On the Proof of Lin's Conjecture

Tor Helleseth

Department of Informatics
University of Bergen

Joint work with Honggang Hu, Shuai Shao, and Guang Gong

Rosendahl, Norway, Sept. 4, 2014

Outline

- Ideal two-level autocorrelation sequences (Difference sets)
- Short history
- Binary sequences
- Nonbinary sequences
- The Lin conjecture
- Short history of the Lin conjecture
- Ideas behind proof of the Lin conjecture

Difference Sets

Definition

Let G be a group of order v. $\mathrm{A}(v, k, \lambda)$ difference set

$$
D=\left\{d_{1}, d_{2}, \cdots, d_{k}\right\}
$$

is a k-element subset of G such that every $x \neq 0$ can be written as $d_{i}-d_{j}=x$ in the same number, λ, of ways as d_{i} and d_{j} run through D. The difference set is said to be cyclic if the group G is cyclic.

Theorem

Let s_{t} be a binary sequence of length v that is the characteristic set of a difference set Z_{v}. The autocorrelation of s_{t} at shift τ satisfies

$$
\theta(\tau)=\sum_{i=0}^{v-1}(-1)^{s_{i+\tau}-s_{t}}=\left\{\begin{array}{cll}
v-4(k-\lambda) & \text { if } \tau \neq 0(\bmod v) \\
v & \text { if } \quad \tau=0(\bmod v)
\end{array}\right.
$$

If $(v, k, \lambda)=\left(2^{m}-1,2^{m-1}-1,2^{m-2}-1\right)$ then sequence has two-level ideal autocorrelation with an out-of-phase value -1 .

Binary ideal 2-level autocorrelation sequences

Binary ideal 2 -level binary sequences before mid 90 's

- m-sequences: $s_{i}=\operatorname{Tr}\left(\alpha^{i}\right)$, α primitive element in $\mathbb{F}_{2^{n}}$
- Legendre sequences
- GMW sequences
- Twin-prime sequences
- Hall sextic sequences

Binary ideal 2-level binary sequences after mid 90's

- Conjectures: Gong, Gaal and Golomb (1997)
- Conjectures: No, Golomb, Gong, Lee and Gaal (1998)
- Conjecture: No, Chung and Yun (1998)
- Monomial o-polynomials: Maschietti (1998)
- Proof of conjectures above: Dillon-Dobbertin (2004)

Two-level Autocorrelation and Walsh Transform

- $s_{t}=f\left(\alpha^{i}\right)$ binary sequence of period $2^{m}-1$
- $F(x)=(-1)^{f(x)}$
- $\hat{F}(y)=\frac{1}{\sqrt{2^{m}}} \sum_{x}(-1)^{f(x)+\operatorname{Tr}(y x)}$
- $F(x)=\frac{1}{\sqrt{2^{m}}} \sum_{y} \hat{F}(y)(-1)^{\operatorname{Tr}(x y)}$

Let $\operatorname{gcd}\left(t, 2^{m}-1\right)=1$ and $a=\alpha^{\tau}$. The autocorrelation is:

$$
\begin{aligned}
\theta_{S}(\tau) & =\sum_{i=0}^{2^{m}-2}(-1)^{f\left(\alpha^{i+\tau}\right)-f\left(\alpha^{i}\right)} \\
& =-1+\sum_{x \in G F\left(2^{m}\right)} F(a x) F(x) \\
(\text { Parseval }) & =-1+\sum_{y \in G F\left(2^{m}\right)} \hat{F}(a y) \hat{F}(y) \\
& =-1+\sum_{y \in G F\left(2^{m}\right)} \hat{F}\left(a y^{t}\right) \hat{F}\left(y^{t}\right) \\
& =-1(\text { if sums above are } 0)
\end{aligned}
$$

- $S_{k}(x)=(-1)^{\operatorname{Tr}\left(x^{k}\right)}$ where $s_{k}(x)=\operatorname{Tr}\left(x^{k}\right)$ and $\operatorname{gcd}\left(k, 2^{m}-1\right)=1$

