G[L(x) + L′(F (x))]. (4.12)

We can write

L(x) = b+
∑

m∈Z/nZ

bmx
2m , (4.13)

L′(x) = b′ +
∑

m∈Z/nZ

b′mx
2m , (4.14)

L′′(x) = b′′ +
∑

m∈Z/nZ

b′′mx
2m , (4.15)

L′′′(x) = b′′′ +
∑

m∈Z/nZ

b′′′mx
2m , (4.16)

b+ b′ = c. (4.17)

b′′ + b′′′ = c′. (4.18)

We have

G[L(x) + L′(F (x))] =
(
L(x) + L′(x2s+1 + ax2j(2q+1))

)
×
(
L(x) + L′(x2s+1 + ax2j(2q+1))

)2r

= (c+
∑

m∈Z/nZ

bmx
2m +

∑
m∈Z/nZ

b′mx
2m(2s+1)

+
∑

m∈Z/nZ

amb′mx
2j+m(2q+1))
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×(c2r +
∑

m∈Z/nZ

b2
r

mx
2m+r

+
∑

m∈Z/nZ

b′2
r

m x2m+r(2s+1)

+
∑

m∈Z/nZ

a2r+mb′2
r

m x2r+j+m(2q+1))

= Q(x) + [
∑

m,k∈Z/nZ

bkb
′2r
m x2m+r(2s+1)+2k

+
∑

m,k∈Z/nZ

a2r+mbkb
′2r
m x2r+j+m(2q+1)+2k

+
∑

m,k∈Z/nZ

b′kb
2r

mx
2m+r+2k(2s+1)

+
∑

m,k∈Z/nZ

a2kb′kb
2r

mx
2m+r+2j+k(2q+1)]

+[
∑

m,k∈Z/nZ

b′kb
′2r
m x2m+r(2s+1)+2k(2s+1)

+
∑

m,k∈Z/nZ

a2r+mb′kb
′2r
m x2r+j+m(2q+1)+2k(2s+1)

+
∑

m,k∈Z/nZ

a2kb′kb
′2r
m x2m+r(2s+1)+2j+k(2q+1)

+
∑

m,k∈Z/nZ

a2r+m+2kb′kb
′2r
m x2r+j+m(2q+1)+2j+k(2q+1)],

where Q(x) is a quadratic polynomial and in the second bracket we collect all
items which potentially can have algebraic degree 4 (that is, whose exponents
can have 2-weight equal to 4).

Obviously, all terms in the expression above whose exponents have 2-
weight strictly greater than 2 must cancel because of identity (4.12).

If L′ is a constant then F and G are obviously EA-equivalent and it
proves the statement of the theorem. If the function L′ is not a constant
then there exists m ∈ Z/nZ such that b′m 6= 0. If j 6= s − r, j 6= −r,
j + q 6= s− r and j + q 6= −r then 2r+j+m(2q + 1) + 2m(2s + 1) has 2-weight
4 and the items with this exponent have to vanish. We get

a2m+r
b′2

r+1
m + a2m+r

b′m+rb
′2r
m−r = 0

and since a 6= 0, b′m 6= 0 then b′m+r, b
′
m−r 6= 0 and

b′mb
′−2r

m−r = b′m+rb
′−2r

m . (4.19)

If j 6= s + r, j 6= r, j + q 6= s + r and j + q 6= r then 2m+j(2q + 1) +
2m+r(2s + 1) has 2-weight 4 and we again get (4.19).

Since gcd(r, n) = 1 then applying this observation for m+ r, m+ 2r,...,
instead of m we get b′t 6= 0 and

b′mb
′−2r

m−r = b′t+rb
′−2r

t (4.20)
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for all t ∈ Z/nZ.
Let us consider the sum∑

m,k∈Z/nZ

b′kb
′2r
m x2m+r(2s+1)+2k(2s+1)

from the last bracket. For any k,m ∈ Z/nZ, k 6= m + r, the items

b′kb
′2r
m x2m+r(2s+1)+2k(2s+1) and b′m+rb

′2r
k−rx

2k(2s+1)+2m+r(2s+1) differ and can-
cel pairwise because of (4.20). In the case k = m + r the sum gives items
with the exponents of 2-weight not greater than 2.
Considering the sum∑

m,k∈Z/nZ

a2r+m+2kb′kb
′2r
m x2r+j+m(2q+1)+2j+k(2q+1)

we get that for any k,m ∈ Z/nZ, k 6= m+ r, the items

a2r+m+2kb′kb
′2r
m x2r+j+m(2q+1)+2j+k(2q+1)

and
a2r+m+2kb′r+mb

′2r
k−rx

2j+k(2q+1)+2r+j+m(2q+1)

differ and cancel pairwise because of (4.20) and in the case k = m + r the
sum gives items with the exponents of 2-weight not greater than 2.
Now we consider the sums∑

m,k∈Z/nZ

a2r+mb′kb
′2r
m x2r+j+m(2q+1)+2k(2s+1)

and ∑
m,k∈Z/nZ

a2kb′kb
′2r
m x2m+r(2s+1)+2j+k(2q+1).

For any k,m ∈ Z/nZ the item a2r+mb′kb
′2r
m x2r+j+m(2q+1)+2k(2s+1) from the

first sum cancels with the item a2r+mb′m+rb
′2r
k−rx

2k(2s+1)+2r+j+m(2q+1) from
the second sum and vice versa.
Thus the expression in the last bracket is quadratic and

G[L(x) + L′(F (x))]

= Q′(x) + [
∑

m,k∈Z/nZ

bkb
′2r
m x2m+r(2s+1)+2k (4.21)

+
∑

m,k∈Z/nZ

a2r+mbkb
′2r
m x2r+j+m(2q+1)+2k (4.22)

+
∑

m,k∈Z/nZ

b′kb
2r

mx
2m+r+2k(2s+1) (4.23)

+
∑

m,k∈Z/nZ

a2kb′kb
2r

mx
2m+r+2j+k(2q+1)], (4.24)
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where Q′(x) is a quadratic function.
Because of (4.20) we can deduce, by denoting b′rb

′−2r

0 = λ, that b′t+r =
λb′2

r

t for all t. Then, introducing µ such that λ = µ2r−1, we deduce that
µb′t+r = (µb′t)

2r for all t and then that µb′t+1 = (µb′t)
2 (using that gcd(r, n) =

1) and then µb′t = (µb′0)2t . This means that µL′(x) = µb′ + tr(µb′0x). Then
obviously L′ is not a permutation and since L1(x, F (x)) is a permutation
then L is not a constant. Thus bt 6= 0 for some t ∈ Z/nZ.

Now consider the exponent 2j+m(2q + 1) + 2m. This exponent has 2-
weight 3 since j 6= −q. Furthermore, since s 6= ±q and j /∈ {±s,±s − q}
then this exponent differs from exponents in the first and the third sums
(i.e. in (4.21) and (4.23)). Thus, considering the corresponding coefficients
from the parts (4.22) and (4.24) we get the equality

bmb
−2r

m−r = b′mb
′−2r

m−r

and because of (4.20) we get for all t ∈ Z/nZ

λ = b′mb
′−2r

m−r = btb
−2r

t−r .

Therefore, µL(x) = µb + tr(µb0x) and µ[L(x) + L′(F (x))] = µb′ + µb +
tr(µb0x + µb′0F (x)). Obviously the function L(x) + L′(F (x)) is not a per-
mutation and that is a contradiction. Therefore, L′ is constant and F and
G are EA-equivalent. 2

Corollary 19 [30] The functions of Corollary 16 are CCZ-inequivalent to
the Gold mappings when k ≥ 4.

Proof. Assume that the Gold function x2r+1, gcd(r, n) = 1, is CCZ-
equivalent to F . Then by Corollary 17 and by Theorem 26 one of the
conditions s 6= ±q, j 6= −q, j 6= ±s, j 6= ±s − q, j 6= s − r, j 6= −r,
j + q 6= s− r, j + q 6= −r, is not satisfied.

Let i = 1. Then in terms of Theorem 26 we have q = k + s, j = k. If
s = ±q or j = −q or j = ±s or j = ±s − q then we get a contradiction
with n = 3k 6= 0 or gcd(s, k) = 1. If r = −j or r = s − (j + q) then
gcd(r, k) 6= 1, again a contradiction. If r = s − j or r = −(j + q) then r
is divisible by 3. Indeed, since sk = 1 mod 3 then s mod 3 = k mod 3
and ±(s − k) = 0 mod 3. On the other hand, r = s − j = s − k or
r = −(j + q) = n− (2k + s) = 3k − (2k + s) = k − s. But gcd(r, 3k) = 1, a
contradiction. 2

Corollary 20 [30] The function F of Theorem 24 is CCZ-inequivalent to
the Gold mappings when k ≥ 3.

Proof. The proof for CCZ-inequivalence to the Gold functions is based
on Corollary 18 and Theorem 26. Let i = 1, then j = k and q = 2k + s
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satisfy the conditions q 6= ±s, j 6= −q, j 6= ±s, j 6= ±s − q, j 6= s − r,
j 6= −r, j + q 6= s − r, j + q 6= −r for any r satisfying 1 ≤ r < n/2 and
gcd(r, n) = 1. Indeed, the cases q = ±s or j = −q or j = ±s or j = ±s− q
are in contradiction with gcd(s, 4k) = 1, n = 4k. If k = s − r then it
contradicts the fact that k is odd and s− r is even. If k = −r then it would
contradict gcd(r, 4k) = 1. If 3k+ s = s− r then 3k = −r and gcd(r, k) 6= 1,
a contradiction. If 3k + s = −r then s + r = k while s, r, k are odd. By
Theorem 26 and Corollary 18 the function F is CCZ-inequivalent to x2r+1.
2

Remark 15 Due to the recent work [145], where it is proven that two
quadratic APN functions are CCZ-equivalent if and only if they are EA-
equivalent, we can also get the results of Corollaries 19 and 20 directly from
Corollaries 17 and 18.

Now we consider the case of Kasami functions.

Theorem 27 [30] Let n be a positive integer grater than 4, let r, s, q, j be
nonzero elements of Z/nZ such that gcd(r, n) = 1, 2 ≤ r < n/2, s /∈
{±q,±3q}, q 6= ±3s, j /∈ {±s,±q,±s−q, s±q,−2q, s−2q, 2s, 2s−q}. Then
for a ∈ F∗2n the functions F (x) = x2s+1 + ax2j(2q+1) and K(x) = x4r−2r+1

are CCZ-inequivalent.

Proof. Let G(x) = x2r+1, G′(x) = x23r+1. Suppose that F (x) and K(x) are
CCZ-equivalent. Then, there exists an affine automorphism L = (L1, L2)
of F2n × F2n such that L2(x, F (x)) = K(L1(x, F (x))), which implies, by
composition by G

G(L2(x, F (x))) = G′(L1(x, F (x))),

that is, writing again L1(x, y) = L(x) +L′(y) and L2(x, y) = L′′(x) +L′′′(y)
and using the notations (4.14)-(4.18):

0 = G′[L(x) + L′(F (x))] +G[L′′(x) + L′′′(F (x))]

=
(
L(x) + L′(x2s+1 + ax2j(2q+1))

)
×

(
L(x) + L′(x2s+1 + ax2j(2q+1))

)23r

+
(
L′′(x) + L′′′(x2s+1 + ax2j(2q+1))

)
×

(
L′′(x) + L′′′(x2s+1 + ax2j(2q+1))

)2r

= [c+
∑

m∈Z/nZ

bmx
2m +

∑
m∈Z/nZ

b′mx
2m(2s+1)

+
∑

m∈Z/nZ

amb′mx
2j+m(2q+1))]× [c23r +

∑
m∈Z/nZ

b2
3r

m x2m+3r

+
∑

m∈Z/nZ

b′2
3r

m x2m+3r(2s+1) +
∑

m∈Z/nZ

a23r+mb′2
3r

m x23r+j+m(2q+1)]
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+ [c′ +
∑

m∈Z/nZ

b′′mx
2m +

∑
m∈Z/nZ

b′′′mx
2m(2s+1)

+
∑

m∈Z/nZ

amb′′′mx
2j+m(2q+1))]× [c′2

r
+

∑
m∈Z/nZ

b′′2
r

m x2m+r

+
∑

m∈Z/nZ

b′′′2
r

m x2m+r(2s+1) +
∑

m∈Z/nZ

a2r+mb′′′2
r

m x2r+j+m(2q+1)]

= Q(x) + [
∑

m,k∈Z/nZ

bkb
′23r
m x2m+3r(2s+1)+2k

+
∑

m,k∈Z/nZ

a23r+mbkb
′23r
m x23r+j+m(2q+1)+2k

+
∑

m,k∈Z/nZ

b′kb
23r

m x2m+3r+2k(2s+1)

+
∑

m,k∈Z/nZ

a2kb′kb
23r

m x2m+3r+2j+k(2q+1)

+
∑

m,k∈Z/nZ

b′′kb
′′′2r
m x2m+r(2s+1)+2k

+
∑

m,k∈Z/nZ

a2r+mb′′kb
′′′2r
m x2r+j+m(2q+1)+2k

+
∑

m,k∈Z/nZ

b′′′k b
′′2r
m x2m+r+2k(2s+1)

+
∑

m,k∈Z/nZ

a2kb′′′k b
′′2r
m x2m+r+2j+k(2q+1)]

+ [
∑

m,k∈Z/nZ

b′kb
′23r
m x2m+3r(2s+1)+2k(2s+1)

+
∑

m,k∈Z/nZ

a23r+mb′kb
′23r
m x23r+j+m(2q+1)+2k(2s+1)

+
∑

m,k∈Z/nZ

a2kb′kb
′23r
m x2m+3r(2s+1)+2j+k(2q+1)

+
∑

m,k∈Z/nZ

a23r+m+2kb′kb
′23r
m x23r+j+m(2q+1)+2j+k(2q+1)

+
∑

m,k∈Z/nZ

b′′′k b
′′′2r
m x2m+r(2s+1)+2k(2s+1)

+
∑

m,k∈Z/nZ

a2r+mb′′′k b
′′′2r
m x2r+j+m(2q+1)+2k(2s+1)

+
∑

m,k∈Z/nZ

a2kb′′′k b
′′′2r
m x2m+r(2s+1)+2j+k(2q+1)

+
∑

m,k∈Z/nZ

a2r+m+2kb′′′k b
′′′2r
m x2r+j+m(2q+1)+2j+k(2q+1)],
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where Q is quadratic and the items which can give algebraic degree 4 are
collected in the second brackets.

