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Difference Sets

Definition

Let G be a group of order v . A (v , k , λ) difference set

D = {d1,d2, · · · ,dk}

is a k -element subset of G such that every x 6= 0 can be written as
di − dj = x in the same number, λ, of ways as di and dj run through
D. The difference set is said to be cyclic if the group G is cyclic.

Theorem
Let st be a binary sequence of length v that is the characteristic set of
a difference set Zv . The autocorrelation of st at shift τ satisfies

θ(τ) =
v−1∑
i=0

(−1)si+τ−st =

{
v − 4(k − λ) if τ 6= 0 (mod v)

v if τ = 0 (mod v)

If (v , k , λ) = (2m − 1,2m−1 − 1,2m−2 − 1) then sequence has
two-level ideal autocorrelation with an out-of-phase value -1.
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Binary ideal 2-level autocorrelation sequences

Binary ideal 2-level binary sequences before mid 90’s
m-sequences: si = Tr(αi), α primitive element in F2n

Legendre sequences
GMW sequences
Twin-prime sequences
Hall sextic sequences

Binary ideal 2-level binary sequences after mid 90’s
Conjectures: Gong, Gaal and Golomb (1997)
Conjectures: No, Golomb, Gong, Lee and Gaal (1998)
Conjecture: No, Chung and Yun (1998)
Monomial o-polynomials: Maschietti (1998)
Proof of conjectures above: Dillon-Dobbertin (2004)
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Two-level Autocorrelation and Walsh Transform

st = f (αi ) binary sequence of period 2m − 1

F (x) = (−1)f (x)

F̂ (y) = 1√
2m

∑
x (−1)f (x)+Tr(yx)

F (x) = 1√
2m

∑
y F̂ (y)(−1)Tr(xy)

Let gcd(t ,2m − 1) = 1 and a = ατ . The autocorrelation is:

θS(τ) =
2m−2∑
i=0

(−1)f (αi+τ )−f (αi )

= −1 +
∑

x∈GF (2m)

F (ax)F (x)

(Parseval) = −1 +
∑

y∈GF (2m)

F̂ (ay)F̂ (y)

= −1 +
∑

y∈GF (2m)

F̂ (ay t )F̂ (y t )

= −1 (if sums above are 0)
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Finding two-level autocorrelation sequences

Sk (x) = (−1)Tr(xk ) where sk (x) = Tr(xk ) and gcd(k ,2m − 1) = 1

The autocorrelation is

θS(τ) + 1 =
∑

y∈GF (2m)

Ŝk (ay t )Ŝk (y t )

=
∑

x∈GF (2m)

Sk (ax)Sk (x)

=
∑

x∈GF (2m)

(−1)Tr((ak−1)xk )

= 0

To find a difference set it is sufficient to find a D with characteristic
function f (x) such that

F̂ (y) = Ŝk (y t )

where gcd(t ,2m − 1) = 1.
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Hyperovals

Definition
A hyperoval is a set of 2m + 2 points no three on a line. Every
hyperoval can be represented as

D(f ) = {(1, t , f (t))|t ∈ GF (2m)} ∪ {(0,1,0)} ∪ {(0,0,1)}

where f is a permutation polynomial of degree ≤ 2m − 2,
f (0) = 0, f (1) = 1 and

fs(x) = (f (x + s) + f (s))/x , fs(0) = 0

is also a permutation polynomial. If xk is a monomial then
D(xk ) is called a monomial hyperoval

D(xk ) is a hyperoval iff gcd(k ,2m − 1) = 1 and xk + x + a = 0
has 0 or 2 solutions for all for all a ∈ GF (2m).
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Monomial hyperovals

Singer: k = 2i , gcd(i ,m) = 1
Segre: k = 6,m ≥ 5 odd

Glynn 1a: k = 2
m+1

2 + 2
3m+1

4 if m = 1 (mod 4),m ≥ 7

Glynn 1b: k = 2
m+1

2 + 2
m+1

4 if m = 3 (mod 4),m ≥ 7

Glynn 2: k = 3 · 2
m+1

2 + 4
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Difference sets from hyperovals

Theorem

Let D(xk ) be a monomial hyperoval (i.e., gcd(k ,2m − 1) = 1
and xk + x a two-to-one map on GF (2m)). Let

D = GF (2m) \ {xk + x |x ∈ GF (2m)}.