The autocorrelation is

$$
\begin{aligned}
\theta_{S}(\tau)+1 & =\sum_{y \in G F\left(2^{m}\right)} \hat{S}_{k}\left(a y^{t}\right) \hat{S}_{k}\left(y^{t}\right) \\
& =\sum_{x \in G F\left(2^{m}\right)} S_{k}(a x) S_{k}(x) \\
& =\sum_{x \in G F\left(2^{m}\right)}(-1)^{T r\left(\left(a^{k}-1\right) x^{k}\right)} \\
& =0
\end{aligned}
$$

To find a difference set it is sufficient to find a D with characteristic function $f(x)$ such that

$$
\hat{F}(y)=\hat{S}_{k}\left(y^{t}\right)
$$

where $\operatorname{gcd}\left(t, 2^{m}-1\right)=1$.

Hyperovals

Definition

A hyperoval is a set of $2^{m}+2$ points no three on a line. Every hyperoval can be represented as

$$
D(f)=\left\{(1, t, f(t)) \mid t \in G F\left(2^{m}\right)\right\} \cup\{(0,1,0)\} \cup\{(0,0,1)\}
$$

where f is a permutation polynomial of degree $\leq 2^{m}-2$, $f(0)=0, f(1)=1$ and

$$
f_{s}(x)=(f(x+s)+f(s)) / x, f_{s}(0)=0
$$

is also a permutation polynomial. If x^{k} is a monomial then $D\left(x^{k}\right)$ is called a monomial hyperoval
$D\left(x^{k}\right)$ is a hyperoval iff $\operatorname{gcd}\left(k, 2^{m}-1\right)=1$ and $x^{k}+x+a=0$ has 0 or 2 solutions for all for all $a \in G F\left(2^{m}\right)$.

Monomial hyperovals

- Singer: $k=2^{i}, \operatorname{gcd}(i, m)=1$
- Segre: $k=6, m \geq 5$ odd
- Glynn 1a: $k=2^{\frac{m+1}{2}}+2^{\frac{3 m+1}{4}}$ if $m=1(\bmod 4), m \geq 7$
- Glynn 1b: $k=2^{\frac{m+1}{2}}+2^{\frac{m+1}{4}}$ if $m=3(\bmod 4), m \geq 7$
- Glynn 2: $k=3 \cdot 2^{\frac{m+1}{2}}+4$

Difference sets from hyperovals

Theorem

Let $D\left(x^{k}\right)$ be a monomial hyperoval (i.e., $\operatorname{gcd}\left(k, 2^{m}-1\right)=1$ and $x^{k}+x$ a two-to-one map on $G F\left(2^{m}\right)$). Let

$$
D=G F\left(2^{m}\right) \backslash\left\{x^{k}+x \mid x \in G F\left(2^{m}\right)\right\} .
$$

Then the characteristic sequence of D has ideal two-level autocorrelation.

Proof.

(Part 1) Let $F(x)=(-1)^{f(x)}$ where $f(x)$ be characteristic sequence of of D. Sufficient to show that

$$
\hat{F}(y)=\hat{S}_{k}\left(y^{t}\right)
$$

for some t where $\operatorname{gcd}\left(t, 2^{m}-1\right)=1$.

Difference sets from hyperovals (Proof-Part 2)

Proof.

$$
\begin{aligned}
\hat{F}(y) & =\frac{1}{\sqrt{2^{m}}} \sum_{x \in G F\left(2^{m}\right)}(-1)^{f(x)+\operatorname{Tr}(y x)} \\
& =\frac{1}{\sqrt{2^{m}}} \sum_{x \notin D}(-1)^{\operatorname{Tr}(y x)}-\frac{1}{2^{m}} \sum_{x \in D}(-1)^{\operatorname{Tr}(y x)} \\
& =\frac{2}{\sqrt{2^{m}}} \sum_{x \notin D}(-1)^{\operatorname{Tr}(y x)} \\
& =\frac{1}{\sqrt{2^{m}}} \sum_{x \in G F\left(2^{m}\right)}(-1)^{\operatorname{Tr}\left(y\left(x^{k}+x\right)\right)} \\
& =\frac{1}{\sqrt{2^{m}}} \sum_{z \in G F\left(2^{m}\right)}(-1)^{\operatorname{Tr}\left(z^{k}+y^{\frac{k-1}{k}} z\right)} \\
& =\frac{1}{\sqrt{2^{m}}} \hat{S}_{k}\left(y^{\frac{k-1}{k}}\right) \text { for some } t \text { where } \operatorname{gcd}\left(t, 2^{m}-1\right)=1
\end{aligned}
$$