The exponents of the type 23r+j+m+q+23r+j+m+2k+s+2k have 2-weight
4 if k /∈ {3r+j+m, 3r+j+m+q, 3r+j+m+q−s, 3r+j+m−s}. Besides,
these exponents cannot be equal to any exponent of the type (2s+1)(2l+2l

′
)

when q 6= ±s,±3s and of the type (2q+1)(2l+2l
′
) when s 6= ±q,±3q. Since

all terms with exponents of 2-weight 4 should vanish we obtain

b′kb
′23r
m + b′m+3rb

′23r
k−3r = b′′′k b

′′′2r
m+2r + b′′′m+3rb

′′′2r
k−r (4.25)

form, k ∈ Z/nZ, k /∈ {3r+j+m, 3r+j+m+q, 3r+j+m+q−s, 3r+j+m−s}.
Equality (4.25) is also true for the cases k ∈ {3r + j +m, 3r + j +m+

q, 3r+ j +m+ q− s, 3r+ j +m− s} when s 6= ±q, j /∈ {±s,±q,±s− q, s+
q,−2q, s− 2q, 2s, 2s− q}.

Indeed, let us consider the items with the exponents 23r+j+m(2q + 1) +
2j+k(2q + 1) for k ∈ {3r + j +m, 3r + j +m+ q}.

If k = 3r + j +m then

23r+j+m(2q + 1) + 2j+k(2q + 1) = 23r+j+m(2q + 20 + 2j+q + 2j)

and has 2-weight 4 since j 6= ±q and it differs from exponents of the type
(2s+1)(2l+2l

′
) since j /∈ {±s−q,±s} and of the type 2l(2q+1)+2l

′
(2s+1)

since j /∈ {±s− q,±s,−2q,±q}.
If k = 3r + j +m+ q then

23r+j+m(2q + 1) + 2j+k(2q + 1) = 23r+j+m(2q + 20 + 2j+2q + 2j+q)

has 2-weight 4 since j /∈ {−q,−2q} and it differs from exponents of the type
(2s+1)(2l+2l

′
) because j /∈ {±s−q,±s} and of the type 2l(2q+1)+2l

′
(2s+1)

since j /∈ {±s− q,±s,±q,−2q}.
For k ∈ {3r+ j +m+ q− s, 3r+ j +m− s} we can consider 2m+3r(2s +

1) + 2k(2s + 1). Indeed, if k = 3r + j +m+ q − s then

2m+3r(2s + 1) + 2k(2s + 1) = 2m+3r(2s + 20 + 2j+q + 2j+q−s)

and has 2-weight 4 since j /∈ {s−q, 2s−q,−q} and it differs from exponents of
the type (2q+1)(2l+2l

′
) since j /∈ {−2q, s,−2q+s} and 2l(2q+1)+2l

′
(2s+1)

since j /∈ {−2q, s,−2q + s,±s− q,−q, 2s− q}.
If k = 3r + j +m− s then

2m+3r(2s + 1) + 2k(2s + 1) = 2m+3r(2s + 20 + 2j + 2j−s)

has 2-weight 4 since j /∈ {s, 2s} and it differs from exponents of the type
(2q+1)(2l+2l

′
) because j /∈ {±q+s,±q} and of the type 2l(2q+1)+2l

′
(2s+1)

since j /∈ {±q + s,±q,±s, 2s}.
Without loss of generality we can assume that L,L′, L′′, L′′′ are linear

(since changing the constant terms in these affine mappings results only in a
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change of the polynomial Q(x) above) and let L′ 6= 0. The equalities (4.25)
imply

(L′′′(x))2r+1 + (L′(x))23r+1 = C(x) (4.26)

for some linear function C(x). Besides, it must hold that

ker(L′′′) ∩ ker(L′) = {0} (4.27)

since otherwise the system of equations

L(x) + L′(y) = 0

L′′(x) + L′′′(y) = 0

has solutions different from (0, 0) which is not possible since L is a permu-
tation.

For any element u, derivating equality (4.26) we get

L′′′(u)2rL′′′(x) + L′′′(u)L′′′(x)2r

+L′(u)23rL′(x) + L′(u)L′(x)23r = 0 (4.28)

We want to show first that L′ and L′′′ have to be bijective. Assume on
the contrary that L′ is not bijective. Then there exists an element u0 6= 0
such that L′(u0) = 0, and due to equality (4.27) L′′′(u0) 6= 0. We get for all
x that

L′′′(u0)2rL′′′(x) + L′′′(u0)L′′′(x)2r = 0.

And it follows that

L′′′(x) = 0 or L′′′(x) = L′′′(u0),

where we used that gcd(2r − 1, 2n − 1) = 1. Thus there exists an element d
such that

L′′′(x) = L′′′(u0) tr(dx).

If we plug this into equality (4.28) we get

L′(u)23rL′(x) + L′(u)L′(x)23r = 0

for all x and any a. This implies that L′(x) = 0 or

L′(x)23r−1 = L′(u)23r−1

which, as gcd(3r, n) = 3, means that

L′(x) = L′(u)γ
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where γ ∈ F23 . In particular we have

dim(im(L′)) ≤ 3

and therefore we have dim(ker(L′) ≥ n − 3. As dim(ker(L′′′)) = n − 1 for
n > 4 the two kernel intersect, a contradiction. Thus, L′ must be bijective.

Now assume that L′′′ is not bijective. Then there exists u1 such that
L′′′(u1) = 0 and L′(u1) 6= 0. We get, again

L′(u1)23rL′(x) + L′(u1)L′(x)23r = 0

which, using the same arguments as above, contradicts the condition that
L′ is bijective. We conclude that L′′′ is bijective.

Now we denote A = L′′′ ◦L′−1, which is again a bijective linear mapping.
By replacing x by L′−1(x) and u by L′−1(u) in (4.28) we obtain

A(u)2rA(x) +A(u)A(x)2r + u23rx+ ux23r = 0

and for u ∈ F23 we see that for all x ∈ F23 we get

A(u)2rA(x) +A(u)A(x)2r = 0

which is equivalent to A(x) = 0 or A(x) = A(u) which is impossible since A
is a bijection. This contradiction shows that the functions that the function
L′ is constant, and therefore the functions F and K are EA-equivalent.
But this is also impossible because EA-equivalence preserves the algebraic
degree. Indeed, F is quadratic while K is not when 2 ≤ r < n/2. Thus the
functions F and K are CCZ-inequivalent. 2

Corollary 21 [30] The functions of Corollary 16 are CCZ-inequivalent to
the Kasami mappings when k ≥ 4.

Proof. Let i = 1, then in terms of Theorem 27 we have j = k, q = k + s
for the function F of Corollary 16 and one can easily check that j, k, s here
satisfy all conditions of Theorem 27 since n = 3k, k ≥ 4 and gcd(s, 3k) = 1.
2

Corollary 22 [30] The function F of Theorem 24 is CCZ-inequivalent to
the Kasami mappings when k ≥ 3.

Proof. Let i = 1, then in terms of Theorem 27 we have j = k, q = 2k + s
for the function F of Theorem 24 and one can easily check that j, k, s here
satisfy all conditions of Theorem 27 because k, s are odd, n = 4k, k ≥ 3 and
gcd(s, 4k) = 1. 2

Proposition 21 [30] When k ≥ 2 the functions of Corollary 16 and Theo-
rem 24 are CCZ-inequivalent to the inverse and Dobbertin mappings.
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Proof. For any quadratic APN mapping F the number 2b
n+1
2
c divides all

the values in the Walsh spectrum of F (see [46], [129]). It is shown in [107]
that the inverse function does not have this property. Besides, it is proven in
[41] that 2

2n
5

+1 cannot be a divisor of all the values in the Walsh spectrum
of a Dobbertin function. Since the extended Walsh spectrum of a function is
invariant under CCZ-equivalence then F is CCZ-inequivalent to the inverse
and Dobbertin functions. 2

Corollaries 19-22 and Proposition 21 let us state the following theorem.

Theorem 28 [30] When n ≥ 12 and n is even the functions of Corollary 16
and Theorem 24 are CCZ-inequivalent to all known power APN functions.
When n is odd (and n ≥ 12) these functions are CCZ-inequivalent to the
Gold, Kasami, inverse and Dobbertin mappings. 2

Theorem 28 implies that for n = 12, 20, 24 the introduced APN bino-
mials are CCZ-inequivalent to all power functions. We conjecture that the
functions from Corollary 16 and Theorem 24 are CCZ-inequivalent to any
power function when n ≥ 12.

4.2 Classes of APN trinomials and hexanomials

As shown in [70], one of the ways to construct APN polynomials is to con-
sider quadratic hexanomials of the type

F (x) = x(Ax2 +Bxq + Cx2q) + x2(Dxq + Ex2q) +Gx3q (4.29)

over F22m with q = 2m. These polynomials are good candidates for be-
ing differentially 4-uniform, and potentially APN. This approach gave new
examples of quadratic APN functions over F26 and F28 which are CCZ-
inequivalent to power functions [68]. Besides, as we are going to see further,
the infinite family of APN hexanomials (4) of Table 6 is based on construc-
tion (4.29) and it leads also to the family of APN trinomials (3).

Below we suggest natural generalizations of the method from [68], but
first recall the arguments leading to the construction (4.29). Let a function
F be defined by (4.29). Since F is quadratic then in order to determine its
differential uniformity it is enough to know the numbers of solutions of the
linear equations F (x+a)+F (x)+F (a) = 0 for all nonzero elements a of F22m .
We get, for some expressions a1, · · · , a4, b1, · · · , b3, c1, · · · , c3 depending on
a:

f1 = F (x+ a) + F (x) + F (a) = a1x+ a2x
2 + a3x

q + a4x
2q = 0,

f2 = aq2f1 + a4f
q
1 = b1x+ b2x

2 + b3x
q = 0,

f3 = b23f1 + a3b3f2 + a4f
2
2 = c1x+ c2x

2 + c3x
4 = 0.
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Hence, if either c1, c2 or c3 is different from 0 then F can have differen-
tial uniformity at most 4. In practice this condition on coefficients is very
important. Indeed, the construction (4.29) gives, up to addition of affine
functions, all quadratic functions on the field F24 while we have checked by
running a computer that only about 3/4 of them have differential uniformity
which is less or equal to 4. For the field F26 only about 18/41 of all functions
generated by (4.29) have differential uniformity at most 4.

Let us now consider the construction

F ′(x) = x(Ax2 +Bx4 + Cxq +Dx2q + Ex4q)

+x2(Gx4 +Hxq + Ix2q + Jx4q)

+x4(Kxq + Lx2q +Mx4q) + xq(Nx2q + Px4q) +Qx2q+4q.

For the function F ′ and for any nonzero elements a of F22m we get

f ′1 = F (x+ a) + F (x) + F (a)

= a′1x+ a′2x
2 + a′3x

4 + a′4x
q + a′5x

2q + a′6x
4q = 0,

f ′2 = a′q3 f
′
1 + a′6f

′
1
q

= b′1x+ b′2x
2 + b′3x

4 + b′4x
q + b′5x

2q = 0,

f ′3 = b′3f
′
1 + a′3f

′
2

= c′1x+ c′2x
2 + c′3x

q + c′4x
2q + c′5x

4q = 0,

f ′4 = c′q5 f
′
2 + b′3f

′
3
q

= d′1x+ d′2x
2 + d′3x

q + d′4x
2q = 0.

Thus, if some of the coefficients d′1, d
′
2, d
′
3, d
′
4 are different from 0 then we

see that f ′4 has the same form as f1. Therefore, applying Dillon’s method to
f1 = f ′4, we get that if some of the coefficients d′1, d

′
2, d
′
3, d
′
4, and some of the

coefficients c1, c2, c3 (associated to f1 = f ′4) are different from 0 then F ′ is
differentially 4-uniform. Obviously, the probability that we can prove this
way that the function F ′ is differentially 4-uniform is less than in the case
of construction (4.29) since we have an additional condition (on coefficients
d′1, d

′
2, d
′
3, d
′
4). And actually, we checked by a computer that only about 1/4

of the quadratic functions on the field F26 are differentially 4-uniform (while
all of them have the same form as F ′, up to addition of affine functions).

Clearly, construction (4.29) can be further generalized. For any i we
denote

F (i)(x) =
∑

0≤t<j≤i
atjx

2t+2j +
∑

0≤t,j≤i
btjx

2t+2jq +
∑

0≤t<j≤i
ctjx

q(2t+2j)

and consider F (i) over F22m with m ≥ i + 1. Obviously, the cases i = 1, 2
correspond to the functions F and F ′. For arbitrary i, using induction, we
get that, under a condition on the coefficients translating that no relation
obtained in the process completely vanishes, the function F (i) is differen-
tially 4-uniform. Note that all quadratic functions have the form F (i)(x) for
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i = m− 1. But clearly, with increasing i the probability that we can prove
this way that F (i) is differentially 4-uniform decreases since the number of
conditions on the coefficients grows. Nevertheless, we exhibit in the next
section two subcases where these constructions succeed in providing differ-
entially 4-uniform polynomials, and we can even deduce two new infinite
classes of quadratic APN functions.

Note that functions whose nonzero derivatives are 2k-to-1 mappings (i.e.
reach any value either 0 or 2k times) are studied in [39]. The simplest
examples of such functions over F2n are x2i+1 when gcd(i, n) = k. The
following theorems give new classes of such functions, which are differentially
4-uniform when k = 2 and APN when k = 1.

Theorem 29 [26] Let m and i be any positive integers, q = 2m, n = 2m,
gcd(i,m) = k and c, b ∈ F2n be such that cq+1 = 1, c 6∈ {λ(2i+1)(q−1), λ ∈
F2n}, cbq + b 6= 0. Then all the nonzero derivatives of the function

F (x) = x22i+2i + bxq+1 + cxq(2
2i+2i)

are 2k-to-1 mappings of F2n.
Such vectors b, c do exist if and only if gcd(2i + 1, q + 1) 6= 1. For m odd,
this is equivalent to saying that i is odd.

Proof. Since F is quadratic, then for any nonzero a in F2n the function
F (x+ a) + F (x) is 2k-to-1 if and only if the equation

f1 = F (x+ a) + F (x) + F (a) = baqx+ a22ix2i

+a2ix22i + baxq + ca22iqx2iq + ca2iqx22iq = 0

has 2k solutions. This equation implies

f1 + cf q1 = (cbq + b)(axq + aqx) = 0

and, since cbq + b 6= 0, then axq + aqx = 0, i.e.
(
x
a

)q
= x

a , and therefore
x = au, u ∈ Fq. The equation f1 = 0 becomes

(a22i+2i + caq(2
2i+2i))(u2i + u22i) = 0.

The condition c 6∈ {λ(2i+1)(q−1), λ ∈ F2n} implies that a22i+2i + caq(2
2i+2i) 6=

0. Hence we have then u2i + u22i = 0, that is, u + u2i = 0, i.e. u = 0
or u2i−1 = 1. Since gcd(i,m) = k then gcd(2i − 1, 2m − 1) = 2k − 1 and
F (x+ a) + F (x) is 2k-to-one for any nonzero a.
Vectors c, b satisfying the hypotheses do exist if and only if there exists j
such that αj(q−1) 6∈ {λ(2i+1)(q−1), λ ∈ F2n}, where α is a primitive element
of F2n (we can take b = 1). Hence, the vectors c, b exist if and only if
(2i + 1) · Z/(q + 1)Z 6= Z/(q + 1)Z, that is, gcd(2i + 1, q + 1) 6= 1. For m
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odd, this is clearly equivalent to saying that i is odd. 2

Clearly, for k equal 1 and 2, Theorem 29 gives differentially 2- and 4-
uniform functions respectively.