Then the characteristic sequence of D has ideal two-level
autocorrelation.

Proof.

(Part 1) Let F (x) = (−1)f (x) where f (x) be characteristic
sequence of of D. Sufficient to show that

F̂ (y) = Ŝk (y t )

for some t where gcd(t ,2m − 1) = 1.
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Difference sets from hyperovals (Proof-Part 2)

Proof.

F̂ (y) =
1√
2m

∑
x∈GF (2m)

(−1)f (x)+Tr(yx)

=
1√
2m

∑
x 6∈D

(−1)Tr(yx) − 1
2m

∑
x∈D

(−1)Tr(yx)

=
2√
2m

∑
x 6∈D

(−1)Tr(yx)

=
1√
2m

∑
x∈GF (2m)

(−1)Tr(y(xk+x))

=
1√
2m

∑
z∈GF (2m)

(−1)Tr(zk+y
k−1

k z)

=
1√
2m

Ŝk (y
k−1

k ) for some t where gcd(t ,2m − 1) = 1
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Autocorrelation for odd p

p is a prime number
S = {si} is a p-ary sequence with period N
For any 0 ≤ τ < N, the autocorrelation of S at shift τ is
defined by

CS(τ) =
N−1∑
i=0

ω
si+τ−si
p ,where ωp = e2πi/p

If CS(τ) = −1 for any 0 < τ < N, then S is called an ideal
two-level autocorrelation sequence
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Nonbinary ideal 2-level autocorrelation sequences

Recent nonbinary ideal 2-level autocorrelation sequences
Ternary (n = 3k ): (Helleseth, Kumar and Martinsen (2001)
si = Tr(αi + αdi), d = 32k − 3k + 1
p > 2: Helleseth and Gong (2002)
Dillon (2002)
Arasu, Dillon and Player (2004)
Conjectures: Ludkowski and Gong (2001)
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Lin’s Conjecture

n = 2m + 1
α is a primitive element in F3n

S = {st} is a ternary sequence defined by

st = Tr(αt + α(2·3m+1)t )

for t = 0,1,2, · · ·

Conjecture (1998, Huashih Alfred Lin)
S has an ideal two-level autocorrelation.

Remark
A proof was claimed by Arasu, Dillon and Player in (2001) but
the proof has never been published.
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Lin’s conjecture: Components in the proof

The Second order Decimation-Hadamard transform
Gauss sums
Stickelberger’s theorem
Combinatorial arguments
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The Second-Order Decimation-Hadamard Transform I

Let q = 3n, 0 < v , t < q − 1 and γ ∈ F∗3n .

For any integers 0 < v , t < q − 1, we define

f̂ (v , t)(λ, γ) =
∑

x ,y∈Fq

ω
Tr(λy−y t x+γxv )
p

f̂ (v , t)(λ, γ) is the second-order decimation-Hadamard
(multiplexing) transform (DHT) of Tr(x).
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The Second-Order Decimation-Hadamard Transform II

Let
f̂ (v , t)(λ, γ) =

∑
x ,y∈Fq

ω
Tr(λy−y t x+γxv )
p

If

f̂ (v , t)(λ, γ) ∈ {qωi
p | i = 0,1, · · · ,p − 1}, λ ∈ Fq, γ ∈ F∗q

then (v , t) is called a realizable pair of f (x).
Let

ω
g(x ,γ)
p =

1
q

f̂ (v , t)(x , γ), x ∈ Fq.

g(x , γ) is called a realization of f (x) under (v , t) and γ.
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Gauss Sums over Finite Fields

ψ(x) = ω
Tr(x)
p

For any multiplicative character χ over Fq, the Gauss sum
G(χ) over Fq is defined by

G(χ) =
∑
x∈Fq

ψ(x)χ(x)

G(χ) = χ(−1)G(χ)

G(χp) = G(χ)

If χ is trivial, then G(χ) = −1
if χ is nontrivial, then G(χ)G(χ) = q

ω
Tr(y)
p =

1
q − 1

∑
χ∈F̂q∗

G(χ)χ(y)
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Ideal Two-Level Autocorrelation Sequences