Autocorrelation for odd p

- p is a prime number
- $S=\left\{s_{i}\right\}$ is a p-ary sequence with period N
- For any $0 \leq \tau<N$, the autocorrelation of S at shift τ is defined by

$$
C_{S}(\tau)=\sum_{i=0}^{N-1} \omega_{p}^{s_{i+\tau}-s_{i}}, \text { where } \omega_{p}=e^{2 \pi i / p}
$$

- If $C_{S}(\tau)=-1$ for any $0<\tau<N$, then S is called an ideal two-level autocorrelation sequence

Nonbinary ideal 2-level autocorrelation sequences

Recent nonbinary ideal 2-level autocorrelation sequences

- Ternary ($n=3 k$): (Helleseth, Kumar and Martinsen (2001) $s_{i}=\operatorname{Tr}\left(\alpha^{i}+\alpha^{d i}\right), d=3^{2 k}-3^{k}+1$
- $p>2$: Helleseth and Gong (2002)
- Dillon (2002)
- Arasu, Dillon and Player (2004)
- Conjectures: Ludkowski and Gong (2001)

Lin's Conjecture

- $n=2 m+1$
- α is a primitive element in $\mathbb{F}_{3^{n}}$
- $S=\left\{S_{t}\right\}$ is a ternary sequence defined by

$$
s_{t}=\operatorname{Tr}\left(\alpha^{t}+\alpha^{\left(2 \cdot 3^{m}+1\right) t}\right)
$$

$$
\text { for } t=0,1,2, \cdots
$$

Conjecture (1998, Huashih Alfred Lin)

S has an ideal two-level autocorrelation.

Remark

A proof was claimed by Arasu, Dillon and Player in (2001) but the proof has never been published.

Lin's conjecture: Components in the proof

- The Second order Decimation-Hadamard transform
- Gauss sums
- Stickelberger's theorem
- Combinatorial arguments

The Second-Order Decimation-Hadamard Transform I

Let $q=3^{n}, 0<v, t<q-1$ and $\gamma \in \mathbb{F}_{3^{n}}{ }^{n}$.

- For any integers $0<v, t<q-1$, we define

$$
\widehat{f}(v, t)(\lambda, \gamma)=\sum_{x, y \in \mathbb{F}_{q}} \omega_{p}^{\operatorname{Tr}\left(\lambda y-y^{t} x+\gamma x^{v}\right)}
$$

- $\widehat{f}(v, t)(\lambda, \gamma)$ is the second-order decimation-Hadamard (multiplexing) transform (DHT) of $\operatorname{Tr}(x)$.
- Let

$$
\widehat{f}(v, t)(\lambda, \gamma)=\sum_{x, y \in \mathbb{F}_{q}} \omega_{p}^{\operatorname{Tr}\left(\lambda y-y^{t} x+\gamma x^{v}\right)}
$$

- If

$$
\widehat{f}(v, t)(\lambda, \gamma) \in\left\{q \omega_{p}^{i} \mid i=0,1, \cdots, p-1\right\}, \lambda \in \mathbb{F}_{q}, \gamma \in \mathbb{F}_{q}^{*}
$$

then (v, t) is called a realizable pair of $f(x)$.

- Let

$$
\omega_{p}^{g(x, \gamma)}=\frac{1}{q} \widehat{f}(v, t)(x, \gamma), x \in \mathbb{F}_{q} .
$$

$g(x, \gamma)$ is called a realization of $f(x)$ under (v, t) and γ.