Corollary 23 [26] Let m be any positive integer, q = 2m, n = 2m, i be
such that gcd(i,m) = 1 and gcd(2i + 1, q+ 1) 6= 1, and let c, b ∈ F2n be such
that cq+1 = 1, c 6∈ {λ(2i+1)(q−1), λ ∈ F2n}, cbq + b 6= 0. Then the function

F (x) = x22i+2i + bxq+1 + cxq(2
2i+2i)

is APN on F2n.

Theorem 30 [26] Let m and i be any positive integers, q = 2m, n = 2m,
gcd(i,m) = k, and c, s ∈ F2n be such that s /∈ Fq. If the equation

x2i+1 + cx2i + cqx+ 1 = 0

has no solution x such that xq+1 = 1, and in particular if the polynomial
X2i+1+cX2i+cqX+1 is irreducible over F2n, then all the nonzero derivatives
of the function

F (x) = x(x2i + xq + cx2iq) + x2i(cqxq + sx2iq) + x(2i+1)q

are 2k-to-1 mappings of F2n.

Proof. As above, for any nonzero a, the function F (x+a)+F (x) is 2k-to-1
if and only if the equation F (x+ a) + F (x) + F (a) = 0 has 2k solutions.

We have

F (x+ a) + F (x) + F (a) = (a2i + aq + ca2iq)x

+(a+ cqaq + sa2iq)x2i + (a+ cqa2i + a2iq)xq

+(ca+ sa2i + aq)x2iq

and

(F (x+ a) + F (x) + F (a))q = (a2iq + a+ cqa2i)xq

+(aq + ca+ sqa2i)x2iq + (aq + ca2iq + a2i)x

+(cqaq + sqa2iq + a)x2i .

The sum of these two expressions equals (s+ sq)(a2iqx2i + a2ix2iq). Hence,
since s+ sq 6= 0 then F (x+ a) +F (x) +F (a) = 0 implies axq + aqx = 0 and
therefore x = au, u ∈ Fq. Replacing x by au, we get

F (x+ a) + F (x) + F (a)

= (u2ia2i + uaq + cu2ia2iq)a+ (ua+ cquaq + su2ia2iq)a2i

+(ua+ cqu2ia2i + u2ia2iq)aq + (cua+ su2ia2i + uaq)a2iq

= (u+ u2i)(a2i+1 + a(2i+1)q + ca2iq+1 + cqa2i+q).
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The equation u+u2i = 0 has 2k solutions. We deduce that F (x+ a) +F (x)
is 2k-to-1 if the equation x2i+1 + x(2i+1)q + cx2iq+1 + cqx2i+q = 0 admits
no nonzero solution or, equivalently, the equation x(2i+1)(q−1) + cx2i(q−1) +
cqxq−1 + 1 = 0 has no solutions, or in other words, if the equation

y2i+1 + cy2i + cqy + 1 = 0

has no solution y such that yq+1 = 1. This happens (for instance) when the
polynomial X2i+1 + cX2i + cqX + 1 is irreducible over F2n . 2

Obviously, for the special case k = 2, Theorem 30 gives differentially
4-uniform functions and for k = 1, it gives a class of APN functions.

Corollary 24 [26] Let m be any positive integer, q = 2m, n = 2m, i be
such that gcd(i,m) = 1, and c, s ∈ F2n be such that s /∈ Fq. If the equation

x2i+1 + cx2i + cqx+ 1 = 0

has no solution x such that xq+1 = 1, and in particular if the polynomial
X2i+1 + cX2i + cqX + 1 is irreducible over F2n, then the function

F (x) = x(x2i + xq + cx2iq) + x2i(cqxq + sx2iq) + x(2i+1)q

is APN on F2n.

We checked with a computer that for i = 1, and at least for all even n,
6 ≤ n ≤ 1000, not divisible by 3, there always exist elements c ∈ F2n for
which the polynomial X2i+1 + cX2i + cqX + 1 is irreducible over F2n . In
case n is divisible by 6, 6 ≤ n ≤ 1000, such elements exist at least for 140
out of 166 checked fields. We also checked that for 6 ≤ n ≤ 26 the number
of elements c for which the polynomial is irreducible is in average 3/10-th of
all elements. Moreover, as was proved recently in [12], elements c satisfying
the conditions of Theorem 30 (and Corollary 24 in particular) always exist.

Inequivalence with power functions Dobbertin APN functions have
Walsh spectra which are different from Walsh spectra of quadratic APN
functions (see [40, 76, 129]). Since the extended Walsh spectrum of a func-
tion is invariant under CCZ-equivalence then we can make the following
conclusion.

Proposition 22 [26] For any positive n the functions of Corollaries 23 and
24 are CCZ-inequivalent to Dobbertin APN functions.

We conjecture that the functions of Corollaries 23 and 24 are CCZ-
inequivalent to all power functions for n ≥ 6. In [68], [83] some invariants
for CCZ-equivalence are presented in terms of group algebras and coding
theory. We use one of them to prove the following proposition.
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Proposition 23 [26] At least some of the functions of Corollaries 23 and
24 are CCZ-inequivalent to power functions on F2n with n = 6, 8, 10.

Let G = F2[F2n ×F2n ] be the group algebra of F2n ×F2n over F2. It
consists of the formal sums ∑

g∈G
agg

where ag ∈ F2. If S is a subset of F2n ×F2n then it can be identified with
the element

∑
s∈S s of G. The dimensions of the ideal of G generated by

the graph GF of F is called the Γ-rank of F . According to [68], the Γ-rank
is CCZ-invariant.

For n = 6 we checked hundreds of functions of Corollaries 23 and 24, and
all of them have Γ-ranks equal 1146 (take, for instance, b = 1 and c = αq−1

for the functions of Corollary 23, and c = s = α for the functions of Corollary
24 with α a primitive element of F∗26), while the only APN power function
x3 on F26 has the Γ-rank 1104. We further checked with a computer using
coding approach from [21] that the functions of Corollaries 23 and 24 are
CCZ-inequivalent to all APN power functions and all APN binomials up to
n = 10.

Remark 16 When the APN trinomials and hexanomials of this section
were first constructed, the only other known classes of APN functions were
power APN functions and APN binomials (1-2) of Table 6. The APN multi-
nomials (11) of Table 6 oppeared in [14] a very shortly after the introduction
of APN trinomials and hexanomials in [26] without giving any proof of dif-
ference with these families. We also cannot say much about the relation
between the families of trinomials and hexanomials except that there are
fields where the hexanomials (4) are defined while the trinomials (3) and
the multinomials (11) are not. In any case, as proven in [43], all three fam-
ilies of APN functions (3), (4) and (11) are particular cases of a general
construction of APN functions.

4.3 APN and AB polynomials x3 + trn(x
9)

In this section we present the family of APN and AB functions x3 + trn(x9)
over Fn2 constructed in [32]. This functions served as the first example of
APN and AB polynomials CCZ-inequivalent to power functions whose all
coefficients were in F2. Moreover it is still the only family of APN and AB
polynomials CCZ-inequivalent to power functions which is defined for all n
(recall that in case of power APN and AB functions only the Gold function
x3 posses this property).

We give a new approach for constructing quadratic APN functions and
using it we construct a class of quadratic APN polynomials with coefficients
in F2 . We prove that the function F (x) = x3 + trn(x9) is APN over F2n for
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any n, and that for all n ≥ 7 it is CCZ-inequivalent to the Gold functions
(and, hence, EA-inequivalent to all power functions since Gold functions
are the only quadratic APN power functions), to the inverse and Dobbertin
functions. Obviously, this function is AB for all odd n. We conjecture that
for n ≥ 7 the function F is CCZ-inequivalent to any power function. This
conjecture is confirmed for the case 7 ≤ n ≤ 10. Further we show that
applying CCZ-equivalence to quadratic APN functions, it is possible to con-
struct classes of nonquadratic APN mappings CCZ-inequivalent to power
functions.

In the theorem below we give a general approach for constructing new
quadratic APN functions from known ones.

Theorem 31 [32] Let F be a quadratic APN function from F2n to itself, let
f be a quadratic Boolean function on F2n and

ϕF (x, a) = F (x) + F (x+ a) + F (a) + F (0),

ϕf (x, a) = f(x) + f(x+ a) + f(a) + f(0).

Then the function F (x) + f(x) is APN if for every nonzero a ∈ F2n there
exists a linear Boolean function `a satisfying the conditions

1) ϕf (x, a) = `a(ϕF (x, a)),

2) if ϕF (x, a) = 1 for some x ∈ F2n then `a(1) = 0.

Proof. Since the function F (x) + f(x) is quadratic, it is APN if and only
if, for every nonzero a ∈ F2n , the equation ϕF (x, a) + ϕf (x, a) = 0 admits
at most two solutions (see e.g. [45]). According to the hypothesis on `a, a
solution to this equation must be such that ϕf (x, a) = 0 and therefore such
that ϕF (x, a) = 0. Then, F being quadratic APN, this equation admits at
most two solutions. 2

The same principle as in Theorem 31 allows generating a large variety of
differentially 4-uniform functions from APN functions as it is shown in the
proposition below.

Proposition 24 [32] For any APN function F the following functions are
differentially 4-uniform

1) F (x) + trn(G(x)) for any function G;

2) F ◦A and A ◦ F for any affine function A which is 2-to-1.

Remark 17 [32] Note that, in the situation of Theorem 31, a linear function
la satisfying ϕf (x, a) = `a(ϕF (x, a)) always exists. This is due to the fact
that, by the assumption F is APN and then the kernel of ϕF (x, a) equals
{0, a}. This set is always a subset of the kernel of ϕf (x, a), which is indeed
the necessary and sufficient condition for the existence of la. 2



4.3. APN AND AB POLYNOMIALS X3 + trN (X9) 115

A direct consequence of Theorem 31 is that, if F is APN and if ` is a
linear form such that `(1) = 0, then the function F (x) + `(F (x)) is APN.
But this function is affine equivalent to F since it is equal to L ◦ F where
L(x) = x+ `(x), and the condition that `(1) = 0 is equivalent to saying that
L is a permutation.

We give now an example where Theorem 31 leads to a function which is
CCZ-inequivalent to the original function F .

Corollary 25 [32] Let n be any positive integer. Then the function x3 +
trn(x9) is APN on F2n.

Proof. We can apply Theorem 31 with

F (x) = x3,

ϕF (x, a) = a2x+ ax2,

f(x) = trn(x9),

ϕf (x, a) = trn(a8x+ ax8),

`a(y) = trn(a6y + a3y2 + a−3y4).

Indeed, we have then

`a(ϕF (x, a)) = trn
(
a6(a2x+ ax2) + a3(a4x2 + a2x4) + a−3(a8x4 + a4x8)

)
= ϕf (x, a)

and if there exists x ∈ Fn2 such that ϕF (x, a) = 1 then

`a(1) = trn
(
a−3
)

= trn

(
x

a
+
(x
a

)2
)

= 0.

2

Remark 18 [32] The APN property of the function x3 + trn(x9) can be
proven also with the following arguments due to Dillon [67]. If F is a
quadratic function then for any nonzero a and for

ϕF (x, y) = F (x+ y) + F (x) + F (y) + F (0)

there exists a linear function La such that

ϕF (ax, a) = La(x+ x2).

Indeed, if

F (x) =
∑
i≤j

ci,jx
2i+2j

then
La(z) =

∑
i≤j

ci,ja
2i+2j (Tj−i(z))

2i ,
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where

Tk(z) = z + z2 + ...+ z2k−1
.

Thus, F is APN if and only if for any nonzero a and z the equality La(z) = 0
implies trn(z) = 1. In the case when F (x) = x3 + trn(x9) we have

La(z) = a3z + trN (a9T3(z))

and if La(z) = 0 for some z 6= 0 then 1 = a3z = trn(a9T3(z)) which implies
1 = trn(z−3(z + z2 + z4)) = trn(z). 2

Another class of APN functions, to which the construction of Theorem 31
can be applied, is a class of trinomial APN functions described in [26] (see
case (3) in Table 6). However, for this class of functions we were able to
construct only functions that are EA-equivalent to the original trinomial.
More precisely we have the following proposition.

Proposition 25 [32] Let m be a positive odd integer, n = 2m, α a primitive
element of F2n. Then the functions F,G : F2n → F2n with

F (x) = x6 + x2m+1 + α2m−1x6·2m ,

G(x) = F (x) + trn(α2m−1+1x3),

are EA-equivalent.

Proof. Let t = α2m+1+1

α2m−1+1
and L(x) = x + trn(tx). It is not difficult to see

that L(F (x)) = G(x). 2

An algorithmic approach Below we describe an algorithmic approach to
search for functions fulfilling the conditions of Theorem 31 when F is a Gold
function. The first step will be to find an explicit description of the linear
function la used in Theorem 31. Let F (x) = x2r+1 and f(x) = trn(x2i+1).
Then

ϕF (x, a) = a2r+1

((x
a

)
+
(x
a

)2r
)

and

ϕf (x, a) = trn

(
a2i+1

((x
a

)
+
(x
a

)2i
))

.
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If we define t = (ir−1 − 1) mod n we get

ϕf (x, a) = trn

(
a2i+1

((x
a

)
+
(x
a

)2i
))

= trn

a2i+1

 t∑
j=0

[(x
a

)
+
(x
a

)2r
]2jr


= trn

a2i+1

 t∑
j=0

[
ϕF (x, a)

a2r+1

]2jr


= trn

 t∑
j=0

a2i+1−(2r+1)2jrϕF (x, a)2j


= trn

 t∑
j=0

a2i−jr+2−jr−(2r+1)

ϕF (x)

 .

Thus denoting

T ri (a) =

t∑
j=0

a2i−jr+2−jr−(2r+1)

we get
ϕf (x, a) = trn(T ri (a)ϕF (x, a)).

In general for g(x) =
∑

i αix
2i+1 we get

ϕg(x, a) = trn

((∑
i

αiT
r
i (a)

)
ϕF (x, a)

)
.

Following Theorem 31, the condition for F+g to be APN is that, if trn(a−(2r+1)) =
0 then

trn

(∑
i

αiTi(a)

)
=
∑
i

trn (αiT
r
i (a)) = 0.

Fixing a base (bj)j of F2n over F2 we can consider the set of vectors{
trn(bjT

r
i (a))a∈F2n ,trn(a−3)=0 | i, j ∈ {0 . . . n− 1}

}
.

Given F , finding a quadratic function g such that the conditions of Theo-
rem 31 are fulfilled is equivalent to finding a set of linearly dependent vectors
in this set. We computed these vectors and all linear dependent sets up to
dimension 15. The only examples in addition to x3+trn(x9) are listed below.

1. If n is even, then the function trn ◦T rn/2 is constant zero. Thus in this

case we can always add trn(x2n/2+1). However this function is constant
zero.
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2. For n = 5 the function x5 + trn(x3) is APN.