Let U = {xvt |x ∈ F∗3n}.
Let Λ = {γ0, γ1, · · · , γd−1} be a set satisfying
F∗3n = γ0U ∪ γ1U ∪ · · · ∪ γd−1U.
Let α be a primitive element of F3n .
For any 0 ≤ i < 3n − 1, αi can be written in the form of
αi = γλvt , where γ ∈ Λ and λ ∈ F3n .
We construct a ternary sequence T = {ti} by

ti = g(v , t)(λ, γ), i = 0,1,2, · · ·

Theorem

Let (v , t) be a realizable pair. Then the ternary sequence
T = {ti} is an ideal two-level autocorrelation sequence.
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Realizable pairs and Gaussian sums

Using expression for ωTr(y) in terms of Gaussian sums.

f̂ (v , t)(λ, γ) =
∑

x,y∈Fq

ω
Tr(λy−y t x+γxv )
p

=
1

3n − 1
(
∑

x∈F∗
3n

ω
Tr(γxv )
p + T )

where
T =

∑
χd 6=1

G(χvt )G(χv )G(χ)χvt (λ)χ(γ)χv (−1)

If wt(jvt)−wt(−jv) + wt(j) > 2n for all jd 6= 0 (mod 3n − 1) then
f̂ (v , t)(λ, γ) ≡ 0 (mod 3n).

Average value of |̂f (v , t)(λ, γ)| = 3n

This leads to f̂ (v , t)(λ, γ) = 3nωi for i = 0,1,2 i.e., (v , t)
realizable.
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Prime Ideal Factorization
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Prime Ideal Factorization (Cont.)

(p) is a prime ideal in Z
Let π = ωp − 1
(π) is a prime ideal in Z[ωp]

(p) = (π)p−1 in Z[ωp]

(π) = Q1Q2 · · · Qt in Z[ωp, ωq−1], where Qi are prime
ideals in Z[ωp, ωq−1], and t = φ(pn − 1)/n
(p) = (Q1Q2 · · · Qt )

p−1 in Z[ωp, ωq−1]

(p) = p1p2 · · · pt in Z[ωq−1]

pi is the (p − 1)-th power of a prime ideal in Z[ωp, ωq−1]
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Teichmüller Character

For each Q, we have

Z[ωp, ωq−1]/Q ∼= Fq

because [Z[ωp, ωq−1]/Q : Z/(p)] = n.
There is one special multiplicative character χ on Fq
satisfying

χ(x)(mod Q) = x .

This character is called the Teichmüller character.
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Stickelberger’s Theorem

For any 0 ≤ k < q − 1, let k = k0 + k1p + · · ·+ kn−1pn−1 be
the p-adic representation of k .
Let wt(k) = k0 + k1 + · · ·+ kn−1, and σ(k) = k0!k1! · · · kn−1!.

Theorem
For any 0 < k < q − 1, we have

G(χ−k
p ) ≡ −π

wt(k)

σ(k)
(mod πwt(k)+p−1),

where χp is the Teichmüller character.
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Main Theorems

F3n

Let f (x) = Tr(x).

d = gcd(v ,3n − 1) > 1, and gcd(t ,3n − 1) = 1.

Theorem

(v , t) is a realizable pair if and only if wt(jvt) + wt(−jv) + wt(j) > 2n
for any 0 < j < 3n − 1 with jd 6≡ 0(mod 3n − 1).

Theorem

For any γ ∈ F∗3n , the realization of f (x) under (v , t) and γ is given by

g(v, t)(λ, γ) =
∑

wt(jvt) + wt(−jv) + wt(j)
= 2n + 1, 0 < j < 3n − 1

(−1)jvσ(jvt)σ(−jv)σ(j)(γλvt )j .
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The Sequence Conjectured by Lin

n = 2m + 1
v = 2(3m+1 − 1)

t = (3n + 1)/4
(Then gcd(v ,3m − 1) = 2 and gcd(t ,3m − 1) = 1)

Theorem
wt(jvt) + wt(−jv) + wt(j) > 2n for any 0 < j < 3n − 1.

Theorem
wt(jvt) + wt(−jv) + wt(j) = 2n + 1 if and only if
j ∈ {3i , (2 · 3m + 1)3i | i = 0,1, · · · ,n − 1}.

Theorem
Lin’s conjecture is true.
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Thanks for your attention!
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