Gauss Sums over Finite Fields

- $\psi(x)=\omega_{p}^{\operatorname{Tr}(x)}$
- For any multiplicative character χ over \mathbb{F}_{q}, the Gauss sum $G(\chi)$ over \mathbb{F}_{q} is defined by

$$
G(\chi)=\sum_{x \in F_{q}} \psi(x) \chi(x)
$$

- $G(\bar{\chi})=\chi(-1) \overline{G(\chi)}$
- $\boldsymbol{G}\left(\chi^{p}\right)=\boldsymbol{G}(\chi)$
- If χ is trivial, then $G(\chi)=-1$
- if χ is nontrivial, then $G(\chi) \overline{G(\chi)}=q$

$$
\omega_{p}^{\operatorname{Tr}(y)}=\frac{1}{q-1} \sum_{\chi \in \widehat{\mathbb{F}_{q^{*}}}} G(\chi) \overline{\chi(y)}
$$

Ideal Two-Level Autocorrelation Sequences

- Let $U=\left\{x^{v t} \mid x \in \mathbb{F}_{3^{n}}^{*}\right\}$.
- Let $\Lambda=\left\{\gamma_{0}, \gamma_{1}, \cdots, \gamma_{d-1}\right\}$ be a set satisfying $\mathbb{F}_{3^{n}}^{*}=\gamma_{0} \cup \cup \gamma_{1} \cup \cup \cdots \cup \gamma_{d-1} U$.
- Let α be a primitive element of $\mathbb{F}_{3^{n}}$.
- For any $0 \leq i<3^{n}-1, \alpha^{i}$ can be written in the form of $\alpha^{i}=\gamma \lambda^{v t}$, where $\gamma \in \Lambda$ and $\lambda \in \mathbb{F}_{3^{n}}$.
- We construct a ternary sequence $T=\left\{t_{i}\right\}$ by

$$
t_{i}=g(v, t)(\lambda, \gamma), i=0,1,2, \cdots
$$

Theorem

Let (v, t) be a realizable pair. Then the ternary sequence $T=\left\{t_{i}\right\}$ is an ideal two-level autocorrelation sequence.

Realizable pairs and Gaussian sums

Using expression for $\omega^{\operatorname{Tr}(y)}$ in terms of Gaussian sums.

$$
\begin{aligned}
\widehat{f}(v, t)(\lambda, \gamma) & =\sum_{x, y \in \mathbb{F}_{q}} \omega_{p}^{\operatorname{Tr}\left(\lambda y-y^{t} x+\gamma x^{\nu}\right)} \\
& =\frac{1}{3^{n}-1}\left(\sum_{x \in \mathbb{F}_{3}^{*} n} \omega_{p}^{\operatorname{Tr}\left(\gamma x^{v}\right)}+T\right)
\end{aligned}
$$

where

$$
T=\sum_{\chi^{d} \neq 1} G\left(\chi^{\nu t}\right) G\left(\bar{\chi}^{\vee}\right) G(\chi) \bar{\chi}^{\vee t}(\lambda) \bar{\chi}(\gamma) \bar{\chi}^{\vee}(-1)
$$

- If $w t(j v t)-w t(-j v)+w t(j)>2 n$ for all $j d \neq 0\left(\bmod 3^{n}-1\right)$ then $\widehat{f}(v, t)(\lambda, \gamma) \equiv 0\left(\bmod 3^{n}\right)$.
- Average value of $|\widehat{f}(v, t)(\lambda, \gamma)|=3^{n}$
- This leads to $\widehat{f}(v, t)(\lambda, \gamma)=3^{n} \omega^{i}$ for $i=0,1,2$ i.e., (v, t) realizable.

Prime Ideal Factorization

Prime Ideal Factorization (Cont.)