3. For n = 8 the function x9 + trn(x3) is APN.

CCZ-inequivalence of the new APN function to power mappings

Theorem 32 [32] The function of Corollary 25 is CCZ-inequivalent to any
Gold function on F2n if n ≥ 7 and n > 2p where p is the smallest positive
integer different from 1 and 3 and coprime with n.

Proof. Let F (x) = x3 + trn(x9) and G(x) = x2r+1 be APN functions on
F2n , n ≥ 7, r ≤ (n− 1)/2.

Suppose the functions F and G are EA-equivalent. Then, there exist
affine permutations L1, L2 and an affine function L′ such that

L1(x3) + L1(trn(x9)) = (L2(x))2t+1 + L′(x).

That is,
L1(x3) + L1(1) trn(x9) = (L2(x))2t+1 + L′(x).

Since the functions are quadratic, we can assume without loss of generality
that L1 and L2 are linear: L1(x) =

∑
m∈Z/nZ bmx

2m , L2(x) =
∑

p∈Z/nZ cpx
2p .

Then we get∑
m∈Z/nZ

bmx
3·2m + trn(x9)

∑
m∈Z/nZ

bm =
∑

l,p∈Z/nZ

cpc
2t

l x
2l+t+2p +L′(x). (4.30)

On the left hand side of the identity (4.30) we have only items of the
type x3·2m , x9·2m , with some coefficients. Therefore this must be true also
for the right hand side of the identity.

Let p be the smallest positive integer different from 1 and 3 such that
gcd(n, p) = 1 (for example, if n is odd then p = 2, if n is even and not
divisible by 5 then p = 5). If n > 2p then 2p + 1 is not in the same

cyclotomic coset with 3 or 9. Therefore, the items of the type x2k(2p+1)

must cancel. That is, for any k

ckc
2t

k−t+p = ck+pc
2t

k−t. (4.31)

Since n ≥ 7 then 3 and 9 are in different cyclotomic cosets and we have for
any k

L1(1) = ckc
2t

k−t+3 + ck+3c
2t

k−t.

If L1(1) 6= 0 then

ckc
2t

k−t+3 6= ck+3c
2t

k−t. (4.32)

If ck 6= 0 for all k then from (4.31) and (4.32) we get

ckc
−2t

k−t = ck+pc
−2t

k−t+p, (4.33)
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ckc
−2t

k−t 6= ck+3c
−2t

k−t+3. (4.34)

Since gcd(n, p) = 1 and from (4.33)

ckc
−2t

k−t = cmc
−2t

m−t

for any m. It contradicts (4.34). Thus, ck = 0 for some k. Then from (4.31)
and (4.32) we get that ck+p = 0. Repeating this step for ck+p, ck+2p, ... we
get ck+ps = 0 and since gcd(n, p) = 1 then ck = 0 for all k. A contradiction.
If L1(1) = 0 then the equation L(x) = 0 has at least 2 solutions 0, 1 and
therefore L1 is not a permutation. Thus, F and G are EA-inequivalent.

Suppose that F (x) and G(x) are CCZ-equivalent, that is, there exists an
affine automorphism L = (L1, L2) of F2n × F2n such that y = F (x) ⇔
L2(x, y) = G(L1(x, y)) and L1(x, F (x)) is a permutation. This implies
then L2(x, F (x)) = G(L1(x, F (x))). Writing L1(x, y) = L(x) + L′(y) and
L2(x, y) = L′′(x) + L′′′(y) gives

L′′(x) + L′′′(F (x)) = G
(
L(x) + L′(F (x))

)
. (4.35)

We can write

L(x) = b+
∑

m∈Z/nZ

bmx
2m ,

L′(x) = b′ +
∑

m∈Z/nZ

b′mx
2m ,

L′′(x) = b′′ +
∑

m∈Z/nZ

b′′mx
2m ,

L′′′(x) = b′′′ +
∑

m∈Z/nZ

b′′′mx
2m ,

b+ b′ = c.

Then we get

G(L(x) + L′(F (x))) =
(
L(x) + L′(x3 + trn(x9)

)
×
(
L(x) + L′(x3 + trn(x9)

)2r
= [

∑
m,k∈Z/nZ

bmb
′2r
k x2m+2k+r+2k+r+1

+L′(1)2r
∑

m,k∈Z/nZ

bmx
2m+2k+3+2k

+
∑

m,k∈Z/nZ

b′mb
2r

k x
2m+1+2m+2k+r

+L′(1)
∑

m,k∈Z/nZ

b2
r

mx
2m+r+2k+3+2k)]
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+[
∑

m,k∈Z/nZ

b′mb
′2r
k x2m+1+2m+2k+r+1+2k+r

+L′(1)2r
∑

m,k∈Z/nZ

b′mx
2m+1+2m+2k+3+2k

+L′(1)
∑

m,k∈Z/nZ

b′2
r

m x2m+r+1+2m+r+2k+3+2k ]

+Q(x),

where Q(x) is a quadratic polynomial. Obviously, all terms in the expression
above whose exponents have 2-weight strictly greater than 2 must cancel.
Since F and G are EA-inequivalent then L′ is not a constant. Then there
exists m ∈ Z/nZ such that b′m 6= 0.

Let L′(1) 6= 0. Since the items with the exponent 2m+1+2m+2m+2+2m+5

have to vanish then we get

L′(1)2rb′m = L′(1)b′2
r

m−r

and since L′(1) 6= 0, b′m 6= 0 and r is coprime with n then b′k 6= 0 and

b′kb
′−2r

k−r = L′(1)1−2r

for all k. Now we can deduce that b′k+r = L′(1)1−2rb′2
r

k for all k. Then,
introducing µ such that

L′(1)1−2r = µ2r−1,

we deduce that
µb′k+r = (µb′k)

2r

for all k and then that
µb′k+1 = (µb′k)

2

(using that gcd(r, n) = 1) and then

µb′k = (µb′0)2k .

This means that
µL′(x) = µb′ + trn(µb′0x).

It implies that all nonquadratic items in the last bracket vanish and L′(x) =
d+ trn(d′x) for some d, d′.
The function L is not 0 because L′ is not a permutation, then bm 6= 0 for
some m. Since the items with the exponent 2m+2m+2 +2m+5 have to vanish
then

L′(1)2rbm = L′(1)b2
r

m−r.

Like above we get L(x) = d+ trn(d′x). Thus,

L1(x, F (x)) = d′′ + trn(F ′(x))
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for some d′′ and F ′(x) and L1(x, F (x)) is not a permutation. A contradic-
tion.

Let L′(1) = 0 and r 6= 1. Then 2m+1 + 2m+ 2m+r+1 + 2m+r has 2-weight
4 and since the items with this exponent should cancel then we get

b′2
r+1

m = b′m+rb
′2r
m−r.

Since b′m 6= 0 then
b′m+r, b

′
m−r 6= 0

and
b′mb

′−2r

m−r = b′m+rb
′−2r

m .

Since gcd(n, r) = 1 then b′k 6= 0,

b′kb
′−2r

k−r = b′mb
′−2r

m−r

for all k and this implies L′(x) = d+trn(d′x) for some d, d′. Since L1(x, F (x))
is a permutation then L 6= 0 and bm 6= 0 for some m. The items with the
exponent 2m + 2m+r + 2m+r+1 should vanish. Therefore,

bmb
′2r
m = b′m+rb

2r

m−r

and
bmb

−2r

m−r = b′m+rb
′−2r

m .

As above it leads to the equality L(x) = d+trn(d′x) which is in contradiction
with L1(x, F (x)) being a permutation.

Let L′(1) = 0 and r = 1. Since L′(1) = 0 and b′m 6= 0 then there exists t
such that b′m+t 6= 0. If t 6= −1,−2 then 2m+1 + 2m + 2m+t+2 + 2m+t+1 has
2-weight 4 and we get

b′mb
′2r
m+t = b′m+t+1b

′2r
m−1

and
b′mb

′−2r

m−1 = b′m+t+1b
′−2r

m+t.

Therefore, L′(x) = d + trn(d′x) for some d, d′. If t 6= 1, 2 then 2m+t+1 +
2m+t + 2m+2 + 2m+1 has 2-weight 4 and we get

b′m+tb
′2r
m = b′m+1b

′2r
m+t−1

and again L′(x) = d+ trn(d′x) for some d, d′. Thus, L 6= 0 and then bm 6= 0
for some m. Since the items with the exponent 2m + 2m+2 + 2m+3 cancel
then

bmb
′2r
m+1 = b′m+2b

2r

m−1

and
bmb

−2r

m−1 = b′m+2b
′−2r

m+1.

This implies L(x) = d+trn(d′x) and, thus, L1(x, F (x)) is not a permutation.
Therefore, F and G are not CCZ-equivalent. 2
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Corollary 26 [32] The function of Corollary 25 is EA-inequivalent to any
power function on F2n if n ≥ 7 and n > 2p, where p is the smallest positive
integer different from 1 and 3 and coprime with n.

Proof. The function F (x) = x3+trn(x9) is quadratic APN and by Theorem
32 it is EA-inequivalent to any quadratic power function. Since the algebraic
degree is EA-invariant then F is EA-inequivalent to any power mapping. 2

Dobbertin and inverse APN functions have unique Walsh spectra (except
the case n = 3 when the inverse function is EA-equivalent to x3) which are
different from the Walsh spectra of quadratic APN functions (see [40, 46,
129]). Since the extended Walsh spectrum of a function is invariant under
CCZ-equivalence then the function of Corollary 25 is CCZ-inequivalent to
the inverse and Dobbertin APN functions for n ≥ 7.

For n = 7 the ∆-rank of the function F (x) = x3 + trn(x9) equals 212
and differs from the ∆-ranks of the Kasami functions x13 and x23 (which
equal 338 and 436, respectively). Thus, for n = 7 the function F is CCZ-
inequivalent to Kasami functions, and by Theorem 32 to the Gold functions.
Since in this field the Welch and Niho cases coincide with the Kasami cases
then F is CCZ-inequivalent to all power maps on F27 . Further we used
coding approach to check CCZ-inequivalence for 8 ≤ n ≤ 10.

Corollary 27 [32] The function F (x) = x3 + trn(x9) is CCZ-inequivalent
to power functions on F2n for 7 ≤ n ≤ 10.

Applying CCZ-equivalence to the quadratic APN function F (x) = x3 +
trn(x9), it is possible to construct classes of nonquadratic APN mappings
which are CCZ-inequivalent to power functions.

Proposition 26 [32] Let F : F2n → F2n, F (x) = x3 + trn(x9) then the
following functions are CCZ-equivalent to F

1) for n odd the function with algebraic degree 3

x3 + trn(x9) + (x2 + x) trn(x3 + x9);

2) for n even the function with algebraic degree 3

x3 + trn(x9) + (x2 + x+ 1) trn(x3);

3) for n divisible by 6 the function with algebraic degree 4(
x+ tr3

n(x6 + x12) + trn(x) tr3
n(x3 + x12)

)3
+ trn

((
x+ tr3

n(x6 + x12) + trn(x) tr3
n(x3 + x12)

)9)
;
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4) for n odd and divisible by 3 the function with algebraic degree 4(
x

1
3 + tr3

n(x+ x4)
)−1

+ trn

(((
x

1
3 + tr3

n(x+ x4)
)−1

)9
)
.

Proof. The proof is the same as for the cases from [23, 34] (use the affine
permutation L(x, y) = (x+ trn(y), y) for the first two cases, L(x, y) = (x+
tr3
n(y2 + y4), y) for the third case and L(x, y) = (x+ tr3

n(y + y4), y) for the
fourth case). 2

Remark 19 [32] Note that the second and the fourth APN functions in
Proposition 26 can be obtained from respectively the first and the third
functions of Table 6 by adding trn(G(x)) for some G. It means that the
construction F (x) + trn(G(x)), where F is APN and G is arbitrary, actually
gives new APN functions even if F and G are not quadratic. For exam-
ple, the only known APN polynomial which is CCZ-inequivalent to both
power functions and to quadratic functions is a sum of some quadratic APN
function over F26 with tr6(G(x)) for some non-quadratic function G (see
[84]). 2

Further quadratic APN constructions? There is a straightforward
generalization of Theorem 31:

Theorem 33 [32] Let F be a quadratic APN function from F2n to itself, let
f be a quadratic function from F2n to F2m where m is a divisor of n, and

ϕF (x, a) = F (x) + F (x+ a) + F (a) + F (0),

ϕf (x, a) = f(x) + f(x+ a) + f(a) + f(0).

Then the function F (x) + f(x) is APN if for every nonzero a ∈ F2n there
exists a linear function `a from F2n to F2m which satisfies the conditions

1) ϕf (x, a) = `a(ϕF (x, a)),

2) for every u ∈ F∗2m, if ϕF (x, a) = u for some x ∈ F2n then `a(u) 6= u.

We could find an application of Theorem 33:

Corollary 28 [32] Let n = 2m where m is an even positive integer. Let us
denote by trn/m the trace function from F2n to F2m : trmn (x) = x+x2m. The
functions

F (x) = x3 + trmn (x2m+2) = x3 + x2m+2 + x2m+1+1

and
F ′(x) = x3 + (trmn (x))3

are APN.
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But unfortunately, these functions are EA-equivalent to power functions.
Indeed, let G be the Gold function G(x) = x2m−1+1. Let γ be any element
of F4 \F2 and L1, L2 be the linear mappings L1(x) = γ2x2m+1

+γ x2, L2(x) =
γ x2m + γ2x. Then G ◦ L1(x) = L2 ◦ F (x).

4.4 Two more classes of APN and AB polynomials

In this section we generalize the construction

x3 + trn(x9)

to the form
F (x) = L1(x3) + L2(x9)

where L1 and L2 are linear functions from F2n to itself, and we study condi-
tions on L1 and L2 such that F is APN. In particular, we prove that, if n is
even and the function L1(x)+L2(x3) is a permutation of F2n , then F is APN.
We have an example of the fact that even slightly changing functions L1 and
L2 can lead to new cases of APN functions: for n = 6, 8, and a a primitive
element of F∗2n , the APN functions x3 + trn(x9) and ax3 + trn(a3x9) are
CCZ-inequivalent. Besides, we construct a few families of APN functions:
let n be a positive integer and a ∈ F∗2n ; the function

F1(x) = x3 + a−1 trn(a3x9)

and for n divisible by 3 the functions

F2(x) = x3 + a−1 tr3
n(a6x18 + a12x36),

F3(x) = x3 + a−1 tr3
n(a3x9 + a6x18)

are APN over F2n . As mentioned above, the function F1 is CCZ-inequivalent
to x3 + trn(x9) when n = 6, 8 and a is a primitive element of F∗26 , and,
therefore, we can see that F1 defines a new class of APN functions which
includes the class of functions x3 +trn(x9). Besides, we show that for n = 9,
the functions F1, F2 and F3 are pairwise CCZ-inequivalent, and the functions
F2 and F3 are CCZ-inequivalent to any function from previously known
families of APN functions. Hence, F1 generalizes the family of functions
x3 + trn(x9) while F2 and F3 define two new families of APN functions.

The case n even There is a sufficient condition for a function in even
number of variables of the form x3 + L(x9) (where L is linear) to be APN,
which explains many cases of APN functions of this form.

Proposition 27 [31] Let n be an even positive integer and L a linear func-
tion from F2n to itself. If the function

F (x) = x+ L(x3)

is a permutation over F2n then F (x3) is APN on F2n.
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Proof. Since the function F ′(x) = F (x3) is quadratic then it is APN if
and only if, for any a ∈ F∗2n , the only solutions of the linear homogeneous
equation

F ′(ax) + F ′(ax+ a) + F ′(a) = 0 (4.36)

are 0, 1. We get the equation

a3(x+ x2) + L(a9(x8 + x)) = 0

and denoting y = x+ x2, we obtain

a3y + L(a9(y4 + y2 + y)) = 0

with trn(y) = 0. Hence, denoting u = a3y and

Au =

{
L

(
u3

(
y +

1

y
+

1

y2

))
: y ∈ F∗2n , trn(y) = 0

}
,

we see that if the condition

u 6∈ Au for every u ∈ F∗2n (4.37)

is satisfied then F ′ is APN. Note that

Au ⊆ {L
(
u3z
)

: z ∈ F2n , trn(z) = 0}.

Since F is a permutation then F (ux) +F (ux+u) 6= 0 for any x and any
nonzero u, that is,

u+ L(u3(x2 + x+ 1)) 6= 0.

Thus for any nonzero u

u /∈ {L(u3v) : v ∈ F2n , trn(v) = trn(1)}. (4.38)

For n even trn(1) = 0 and

u /∈ Au ⊆ {L(u3v) : v ∈ F2n , trn(v) = trn(1)}.

Hence, condition (4.37) is satisfied and F ′ is indeed APN. 2

Remark 20 [31] Note that condition (4.37) has to be checked only for the
elements u in the image of L. For instance, in the case L(x) = trn(x), this
condition has to be checked for u = 1 only and it is obviously satisfied. This
gives a simpler way of proving that x3 + trn(x9) is APN for every n (it is
also easy to show that x+ trn(x3) is bijective).

Thus, to construct APN functions using Proposition 27, one has to look
for permutations of the form x + L(x3) for a linear function L. It hap-
pens that examples of such permutations have been already found [34], in
the framework of APN functions but in a different context. Note, that if
x + L(x3) is a permutation then x + a−1L(a3x3) is also a permutation for
every a 6= 0. Up to this equivalence, there are three known classes of such
permutations:
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• x+ trn(x3) for any even n.

• x+ tr3
n(x12 + x6) for n divisible by 6.

• x+ tr3
n(x3 + x6) for n divisible by 6.

We used Proposition 31 given below to search for more permutations of the
desired type with the help of a computer. Using Proposition 31 a quite
efficient backtracking search can be implemented. This approach allows to
search for all such permutations up to n = 14 within a few days. Surpris-
ingly, it turns out that the three classes listed above already cover all the
cases for n < 16, n even. We pose the following open problem.

Open problem Find more permutations of the form x + L(x3) not listed
above or prove that the list above is already complete.

Next, we apply Proposition 27 to the second and the third classes of
permutations listed above to construct APN functions (the first class gives
the known APN function x3 + trn(x9)).

Corollary 29 [31] Let n be a positive integer divisible by 6. Then the fol-
lowing functions from F2n to itself are APN

x3 + tr3
n(x18 + x36), (4.39)

x3 + tr3
n(x9 + x18). (4.40)

We extend now slightly Proposition 27. Let n and L,L′ be linear func-
tions from F2n to itself. According to Remark 3 of [34], if the function
F (x) = L′(x) + L(x3) is a permutation over F2n then L′ is a permutation.
Hence, by Proposition 27, if F is a permutation then F (x3) = L′(x3)+L(x9)
is APN. This fact is formulated in the following proposition.

Proposition 28 [31] Let n be even and L and L′ be linear functions from
F2n to itself. If F (x) = L′(x) +L(x3) is a permutation over F2n then F (x3)
is APN on F2n.

For instance, for n even, let l(x) = ax+b with a ∈ F∗2n , b ∈ F2n , and let L
be a linear function from F2n to itself. If F (x) = x+L(x3) is a permutation
then

F (l(x)) = l(x) + L
(
(l(x))3

)
= ax+ b+ L(a3x3 + a2bx2 + ab2x+ b3)

= ax+ L(a2bx2 + ab2x) + L(a3x3) + b+ L(b3)

is a permutation too, and we can apply Proposition 28. We deduce:
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Corollary 30 [31] Let n be even, let a ∈ F∗2n, b ∈ F2n, and let L be a linear
function from F2n to itself. If x+L(x3) is a permutation over F2n then the
function

ax3 + L(a3x9 + a2bx6 + ab2x3)

is APN on F2n.

Surprisingly enough, this almost straightforward corollary of Proposi-
tion 27 gives new examples of APN functions for different choices of elements
a and b as we see it below.

Corollary 31 [31] Let a ∈ F∗2n. For n even the function

x3 + a−1 trn(a3x9) (4.41)

and for n divisible by 6 the functions

x3 + a−1 tr3
n(a6x18 + a12x36) (4.42)

x3 + a−1 tr3
n(a3x9 + a6x18) (4.43)

are APN over F2n.

Let α be a primitive element of F∗2n and a = α3i+j for some i and
0 ≤ j ≤ 2. Then

x3 + a−1 trn(a3x9) = a−1(αjy3 + trn(α3jy9))

where y = αix. If j = 2 then taking y = z2 we get

x3 + a−1 trn(a3x9) = a−1(αz3 + trn(α3z9))2.

Hence, (4.41) can give at most two different cases a = 1 and a = α (since all
other cases are EA-equivalent to these two as shown above). This is also true
for functions (4.42) and (4.43), that is, each of them can give at most two
different cases a = 1 and a = α. An important observation is that for a = 1
and a = α those functions are not necessarily CCZ-equivalent. For example,
consider n = 6, 8, then the APN function x3 + trn(x9) is CCZ-inequivalent
to x3 + α−1 trn(α3x9). Hence, function (4.41) defines a new class of APN
functions which includes the class of functions x3 + trn(x9) from [32].

The case n odd For n even the function x + trn(x3) and, when n is
also divisible by 3, the functions x+ tr3

n(x3 + x6) and x+ tr3
n(x6 + x12) are

permutations while they are not permutations for n odd. However, as we
shall see further, the corresponding functions x3 +trn(x9), x3 +tr3

n(x9 +x18)
and x3 + tr3

n(x18 + x36) are APN for both n even and n odd cases.
Besides, Proposition 27 does not apply to the case n odd. However, it
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can be adapted to this case. Assume first that F (x) = x + L(x3) is a
permutation over the super-field F22n , then F (x3) is APN over F2n , since we
know then that, for every nonzero element u of F2n , we have u 6∈ {L(u3v), v ∈
F22n , tr2n(v) = 0} and that these v include all the elements of F2n and a
fortiori those of null trace trn. In fact, thanks to the observations in the
proof of Proposition 27, this condition can be weakened and generalized:

Proposition 29 [31] Let n be any positive integer and K some field exten-
sion of F2n. Let L be an F2-linear mapping from F2n to F2n extended to an
F2-linear mapping from K to K. Let E be a coset in K of a vector space
containing L(F2n). Assume that F (x) = x + L(x3) is injective on E and
that the set {x2 + x + 1;x ∈ E} contains the set of elements y of F2n such
that trn(y) = 0. Then F (x3) is APN over F2n.

We can take K = F22n and E = w + F2n where w ∈ F4 \F2. If F (x) =
x+ L(x3) is injective on E then F (x3) is APN on F2n since the set

{x2 + x+ 1 = x+ w + (x+ w)2;x ∈ E}

contains the set of elements y of F2n such that trn(y) = 0.
For instance, if n is odd and divisible by 3 then the functions

F1(x) = x+ tr3
n(x6 + x12),

F2(x) = x+ tr3
n(x3 + x6)

are injective over w + F2n ⊂ F22n , where w ∈ F4 \F2. Indeed, the function
F2 is injective over w + F2n if and only if the function

x+ w + tr3
n((x+ w)3 + (x+ w)6)

is injective over F2n . We have

x+ w + tr3
n((x+ w)3 + (x+ w)6)

= x+ w + tr3
n(x3 + x6) + tr3

n(w2x+ w2x4 + w3 + w6)

= x+ w + tr3
n(x3 + x6) + tr3

n(w2(x+ x4))

because w4 = w an w3 = w6 = 1. Assume that there exist x, a ∈ F2n , a 6= 0
such that

x+ tr3
n(x3 + x6) + tr3

n(w2(x+ x4))

= (x+ a) + tr3
n((x+ a)3 + (x+ a)6) + tr3

n(w2((x+ a) + (x+ a)4)).

Then we get

a+ tr3
n(ax2 + a2x+ a2x4 + a4x2 + a3 + a6) + tr3

n(w2(a+ a4)) = 0. (4.44)
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Note that since n is odd and a ∈ F2n then

(tr3
n(w2(a+ a4)))8 = tr3

n(w(a+ a4)8) = tr3
n(w2n−3

(a+ a4)) = tr3
n(w(a+ a4)).

Then adding (4.44) to its 8-th power we obtain

a+ a8 + tr3
n((w2 + w)(a+ a4)) = 0

which is actually
a+ a8 + tr3

n(a+ a4) = 0

since w2 + w = 1. Thus, a+ a8 ∈ F8 and

a+ a8 = (a+ a8)8 = a8 + a64,

which gives a = a64. Hence, a ∈ F26 ∩F∗2n , and since n is odd then a ∈ F∗23
and

a+ a3 + a6 + tr3
n(a2x+ a2x4 + (a+ a4)x2) + (a+ a4) tr3

n(w2) = 0.

Since tr3
n(w2) = wi, where i equals either 1 or 2, then the previous equality

gives

a+ a3 + a6 + tr3
n(a2x+ a2x4 + (a+ a4)x2) = (a+ a4)wi.

The left side of the equality above is in F8, the right in wi · F8. Hence,
a+ a4 = 0 and a ∈ F4 ∩F∗23 , and, therefore, a = 1. Then

0 = a+ a3 + a6 + tr3
n(a2x+ a2x4 + (a+ a4)x2) = 1 + tr3

n(x+ x4).

The equation 1 + tr3
n(x+ x4) = 0 has no solutions in F2n . Indeed, if

tr3
n(x+ x4) = 1 (4.45)

then
tr3
n(x+ x2) = (tr3

n(x+ x4))2 = 1, (4.46)

and adding (4.45) and (4.46)

0 = tr3
n(x+ x4 + x+ x2) = tr3

n(x2 + x4) = (tr3
n(x+ x2))2 = 1.

A contradiction.
Thus, the function F2 is indeed injective over w + F2n ⊂ F22n , and the

proof for the case of the function F1 is similar. Therefore, by Proposition 29
the functions F1(x3) and F2(x3) are APN over F2n for n odd as well. Now
we can formulate the following result.

Corollary 32 [31] Let n be a positive integer and a ∈ F∗2n. Then function
(4.41) is APN over F2n, and, if n is divisible by 3, functions (4.42) and
(4.43) are APN over F2n.
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Unlike to the case n even, for n odd different choices of a ∈ F∗2n for
function (4.41) (respectively, functions (4.42) and (4.43)) give functions EA-
equivalent to the case a = 1. Indeed, gcd(n, 3) = 1 for n odd and, for

example, ax3 + trn(a3x9) = y3 + trn(y9) with y = a
1
3x.

We checked with a computer (by testing the isomorphy of the associated
binary codes, see [46]) that, for n = 9, functions (4.41), (4.42) and (4.43) are
pairwise CCZ-inequivalent, and, that (4.42) and (4.43) are CCZ-inequivalent
to any function from previously known families of APN functions. Hence,
functions (4.42) and (4.43) define two new families of APN functions.

Sufficient conditions for permutations x + L(x3) To construct new
APN functions thanks to Proposition 27, we need to find more linear map-
pings L such that x + L(x3) is a permutation. There is a simple sufficient
condition for that.

Proposition 30 [31] Let n be a positive integer and L be a linear function
from F2n to itself. If for every u ∈ F2n such that L(u) 6= 0, the condition

trn

(
u

(L(u))3

)
=

{
0 if n is odd
1 if n is even

is satisfied, then F (x) = x+ L(x3) is a permutation.

Proof. Let x, y ∈ F2n be any elements such that

y = x+ L(x3). (4.47)

Then, denoting Li(x) = (L(x))i, i = 2, 3, we have

x3 = (y + L(x3))3 = y3 + y2L(x3) + yL2(x3) + L3(x3).

This means that there exists z ∈ F2m such that:

z = (y + L(z))3 = y3 + y2L(z) + yL2(z) + L3(z). (4.48)

Then, F is a permutation if and only if, for every y, Equation (4.48) has
at most one solution z. This is clear if n is odd since the function x → x3

being then bijective, relation (4.48) is equivalent to (4.47) with z = x3. If
n is even, then if for some y, there exist several z satisfying (4.48), then for
each of them, x = y + L(z) has z for cube and is therefore a solution of
equation y = x + L(x3), which means that F is not injective; conversely, if
for some y there exist several x satisfying (4.47), these elements cannot have
same cube because of (4.47) and there are several z satisfying (4.48).
A sufficient condition for equation (4.48) to have at most one solution for
each y is that, for every u 6= 0, there does not exist y and z such that

u = y2L(u) + yL2(u) + L(z)L2(u) + L2(z)L(u) + L3(u),
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since if z and z + u are solutions of (4.48), then this equality is satisfied.
Note that L(u) cannot be null since u 6= 0. We deduce that if, for every
u 6= 0 such that L(u) 6= 0, there do not exist y and z such that

u

L3(u)
=

(
y

L(u)

)2

+
y

L(u)
+

(
L(z)

L(u)

)2

+
L(z)

L(u)
+ 1

then F is a permutation. Hence a sufficient condition for F to be a permu-

tation is trn

(
u

L3(u)

)
= 1, if n is even and trn

(
u

L3(u)

)
= 0, if n is odd. 2

We shall give now a necessary and sufficient condition for x + L(x3)
being bijective which is in particular helpful for a computer search. This
proposition is actually a special case of Proposition 6 of [34] for which we
give a slightly different proof.

Proposition 31 [31] Let n be an even integer and L be a linear function
from F2n to itself. The function x+L(x3) is a permutation of F2n if and only
if, for every b ∈ F∗2n, such that L∗(b) 6= 0 there exists an element γ ∈ F2n

such that L∗(b) = γ3 and tr2
n(γ−1b) 6= 0, were L∗ denotes the adjoint linear

mapping of L.