- (p) is a prime ideal in \mathbb{Z}
- Let $\pi=\omega_{p}-1$
- (π) is a prime ideal in $\mathbb{Z}\left[\omega_{p}\right]$
- $(p)=(\pi)^{p-1}$ in $\mathbb{Z}\left[\omega_{p}\right]$
- $(\pi)=\mathcal{Q}_{1} \mathcal{Q}_{2} \cdots \mathcal{Q}_{t}$ in $\mathbb{Z}\left[\omega_{p}, \omega_{q-1}\right]$, where \mathcal{Q}_{i} are prime ideals in $\mathbb{Z}\left[\omega_{p}, \omega_{q-1}\right]$, and $t=\phi\left(p^{n}-1\right) / n$
- $(p)=\left(\mathcal{Q}_{1} \mathcal{Q}_{2} \cdots \mathcal{Q}_{t}\right)^{p-1}$ in $\mathbb{Z}\left[\omega_{p}, \omega_{q-1}\right]$
- $(p)=\mathfrak{p}_{1} \mathfrak{p}_{2} \cdots \mathfrak{p}_{t}$ in $\mathbb{Z}\left[\omega_{q-1}\right]$
- \mathfrak{p}_{i} is the $(p-1)$-th power of a prime ideal in $\mathbb{Z}\left[\omega_{p}, \omega_{q-1}\right]$

Teichmüller Character

- For each \mathcal{Q}, we have

$$
\mathbb{Z}\left[\omega_{p}, \omega_{q-1}\right] / \mathcal{Q} \cong \mathbb{F}_{q}
$$

because $\left[\mathbb{Z}\left[\omega_{p}, \omega_{q-1}\right] / \mathcal{Q}: \mathbb{Z} /(p)\right]=n$.

- There is one special multiplicative character χ on \mathbb{F}_{q} satisfying

$$
\chi(x)(\bmod \mathcal{Q})=x
$$

- This character is called the Teichmüller character.

Stickelberger's Theorem

- For any $0 \leq k<q-1$, let $k=k_{0}+k_{1} p+\cdots+k_{n-1} p^{n-1}$ be the p-adic representation of k.
- Let $\operatorname{wt}(k)=k_{0}+k_{1}+\cdots+k_{n-1}$, and $\sigma(k)=k_{0}!k_{1}!\cdots k_{n-1}!$.

Theorem

For any $0<k<q-1$, we have

$$
G\left(\chi_{\mathfrak{p}}^{-k}\right) \equiv-\frac{\pi^{w t(k)}}{\sigma(k)}\left(\bmod \pi^{w t(k)+p-1}\right)
$$

where $\chi_{\mathfrak{p}}$ is the Teichmüller character.

Main Theorems

- $\mathbb{F}_{3}{ }^{n}$
- Let $f(x)=\operatorname{Tr}(x)$.
- $d=\operatorname{gcd}\left(v, 3^{n}-1\right)>1$, and $\operatorname{gcd}\left(t, 3^{n}-1\right)=1$.

Theorem

(v, t) is a realizable pair if and only if $w t(j v t)+w t(-j v)+w t(j)>2 n$ for any $0<j<3^{n}-1$ with $j d \not \equiv 0\left(\bmod 3^{n}-1\right)$.

Theorem

For any $\gamma \in \mathbb{F}_{3^{n}}^{*}$, the realization of $f(x)$ under (v, t) and γ is given by

$$
g(v, t)(\lambda, \gamma)=\sum_{\substack{w t(j v t)+w t(-j v)+w t(j) \\=2 n+1,0<j<3^{n}-1}}(-1)^{j v} \sigma(j v t) \sigma(-j v) \sigma(j)\left(\gamma \lambda^{v t}\right)^{j}
$$

The Sequence Conjectured by Lin

- $n=2 m+1$
- $v=2\left(3^{m+1}-1\right)$
- $t=\left(3^{n}+1\right) / 4$
- $\left(\right.$ Then $\operatorname{gcd}\left(v, 3^{m}-1\right)=2$ and $\left.\operatorname{gcd}\left(t, 3^{m}-1\right)=1\right)$

Theorem

$w t(j v t)+w t(-j v)+w t(j)>2 n$ for any $0<j<3^{n}-1$.

Theorem

$w t(j v t)+w t(-j v)+w t(j)=2 n+1$ if and only if
$j \in\left\{3^{i},\left(2 \cdot 3^{m}+1\right) 3^{i} \mid i=0,1, \cdots, n-1\right\}$.

Theorem

Lin's conjecture is true.

Thanks for your attention!