Proof. The mapping F (x) = L(x3) + x is a permutation if and only if, for
every b 6= 0, the Boolean function trn(bF (x)) is balanced. We calculate

λF (0, b) :=
∑
x

(−1)trn(b(L(x3)+x))

=
∑
x

(−1)trn(L∗(b)x3+bx)

=
∑
x

(−1)trn(
L∗(b)
b3

x3+x) = λx3
(

1,
L∗(b)

b3

)
.

Now we know that, for every β ∈ F2n , the mapping trn(βx3) is bent if and
only if β is a non-cube (see [109]), and this implies that λx3(1, β) is not zero
in this case. Thus a necessary condition for L(x3)+x to be a permutation is

that L∗(b)
b3

is a cube for every b. This is equivalent to L∗(b) being a cube for
every b. Denote by γ any third root of L∗(b), i.e. γ3 = L∗(b). The next step
is to actually compute the value λx3(1, β) in this case. To simplify notation
we denote L∗(b)/b3 by β. Then

λx3(1, β)2 =
∑
x,y

(−1)trn(βx3+x+βy3+y)

=
∑
y

(−1)trn(βy3+y)
∑
x

(−1)trn(β(y2x+yx2))

(by replacing y by x+ y)

=
∑
y

(−1)trn(βy3+y)
∑
x

(−1)trn((β2y4+βy)x2).
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Now the sum over x is 0 if β2y4 + βy 6= 0 and 2n otherwise. We denote
B = γ−1b · F4. Since (γb−1)3 = β then β2y4 + βy = 0 if and only if y ∈ B.
Then, using trn(1) = 0, we get

λx3(1, β)2 = 2n
∑
y∈B

(−1)trn(βy3+y) = 2n
∑
y∈B

(−1)trn(y)

= 2n
∑
y∈F4

(−1)trn(γ−1by)

= 2n
∑
y∈F4

(−1)tr2(tr2n(γ−1b)y)

=

{
2n+2 if tr2

n(γ−1b) = 0
0 else

.

This completes the proof. 2

A very similar characterization holds in the case n odd.

Proposition 32 [31] Let n be an odd integer and L be a linear function
from F2n to itself. The function x + L(x3) is a permutation of F2n if and
only if for all b ∈ F2n either L∗(b) = 0 or trn(γ−1b) = 0, were L∗(b) = γ3

and L∗ denotes the adjoint linear mapping of L.

Proof. Again, the mapping F (x) = L(x3) + x is a permutation if and only
if, for every b 6= 0, the Boolean function trn(bF (x)) is balanced. A similar
calculation as in the proof of Proposition 31 yields

λF (0, b) =
∑
x

(−1)trn(b(L(x3)+x))

=
∑
x

(−1)trn((L∗(b)1/3x)3+bx)

=
∑
x

(−1)
trn

(
x3+ b

L∗(b)1/3
x

)

= λx3

(
b

L∗(b)1/3
, 1

)
.

Now in the case n odd λx3
(
a, 1
)

= 0 if and only if trn(a) = 0 (see for ex-

ample [45]) and thus F is a permutation if and only if trn

(
b

L∗(b)1/3

)
= 0 for

all b such that L∗(b) 6= 0. This completes the proof. 2

A little more can be said in the case where all coefficients of L are in the
subfield F2n/2 , as it is the case for all the examples we know. For this we
first state a technical lemma.
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Lemma 5 [31] Let n be an even integer and L a linear function from F2n

to itself with L(x) =
∑n−1

i=0 λix
2i where all λi ∈ F2n/2. Furthermore denote

by L′ the restriction of L to F2n/2. It holds that L′∗(x) = L∗(x) for all
x ∈ F2n/2, i.e. the restriction of the adjoint operator of L to F2n/2 is the
adjoint operator of the restriction of L to F2n/2.

Proof. First note that when all λi are in the subfield, so are the coefficients
of L∗. Now let x, y ∈ F2n/2 be arbitrary and choose z ∈ F2n such that

y = z2n/2 + z. We compute

trn/2(xL′(y)) = trn/2(xL(y)) = trn/2(xL(z + z2n/2))

= trn/2(xL(z) + (xL(z))2n/2)

= trn(xL(z)) = trn(L∗(x)z)

= trn/2(L∗(x)(z + z2n/2))

= trn/2(L∗(x)y)

As L′∗ is the unique linear mapping fulfilling trn/2(xL′(y)) = trn/2(L′∗(x)y)
the lemma follows. 2

Proposition 33 [31] Let n be an even integer and L be a linear function
from F2n to itself such that the function x + L(x3) is a permutation. If all
coefficients of L are in F2n/2 then L fulfills L(F2n/2) = {0} and L2 = 0.

Proof. In this case F (F2n/2) ⊆ F2n/2 and therefore F is also bijective on
this subfield. We first prove that L∗(b) = 0 for all b ∈ F2n/2 and therefore
that L(b) = 0 for all b ∈ F2n/2 . We consider the two cases n/2 even and odd
separately. If n/2 is even then applying Proposition 31 on x+L(x3) viewed
as a permutation on F2n gives L∗(b) = 0 or L∗(b) = γ3 and tr2

n(γ−1b) 6= 0.
But for b ∈ F2n/2 the second condition is impossible as when γ3 is in F2n/2

so is γ and therefore

tr2
n(γ−1b) = tr2

n/2(γ−1b trn/2n (1)) = 0.

Thus we see that L∗(b) = 0 for all b ∈ F2n/2 . In the case n/2 odd we
apply Proposition 32 on x + L(x3) viewed as a permutation on F2n/2 (and
for b ∈ F2n/2) and conclude that either L∗(b) = 0 or L∗(b) = γ3 where
trn/2(γ−1b) = 0. On the other hand applying Proposition 31 on x + L(x3)
viewed as a permutation on F2n and Lemma 5 yields in the case where
L∗(b) 6= 0 that tr2

n(γ−1b) 6= 0, a contradiction as for an element a ∈ F2n/2

we have trn/2(a) = tr2
n(a). Thus for all even n it holds that L∗(b) = 0 for all

b ∈ F2n/2 . This implies that L(b) = 0 for all b ∈ F2n/2 . Now, in both cases
(n even and n odd), we choose x ∈ F2n arbitrarily and compute

L(x) + L(x)2n/2 = L(x) + L(x2n/2) = L(x+ x2n/2) = 0
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which is equivalent to L(x) ∈ F2n/2 . Hence, L(L(x)) = 0 for any x ∈ F2n . 2

Finally, we recall a characterization of permutation of the form F (x) =
L(x3) + L′(x) given in [34].

Proposition 34 (Prop. 5 of [34]) Let L and L′ be linear functions from
F2n to itself. The mapping F (x) = L(x3) +L′(x) is a permutation over F2n

if and only if, for every u ∈ F∗2n and every v such that trn(v) = trn(1), the
condition L(u3v) 6= L′(u) holds.



Chapter 5

Constructions of planar
functions and commutative
semifields

In this chapter we present two infinite families of perfect nonlinear Dembowski-
Ostrom multinomials over Fp2k where p is any odd prime and k a positive
integer. These are the families corresponding to case (iv) in Section 1.3.1
(where known families of PN functions are listed) which were first introduced
in [36, 38]. We prove that in general these functions are CCZ-inequivalent to
previously known PN mappings. One of these families has been constructed
by extension of a known family of APN functions over F22k . This shows
that known classes of APN functions over fields of even characteristic can
serve as a source for further constructions of PN mappings over fields of odd
characteristics. This method, first introduced in [38] was further applied to
the families of APN binomials (1-2) from [30] to extend them to the families
of planar binomials (v) and (vi).

Besides, we supply results indicating that planar functions (iv) define
new commutative semifields. After the works of Dickson (1906) and Al-
bert (1952), these were the firstly found infinite families of commutative
semifields which are defined for all odd primes p.

Further we extend the family of PN functions from [115, 9] to a larger
(up to CCZ-equivalence) family of PN functions corresponding to (vii). This
is done by using isotopisms of semifields (which are not strong) [35]. That
is, extending the family of PN functions we still stay within the same family
of commutative semifields (up to isotopic equivalence).

5.1 Families of planar multinomials (iv)

First family of case (iv) In [126] Ness gives a list of planar DO trinomials
over Fpn for p ≤ 7, n ≤ 8 which were found with a computer. Investigation of

135



136 CHAPTER 5. CONSTRUCTION OF PLANAR FUNCTIONS

these functions has led us to the following family of planar DO polynomials.

Theorem 34 [36, 38] Let p be an odd prime, s and k positive integers such
that gcd(ps + 1, pk + 1) 6= gcd

(
ps + 1, (pk + 1)/2

)
and gcd(k + s, 2k) =

gcd(k + s, k). Let also n = 2k, b ∈ F∗pn, and
∑k−1

i=0 cix
pi be a permutation

over Fpk with coefficients in Fpk . Then the function

F (x) = (bx)p
s+1 −

(
(bx)p

s+1
)pk

+
k−1∑
i=0

cix
pi(pk+1)

is PN over Fpn.

Proof. Since F is DO polynomial then it is PN if for any a ∈ F∗pn the
equation F (x+ a)− F (x)− F (a) = 0 has only 0 as a solution. We have

∆(x) = F (x+ a)− F (x)− F (a)

= bp
s+1(axp

s
+ ap

s
x)− bpk(ps+1)(ap

k
xp

k+s
+ ap

k+s
xp

k
)

+
k−1∑
i=0

ci(a
pixp

k+i
+ ap

k+i
xp

i
).

Any solution of the equation ∆(x) = 0 is also a solution of ∆(x)+∆(x)p
k

= 0

and ∆(x)−∆(x)p
k

= 0, that is, a solution of

k−1∑
i=0

ci(a
pixp

k+i
+ ap

k+i
xp

i
) = 0, (5.1)

bp
s+1(axp

s
+ ap

s
x) = bp

k(ps+1)(ap
k
xp

k+s
+ ap

k+s
xp

k
). (5.2)

Since
∑k−1

i=0 cix
pi is a permutation over Fpk then (5.1) implies

axp
k

= −apkx. (5.3)

Now we can substitute axp
k

in (5.2) by −apkx and then obtain

bp
s+1(axp

s
+ ap

s
x) = −bpk(ps+1)(ap

k+s+pk−psxp
s

+ ap
k+s+pk−1x),

that is,

(bp
s+1a+ bp

k(ps+1)ap
k+s+pk−ps)xp

s
= −(bp

s+1ap
s

+ bp
k(ps+1)ap

k+s+pk−1)x,

and since a, b 6= 0 then for x 6= 0

xp
s−1 = −b

ps+1ap
s

+ bp
k(ps+1)ap

k+s+pk−1

bps+1a+ bpk(ps+1)apk+s+pk−ps
= −aps−1, (5.4)
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when
b(p

k−1)(ps+1)ap
k+s+pk−ps−1 6= −1. (5.5)

Now assume that for some nonzero a inequality (5.5) is wrong, that is,

(ba)(pk−1)(ps+1) = −1.

Then −1 is a power of (pk−1)(ps+1) which is in contradiction with gcd(ps+
1, pk + 1) 6= gcd

(
ps + 1, (pk + 1)/2

)
since −1 is a power of (pn − 1)/2.

From (5.3) and (5.4) we get

yp
k−1 = yp

s−1 = −1, (5.6)

where y = x/a. Since n = 2k then the first equality in (5.6) implies yp
k+s

=
y, that is, y ∈ Fpk+s . Thus, if gcd(k + s, 2k) = gcd(k + s, k) then y ∈
Fpgcd(k+s,k) which contradicts the second equality in (5.6), that is, yp

k−1 =
1 6= −1, for any y 6= 0. Therefore, the only solution of ∆(x) = 0 is x = 0. 2

Second family of case (iv) Below we show that one of the ways to
construct PN mappings is to extend a known family of APN functions over
F2n to a family of PN functions over Fpn for odd primes p. We construct
a class of PN functions by following the pattern of APN multinomials over
F22k presented in [14] and corresponding to case (11) in Table 6.

Theorem 35 [36, 38] Let p be an odd prime, s and k positive integers,
n = 2k, and gcd(k + s, n) = gcd(k + s, k). If b ∈ F∗pn is not a square,
c ∈ Fpn \Fpk , and ri ∈ Fpk , 0 ≤ i < k, then the function

F (x) = trk2k(bx
ps+1) + cxp

k+1 +
k−1∑
i=1

rix
pk+i+pi

is PN over Fpn.

Proof. We have to show that for any a ∈ F∗pn the equation ∆(x) = 0 has
only 0 as a solution when

∆(x) = F (x+ a)− F (x)− F (a)

= trk2k
(
b(xp

s
a+ xap

s
)
)

+ c(xp
k
a+ xap

k
) +

k−1∑
i=1

ri(x
pk+iap

i
+ xp

i
ap

k+i
).

After replacing x by ax we get

∆1(x) = ∆(ax) = trk2k
(
bap

s+1(xp
s

+ x)
)

+ cap
k+1(xp

k
+ x)

+

k−1∑
i=1

ria
pk+i+pi(xp

k+i
+ xp

i
).
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Since ∆1(x) = 0 then ∆1(x)−∆1(x)p
k

= 0, that is,

(cap
k+1 − cpkapk+1)(xp

k
+ x) = 0.

Thus,

(c− cpk)ap
k+1(xp

k
+ x) = 0

and, therefore, xp
k

= −x since c ∈ Fp2k \Fpk .

Substituting xp
k

= −x in ∆1(x) = 0 we obtain

∆1(x) = bap
s+1(xp

s
+ x) + bp

k
ap

s+k+pk(xp
s+k

+ xp
k
)

= (bap
s+1 − bpkaps+k+pk)(xp

s
+ x).

Hence, if

bap
s+1 6= bp

k
ap

s+k+pk (5.7)

then xp
s

= −x.
Assume that bap

s+1 = bp
k
ap

s+k+pk for some nonzero a. Then we get
equalities

bp
k−1 = ap

s+1−ps+k−pk = a−(ps+1)(pk−1) = a(pk+s−1)(pk−1)

which imply that b is a power of gcd(ps+1, pk+1) and of gcd(ps+k−1, pk+1).
Thus, inequality (5.7) holds for any a 6= 0 if b is not a power of gcd(ps +
1, pk + 1) or a power of gcd(ps+k − 1, pk + 1). Since gcd(ps + 1, pk + 1) and
gcd(ps+k − 1, pk + 1) are even then we cannot have inequality (5.7) for any
nonzero b but we have this inequality, in particular, when b is not a square
in F∗pn .

Since xp
k

= −x and xp
s

= −x then xp
k

= xp
s

and then by taking the
pk-th power we get xp

k+s
= x. Hence, if gcd(k + s, 2k) = gcd(k + s, k) then

x ∈ Fpgcd(k+s,k) and xp
gcd(k+s,k)

= x. But xp
k

= −x, which implies x = 0. 2

5.2 Inequivalence of families (iv) to previously known
PN functions

The planar functions (iv) are defined over Fp2k for any odd prime p. Hence,
when proving CCZ-inequivalence to the known PN functions we mainly con-
centrate our attention on the functions (i), (ii), and (iii), which were the only
previously known PN functions defined for any odd prime p.

In the proposition below we show that any function which is CCZ-
equivalent to x2 should have some monomial of the form x2pt for some t,
0 ≤ t < n, in its polynomial representation.
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Proposition 35 [36, 38] Let p be an odd prime and n be a positive integer.
Any function F of the form

F (x) =
∑

0≤k<j<n
akjx

pk+pj

over Fpn is CCZ-inequivalent to x2.

Proof. Since x2 is a planar DO polynomial then CCZ-equivalence of F to x2

implies the linear equivalence, that is, the existence of linear permutations
L1 and L2 such that (

L1(x)
)2

+ L2

(
F (x)

)
= 0. (5.8)

Let

L1(x) =

n−1∑
i=0

uix
pi , (5.9)

L2(x) =
n−1∑
i=0

vix
pi . (5.10)

Then equality (5.8) implies

0 =

(
n−1∑
i=0

uix
pi

)2

+

n−1∑
i=0

vi

 ∑
0≤k<j<n

akjx
pk+pj

pi

=

n−1∑
i=0

u2
ix

2pi + 2
∑

0≤i<j<n
uiujx

pi+pj +
∑

0≤k<j<n,0≤i<n
via

pi

kjx
pi(pk+pj).

Since the identity above takes place for any x ∈ Fpn then obviously u2
i = 0

for all 0 ≤ i < n, that is, L1(x) = 0. This contradicts the condition that L1

is a permutation. Hence F is CCZ-inequivalent to x2. 2

Corollary 33 [36, 38] The planar functions from the case (iv) are CCZ-
inequivalent to x2. 2

We give below a sufficient condition on DO polynomials to be CCZ-
inequivalent to the PN functions of the case (ii).

Proposition 36 [36, 38] Let p be an odd prime, n, n′ and t positive integers
such that n′ < n and n/ gcd(n, t) is odd. Let a function F : Fpn → Fpn be
such that

F (x) =
n′∑
i=0

Ai(x
psi+1),

where 0 < si < n and si 6= sj , for all i 6= j, 0 ≤ i, j ≤ n′, and the functions
Ai, 0 ≤ i ≤ n′, are linear. If t 6= si and t 6= n − si for all 0 ≤ i ≤ n′ then
the PN function G(x) = xp

t+1 is CCZ-inequivalent to F .
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Proof. Assume that F and G are CCZ-equivalent. Since G is planar DO
polynomial then CCZ-equivalence implies linear equivalence, that is, the
existence of linear permutations L1 and L2, defined by (5.9)-(5.10), such
that

G
(
L1(x)

)
+ L2

(
F (x)

)
= 0.

We get

0 =

(
n−1∑
i=0

uix
pi

)pt+1

+
n−1∑
i=0

vi

(
n′∑
i=0

Ai(x
psi+1)

)pi

=
n−1∑
i,j=0

uiu
pt

j x
pi+pj+t +

n′∑
i=0

A′i(x
psi+1),

where A′i, 0 ≤ i ≤ n′, are some linear functions. Since the latter expression

is equal to 0 then the terms of the type x2pi , 0 ≤ i < n, should vanish and
we get

uiu
pt

i−t = 0, 0 ≤ i < n. (5.11)

Since t 6= si and t 6= n− si for all 0 ≤ i ≤ n′ then cancelling all terms of
the type xp

i(pt+1), 0 ≤ i < n, we get

uiu
pt

i = −ui+tup
t

i−t, 0 ≤ i < n. (5.12)

Equalities (5.11) and (5.12) imply L1 = 0. Indeed, if ui 6= 0 for some i then
from (5.11) we get ui−t = 0 while from (5.12) we get ui−t 6= 0. But L1 is a
permutation and cannot be constantly 0. This contradiction shows that the
functions F and xp

t+1 are CCZ-inequivalent. 2

From proposition above we get the following straightforward corollaries.

Corollary 34 [36, 38] The planar functions from the case (iv) are CCZ-
inequivalent to xp

t+1 when s 6= ±t. 2

Corollary 35 [36, 38] The planar functions from the case (iv) are CCZ-
inequivalent to xp

t+1 when 2k/ gcd(2k, s) is even. 2

Further we can prove that, under some conditions on coefficients, the
first function of the case (iv) is CCZ-inequivalent also to xp

s+1.

Proposition 37 [36, 38] Let p be an odd prime, s and k positive integers,
n = 2k, n/ gcd(n, s) odd. The function

F (x) = xp
s+1 − xpk+s+ps ± xpk+1

is CCZ-inequivalent to G(x) = xp
s+1 over Fpn.
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Proof. Assume that F and G are CCZ-equivalent. Since G is planar DO
polynomial then CCZ-equivalence implies the existence of linear permuta-
tions L1 and L2, defined by (5.9) and (5.10), such that

G
(
L1(x)

)
+ L2

(
F (x)

)
= 0.

For ε ∈ {1,−1} we get

0 =

(
n−1∑
i=0

uix
pi

)ps+1

+

n−1∑
i=0

vi

(
xp

s+1 − xpk+s+ps + εxp
k+1
)pi

=

n−1∑
i,j=0

uiu
ps

j x
pi+pj+s +

n−1∑
i=0

vix
pi+s+pi −

n−1∑
i=0

vix
pi+s+k+pi+k + ε

n−1∑
i=0

vix
pi+k+pi .

Since the latter expression is equal to 0 then the terms of the type x2pi ,
0 ≤ i < n, should vanish and we get

uiu
ps

i−s = 0, 0 ≤ i < n. (5.13)

Considering items with exponents pi+s + pi and with exponents pi+k + pi,
0 ≤ i < n, we get

vi − vi+k + uiu
ps

i + ui+su
ps

i−s = 0, (5.14)

εvi + uiu
ps

i+k−s + ui+ku
ps

i−s = 0. (5.15)

Equality (5.15) implies

εvi = −(uiu
ps

i+k−s + ui+ku
ps

i−s) = εvi+k. (5.16)

Equalities (5.14) and (5.16) imply

0 = vi − vi+k = −(uiu
ps

i + ui+su
ps

i−s). (5.17)

If ui 6= 0 then ui−s = 0 by (5.13). But if ui−s = 0 then ui = 0 by (5.17).
Hence, L1 = 0 which is impossible since L1 is a permutation. This contra-
diction shows that the functions F and xp

s+1 are CCZ-inequivalent. 2

5.3 Nuclei of semifields (iv)

It is proven in [57] that, for any planar DO function F , isotopism between
the commutative semifield defined by F and a commutative twisted field,
or the finite field, implies strong isotopism. Thus, PN functions of the case
(iv) define commutative semifields nonisotopic to the field and to Albert’s
commutative twisted fields. Due to the theorem below we will see also that
the commutative semifields corresponding to the first family of (iv) are also
nonisotopic to Dickson semifields when k is odd and b ∈ Fpk .
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Theorem 36 [36] Let F be a PN function of the first family of the case (iv)
with b ∈ Fpk . Then the middle nucleus of the commutative semifield defined
by F has a square order.

Proof. For any x, y ∈ Fp2k we denote

x ? y = F (x+ y)− F (x)− F (y)

= bp
s+1(xyp

s
+ xp

s
y)− bpk(ps+1)(xp

k
yp

k+s
+ xp

k+s
yp

k
)

+

k−1∑
i=0

ci(x
piyp

k+i
+ xp

k+i
yp

i
), (5.18)

and

L(x) = 1 ? x = bp
s+1(x+ xp

s
)− bpk(ps+1)(xp

k
+ xp

k+s
) +

k−1∑
i=0

ci(x
pi + xp

k+i
).

Then the multiplication ◦ of the commutative semifield SF defined by F is

x ◦ y = L−1(x) ? L−1(y), (5.19)

for any x, y ∈ Fp2k .
We are going to prove that for any x, y ∈ Fp2k and any α ∈ Fp2

(x ◦ L(α)) ◦ y = (y ◦ L(α)) ◦ x,

or, since L is a permutation then, equivalently, we need to prove that(
L(x) ◦ L(α)

)
◦ L(y) =

(
L(y) ◦ L(α)

)
◦ L(x),

that is,
L−1(x ? α) ? y = L−1(y ? α) ? x, (5.20)

due to (5.19). We have

L(x)p
k

+ L(x) = 2
k−1∑
i=0

ci(x
pi + xp

k+i
),

L(x)p
k − L(x) = 2bp

k(ps+1)(xp
k

+ xp
k+s

)− 2bp
s+1(x+ xp

s
).

Note that L(xp
k
) = L(x)p

k
. Then applying L−1 to both sides of the equali-

ties above we get

xp
k

+ x = 2L−1
( k−1∑
i=0

ci(x
pi + xp

k+i
)
)
, (5.21)

xp
k − x = 2L−1

(
bp
k(ps+1)(xp

k
+ xp

k+s
)− bps+1(x+ xp

s
)
)
. (5.22)
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Then, using (5.21)-(5.22) and αp
2

= α,

L−1(x ? α) = L−1
(
bp
s+1(xαp

s
+ xp

s
α)− bpk(ps+1)(xp

k
αp

k+s
+ xp

k+s
αp

k
)

+
k−1∑
i=0

ci(x
piαp

k+i
+ xp

k+i
αp

i
)
)

= L−1
(
bp
s+1
(
xαp

s
+ (xαp

s
)p
s)

−bpk(ps+1)
(
(xαp

s
)p
k

+ (xαp
s
)p
k+s))

+L−1
( k−1∑
i=0

ci
(
(xαp

k
)p
i

+ (xαp
k
)p
k+i))

= −1

2

(
(xαp

s
)p
k − xαps

)
+

1

2

(
xαp

k
+ (xαp

k
)p
k)

=
1

2
(αp

s
+ αp

k
)x+

1

2
(α− αpk+s)xpk

=

{
1
2(α+ αp)x+ 1

2(α− αp)xpk if k + s is odd,
αx if k and s are even.

Hence, for k + s odd

L−1(x ? α) ? y =
1

2

(
(α+ αp)x+

1

2
(α− αp)xpk

)
? y

=
1

2

(
bp
s+1
(
(α+ αp)xyp

s
+ (α+ αp)xp

s
y

+(α− αp)xpkyps + (α− αp)psxpk+sy
)

−bpk(ps+1)
(
(α+ αp)xp

k
yp

k+s
+ (α+ αp)xp

k+s
yp

k

+(α− αp)pkxypk+s + (α− αp)pk+sxpsypk
)

+

k−1∑
i=0

ci
(
(α+ αp)xp

i
yp

k+i
+ (α+ αp)xp

k+i
yp

i

+(α− αp)pixpk+iypk+i + (α− αp)pk+ixpiypi
))

= L−1(y ? α) ? x.

If k and s are even

L−1(x ? α) ? y = bp
s+1(αxyp

s
+ αxp

s
y)

−bpk(ps+1)(αxp
k
yp

k+s
+ αxp

k+s
yp

k
)

+

k−1∑
i=0

ci(α
pixp

i
yp

k+i
+ αp

i
xp

k+i
yp

i
)

= L−1(y ? α) ? x.
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Hence, L(Fp2) is contained in the middle nucleus of the semifield SF and,
therefore, since nuclei of a semifield are finite fields then the middle nucleus
must have a square order. 2

Corollary 36 [36] If k is odd and b ∈ Fpk then the PN functions from the
first family of the case (iv) define a commutative semifield non-isotopic to
Dickson semifields (and therefore they are CCZ-inequivalent to Dickson PN
functions).

Proof. The middle nuclei of Dickson semifields have the order pk (see [74])
which is not a square for k odd. Since the orders of the middle nuclei of
isotopic semifields are equal then the commutative semifields defined by the
first family of (iv) are non-isotopic to Dickson semifields due to Theorem 36.
2

Now we can formulate the main result of this section.

Corollary 37 [36] If p 6= 3 and k is odd then the PN functions

F (x) = xp
s+1 − xpk+s+ps ± xpk+1

of the first family of the case (iv) are CCZ-inequivalent to all previously
known PN functions and define commutative semifields non-isotopic to all
previously known semifields (that is, the finite filed, the Alberts commutative
twisted fields and Dickson semifields). 2

The following proposition gives additional information on the nuclei of
semifields defined by the first family of the case (iv).

Proposition 38 [36] Let F be a PN function of the first family of the case
(iv). Then the order of the middle nucleus of SF is the gcd(s, k)-th power.
Besides, if ci = 0 for i not divisible by s, then the order of the left nucleus
of SF is the gcd(s, k)-th power as well.

Proof. With notations (5.18)-(5.19) we are going to prove that equality
(5.20) takes place for any x, y ∈ Fp2k and any α ∈ Fpgcd(s,k) . Indeed, since

αp
s

= αp
k

= α then

L−1(x ? α) = L−1
(
bp
s+1(xαp

s
+ xp

s
α)− bpk(ps+1)(xp

k
αp

k+s
+ xp

k+s
αp

k
)

+
k−1∑
i=0

ci(x
piαp

k+i
+ xp

k+i
αp

i
)
)

= L−1
(
bp
s+1
(
xα+ (xα)p

s)− bpk(ps+1)
(
(xα)p

k
+ (xα)p

k+s)
+
k−1∑
i=0

ci
(
(xα)p

i
+ (xα)p

k+i))
= L−1(L(αx)) = αx. (5.23)



5.3. NUCLEI OF SEMIFIELDS (IV) 145

Hence,

L−1(x ? α) ? y = bp
s+1(αxyp

s
+ αxp

s
y)− bpk(ps+1)(αxp

k
yp

k+s
+ αxp

k+s
yp

k
)

+
k−1∑
i=0

ci(α
pixp

i
yp

k+i
+ αp

i
xp

k+i
yp

i
)

= L−1(y ? α) ? x.

Thus, L(Fpgcd(s,k)) is contained in the middle nucleus of the semifield SF and,
therefore, since nuclei of a semifield are finite fields, the middle nucleus of
SF has to be a power of gcd(s, k).

We are going to prove that the equality

L−1(x ? α) ? y = L−1(x ? y) ? α (5.24)

takes place for any x, y ∈ Fp2k and any α ∈ Fpgcd(s,k) . Indeed, since αp
s

=

αp
k

= α then

x ? α = bp
s+1(xαp

s
+ xp

s
α)− bpk(ps+1)(xp

k
αp

k+s
+ xp

k+s
αp

k
)

+

k−1∑
i=0

cis(x
pisαp

k+is
+ xp

k+is
αp

is
)

= bp
s+1(xα+ xp

s
α)− bpk(ps+1)(xp

k
α+ xp

k+s
α)

+
k−1∑
i=0

cis(x
pisα+ xp

k+is
α)

= αL(x).

Hence,

L−1(x ? y) ? α = αL
(
L−1(x ? y)

)
= α(x ? y)

and using (5.23) we get

L−1(x ? α) ? y = (αx) ? y

= bp
s+1(αxyp

s
+ αxp

s
y)− bpk(ps+1)(αxp

k
yp

k+s
+ αxp

k+s
yp

k
)

+

k−1∑
i=0

cis(αx
pisyp

k+is
+ αxp

k+is
yp

is
)

= α(x ? y).

This proves equality (5.24). Thus, L(Fpgcd(s,k)) is contained in the left nu-
cleus of the semifield SF and, therefore, the left nucleus of SF is a power of
gcd(s, k). 2

Similar results can be proven also for semifields of the second family of
(iv) and semifields of (v).
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Proposition 39 [36] Let F be a PN function of the second family of (iv).
Then the order of the middle nucleus of the commutative semifield defined
by F is divisible by gcd(s, k).

Proof. For any x, y ∈ Fp2k we denote

x ? y = F (x+ y)− F (x)− F (y)

= b(xyp
s

+ xp
s
y) + bp

k
(xp

k
yp

k+s
+ xp

k+s
yp

k
)

+c(xyp
k

+ xp
k
y) +

k−1∑
i=0

ri(x
piyp

k+i
+ xp

k+i
yp

i
). (5.25)

and

L(x) = 1?x = b(x+xp
s
)+ bp

k
(xp

k
+xp

k+s
)+ c(x+xp

k
)+

k−1∑
i=0

ri(x
pi +xp

k+i
).

(5.26)
Then the multiplication ◦ of the commutative semifield SF defined by F is

x ◦ y = L−1(x) ? L−1(y), (5.27)

for any x, y ∈ Fp2k .
We are going to prove that for any x, y ∈ Fp2k and any α ∈ Fpgcd(s,k)

(x ◦ L(α)) ◦ y = (y ◦ L(α)) ◦ x,

or, since L is a permutation then, equivalently, we need to prove that

L−1(x ? α) ? y = L−1(y ? α) ? x. (5.28)

Indeed, since αp
s

= αp
k

= α then

L−1(x ? α) = L−1
(
b(xαp

s
+ xp

s
α) + bp

k
(xp

k
αp

k+s
+ xp

k+s
αp

k
)

+c(xαp
k

+ xp
k
α) +

k−1∑
i=0

ri(x
piαp

k+i
+ xp

k+i
αp

i
)
)

= L−1
(
b
(
xα+ (xα)p

s)
+ bp

k(
(xα)p

k
+ (xα)p

k+s)
+c
(
xα+ (xα)p

k)
+

k−1∑
i=0

ri
(
(xα)p

i
+ (xα)p

k+i))
= L−1(L(αx)) = αx. (5.29)

Hence,

L−1(x ? α) ? y = (αx) ? y = b(αxyp
s

+ αxp
s
y) + bp

k
(αxp

k
yp

k+s
+ αxp

k+s
yp

k
)

+c(αxyp
k

+ αxp
k
y) +

k−1∑
i=0

ri(α
pixp

i
yp

k+i
+ αp

i
xp

k+i
yp

i
)

= L−1(y ? α) ? x.
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Thus, L(Fpgcd(s,k)) is contained in the middle nucleus of the semifield SF and,
therefore, d has to be divisible by gcd(s, k). 2

Proposition 40 [36] Let F be a PN function of the second family of (iv)
where ri = 0 for i not divisible by s. If pd is the order of the left nucleus of
the commutative semifield defined by F then d is divisible by gcd(s, k).

Proof. With notations (5.25)-(5.27) we are going to prove that equallity
(5.24) takes place for any x, y ∈ Fp2k and any α ∈ Fpgcd(s,k) . Indeed, since

αp
s

= αp
k

= α then

x ? α = b(xαp
s

+ xp
s
α) + bp

k
(xp

k
αp

k+s
+ xp

k+s
αp

k
)

+c(xαp
k

+ xp
k
α) +

k−1∑
i=0

ris(x
pisαp

k+is
+ xp

k+is
αp

is
)

= b(xα+ xp
s
α) + bp

k
(xp

k
α+ xp

k+s
α)

+c(xα+ xp
k
α) +

k−1∑
i=0

ris(x
pisα+ xp

k+is
α)

= αL(x).

Hence,

L−1(x ? y) ? α = αL
(
L−1(x ? y)

)
= α(x ? y)

and using (5.29) we get

L−1(x ? α) ? y = (αx) ? y

= b(αxyp
s

+ αxp
s
y) + bp

k
(αxp

k
yp

k+s
+ αxp

k+s
yp

k
)

+c(αxyp
k

+ αxp
k
y) +

k−1∑
i=0

ris(αx
pisyp

k+is
+ αxp

k+is
yp

is
)

= α(x ? y).

This proves equality (5.24). Thus, L(Fpgcd(s,k)) is contained in the left nucleus
of the semifield SF and, therefore, d has to be divisible by gcd(s, k). 2

Proposition 41 [36] Let F be a PN function of the family (v). Then the
orders of the middle and left nuclei of the commutative semifield defined by
F are the gcd(s, t)-th powers.

Proof. For any x, y ∈ Fp3t we denote

x ? y = F (x+ y)− F (x)− F (y)

= xyp
s

+ xp
s
y − apt−1(xp

t
yp

2t+s
+ xp

2t+s
yp

t
). (5.30)
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and
L(x) = 1 ? x = x+ xp

s − apt−1(xp
t

+ xp
2t+s

). (5.31)

Then the multiplication ◦ of the commutative semifield SF defined by F is

x ◦ y = L−1(x) ? L−1(y), (5.32)

for any x, y ∈ Fp3t .
We are going to prove that for any x, y ∈ Fp3t and any α ∈ Fpgcd(s,t)

(x ◦ L(α)) ◦ y = (y ◦ L(α)) ◦ x,
(x ◦ L(α)) ◦ y = (x ◦ y) ◦ L(α),

or, since L is a permutation then, equivalently, we need to prove that

L−1(x ? α) ? y = L−1(y ? α) ? x, (5.33)

L−1(x ? α) ? y = L−1(x ? y) ? α. (5.34)

Since αp
s

= αp
t

= α then

x ? α = xαp
s

+ xp
s
α− apt−1(xp

t
αp

2t+s
+ xp

2t+s
αp

t
)

= xα+ (xα)p
s − apt−1

(
(xα)p

t
+ (xα)p

2t+s)
= L(αx) = αL(x).

Thus,

L−1(x ? α) = L−1(L(αx)) = αx,

L−1(x ? y) ? α = αL(L−1(x ? y)) = α(x ? y),

and therefore

L−1(x ? α) ? y = (αx) ? y = αxyp
s

+ αxp
s
y − apt−1(αxp

t
yp

2t+s
+ αxp

2t+s
yp

t
)

= α(x ? y) = L−1(y ? α) ? x = L−1(x ? y) ? α,

which proves equalities (5.33) and (5.34).
Hence, L(Fpgcd(s,t)) is contained in the left and middle nuclei of the semi-

field SF . Therefore, if pdl and pdm are the orders of the left and middle
nuclei of SF , repectively, then dl and dm are divisible by gcd(s, t). 2

5.4 Generalization of family (vii) of planar func-
tions

As previosly mentioned, under some condition on n, Coulter and Henderson
proved in [57] that commutative presemifields of order pn are isotopic if and
only if they are strongly isotopic. However, there are cases when isotopic
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commutative presemifields define CCZ-inequivalent quadratic PN functions,
as shown in [149] by using function (vii) with parameters p = 3 and k = 1.
Below we show that this example is generalizable for any odd prime p and
any positive integer k. In particular, we extend the family of functions F
constructed in [115, 9] to the family (vii) of functions F ′ below with larger
CCZ-equivalence class. Let

F (x) = x2 + x2pm +
k∑
i=0

(−1)ixp
2i(p2+1) +

k−1∑
j=0

(−1)k+jxp
2j+1(p2+1)

−
( k∑
i=0

(−1)ixp
2i(p2+1) +

k−1∑
j=0

(−1)k+jxp
2j+1(p2+1)

)pm
;

be a function over Fp2m with m = 2k + 1. Then according to [115, 9] it is
PN. Let ”?” denotes the operation

x ? y = F (x+ y)− F (x)− F (y)

for all x, y ∈ Fpn . Then we know that the triple S = (Fpn ,+, ?) is a commu-
tative presemifield. As we can see below it is a semifield with the identity
e ∈ Fp defined by the condition

4e mod p = 1.

Indeed, for any a ∈ F∗p2 we have

x ? a = F (x+ a)− F (x)− F (a)

= 2ax+ 2apxp
m

+

k∑
i=0

(−1)i(axp
2(i+1)

+ axp
2i

)

+

k−1∑
j=0

(−1)k+j(apxp
2(j+1)+1

+ apxp
2j+1

)

−
( k∑
i=0

(−1)i(axp
2(i+1)

+ axp
2i

)

+
k−1∑
j=0

(−1)k+j(apxp
2(j+1)+1

+ apxp
2j+1

)
)pm

= 2ax+ 2apxp
m

+ (ax+ (−1)kaxp
m+1

) + ((−1)k+1apxp − apxpm)

−
(

(ax+ (−1)kaxp
m+1

) + ((−1)kapxp − apxpm)
)pm

= 4ax.

We can see that L(x) = x ∗ a is a linear permutation, and, therefore, the
operation

x ◦ y = (x ∗ a) ∗ y
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defines a comutative semifield S′ = (Fpn ,+, ◦) isotopic to S and with identity
e′ = a−1d, where d ∈ Fp is defined from

16d mod p = 1.

Then the function F ′(x) = x ◦ x is planar and

F ′(x) = (x ? a) ? x = (4ax) ? x

= 4
(

2ax2 + 2apx2pm + 2a
k∑
i=0

(−1)ixp
2i(p2+1)

+2ap
k−1∑
j=0

(−1)k+jxp
2j+1(p2+1)

−
(

2a

k∑
i=0

(−1)ixp
2i(p2+1) + 2ap

k−1∑
j=0

(−1)k+jxp
2j+1(p2+1)

)pm)

= 8a
(
x2 + ap−1x2pm +

k∑
i=0

(−1)ixp
2i(p2+1)

+ap−1
k−1∑
j=0

(−1)k+jxp
2j+1(p2+1)

−
(
a1−p

k∑
i=0

(−1)ixp
2i(p2+1) +

k−1∑
j=0

(−1)k+jxp
2j+1(p2+1)

)pm)
.

Obviously, S and S′ are isotopic by construction. According to the theorem
below, S and S′ can be potentially non-strongly isotopic if a ∈ Nm(S)\N(S).

Theorem 37 [57] Let S1 = (Fpn ,+, ?) and S2 = (Fpn ,+, ◦) be isotopic
commutative semifields. Then there exists an isotopism (M,N,L) between
S1 and S2 such that either
(i) M = N , or
(ii) M(X) = α ? N(X) where α ∈ Nm(S1) \N(S1).

It can be easily checked that

(x ? a) ? y = (4ax) ? y = (4ay) ? x = (y ? a) ? x

for any x, y ∈ Fp2m . That is, Fp2 is a subset of Nm(S). On the other hand,
a ? (x ? y) = 4a(x ? y), and if (4ax) ? y = 4a(x ? y) for any x, y ∈ Fp2m ,
then the coefficient of the monomial xp

m
yp

m
would be the same in (4ax) ? y

and 4a(x ? y), while it is 8ap in the first one and 8a in the second. Hence,
a ∈ Nm(S) \ N(S) for a ∈ Fp2 \Fp. According to [149], if p = 3 and
m = 3 then S and S′ are not strongly isotopic. Hence the function F ′ is
a generalization of the function F : it coincides with F for a ∈ F∗p and, in
general, it is CCZ-inequivalent to F for a ∈ Fp2 \Fp. We can formulate now
the following theorem.
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Theorem 38 [35] Let k be a positive integer, m = 2k + 1 and a ∈ F∗p2.
Then the function

F ′(x) = 8a
(
x2 + ap−1x2pm +

k∑
i=0

(−1)ixp
2i(p2+1)

+ap−1
k−1∑
j=0

(−1)k+jxp
2j+1(p2+1)

−
(
a1−p

k∑
i=0

(−1)ixp
2i(p2+1) +

k−1∑
j=0

(−1)k+jxp
2j+1(p2+1)

)pm)
.

is planar over Fp2m. For different a ∈ F∗p2 the functions F ′ define isotopic
commutative semifields. Two functions F ′ defined with a ∈ Fp2 \Fp and
a ∈ F∗p, respectively, are not CCZ-equivalent for m = 3 and the corresponding
commutative semifields are not strongly isotopic. When a = 1 the function
F is the one constructed in [115, 9].
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Chapter 6

Conclusion

In this work we study discrete functions with optimal cryptographic proper-
ties such as APN, AB, bent and planar functions. We develop new methods
for construction of these functions. In particular, we present the first infi-
nite families of APN and AB functions CCZ-inequivalent to power functions
which also serve as a proof of existence of such AB functions. We construct
seven out of eleven known infinite families of quadratic APN functions CCZ-
inequivalent to power functions, four of which are also AB when n is odd.
Further, we construct new infinite families of planar functions over Fp2k ,
where p is any odd prime, and we prove that these families of planar func-
tions define a new family of commutative semifields of order p2k when k is
odd. After the works of Dickson (1906) and Albert (1952), this is the firstly
found infinite family of commutative semifields which is defined for all odd
primes p.

We investigate the relation between CCZ- and EA-equivalence (which are
equivalence relations preserving the main cryptographic properties) for func-
tions over finite fields and their important subfamilies (for example, bent,
planar, Boolean functions et al.). We construct new classes of bent func-
tions by applying CCZ-equivalence to non-bent vectorial functions. We fur-
ther consider possible generalizations of CCZ-equivalence. We prove CCZ-
inequivalence between some of the known power APN functions.

In 1998 Carlet, Charpin and Zinoviev characterized APN and AB func-
tions via Boolean functions γ and proposed a problem to determine γ for
the known APN and AB functions (these could potentially provide new
bent functions and new invariants for APN and AB functions). We solve
this problem for almost all known families of APN and AB functions.

In the present work we further solve a problem which dates back to 1974.
In his thesis [68], Dillon introduced a family of bent functions denoted by
H, where he was able to exhibit only functions belonging to the completed
Maiorana-McFarland class. We prove that the class H contains functions
which do not belong to the completed Maiorana-McFarland class.
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We also study the relation between known classes of generalized bent
functions given in trace representation and completed class of Maiorana-
McFarland functions. Opposite to the binary case, we prove that there exist
quadratic bent functions not belonging to the completed class of Maiorana-
McFarland bent functions even when n is even. Moreover, we prove that al-
most all of the known classes of generalized bent functions given in trace rep-
resentation do not intersect with the completed Maiorana-McFarland class.
This leads us to the conclusion that in general, the Maiorana-McFarland
construction is less overall than in the binary case even for the case n even.
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en Mathématiques.

09.2007–09.2010 Postdoctor au Département d’Informatique,
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ÉDUCATION

03.2003–12.2005 Ph.D. de l’Institut d’Algèbre et de Géométrie, Otto-von-
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versité d’Etat d’Erevan (SS2002).

Un stage d’enseignement dans un lycée à dominante mathématique (SS1998).
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