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Bent functions have appeared in a lot of contexts.

We take a chronological tour of some of the highlights.

Difference sets and designs

In 1949, building on work on cyclic projective planes of Hall from 1947,
Chowla introduced difference sets in cyclic groups. By 1955, Bruck had

extended the concept to any finite group.

A bent function is the characteristic function of a

(2n, on—1_ 2(n—2)/27 on=2 _ 2(n—2)/2)
difference set in an elementary abelian 2-group of order 2", n even.

Thus there are symmetric designs admitting regular elementary
abelian 2-groups arising from bent functions.



In 1976, Rothaus formally introduced bent functions based on work of his
from the 1960's.

A function f: GF(2)" — GF(2) is bent if the Fourier coefficients of
x> (=1)f™) are all +1.

Today, this would normally be rewritten (with a different scaling) as
follows: Let f be an n-variable Boolean function. Its “sign” function is
the integer-valued function x¢(x) := (—1)f(*). The Walsh transform of f
is the discrete Fourier transform of xs whose value at point w € GF(2") is

defined by
yf(W) — Z (_l)f(x)+Tr,,(wx) 7
xeGF(2m)
where Tr, is the absolute trace map GF(2") — GF(2), with

Trn(x) = x4+ x4 x2

For even n, a Boolean function f in n variables is said to be bent if for
any w € GF(2") we have 3r(w) = £2"/2,



In 1976, Rothaus characterised bent functions.

Theorem (Rothaus 1976)

A function f: GF(2)" — GF(2) is bent if and only if the matrix with entry
(=1)f6H) in row x and column y is a Hadamard matrix.

In 1982, Olsen, Scholtz and Welch used bent functions to construct a new
family of nonlinear binary signal sets which achieve the lower bound of
Welch 1974 on simultaneous cross correlation and autocorrelation
magnitudes.

These signal sets have the same parameters as Kasami codes, but have
important advantages for use in spread spectrum multiple access
communication systems.



In 1990, Meier and Staffelbach introduced a criterion for Boolean
functions in terms of their Hamming distance from the set of all affine
functions, which they called the nonlinearity of the function. They made
it clear that, in cryptographic applications, it was desirable that the
nonlinearity be large, in order to avoid fast correlation attacks.

Since the set of all affine Boolean functions in n variables is the
Reed-Muller code R(1,n), by the covering radius bound we obtain

A function f: GF(2)" — GF(2) has its nonlinearity bounded above by
2n=2 _2(n=2)/2 " Equality occurs if and only if f is bent.




In 1991, Nyberg generalised the work of Meier and Staffelbach.
A function f: Z§ — Zg is perfect non-linear if for every fixed w € Z7,
w # 0, the difference

f(x+w)—f(x)

takes each value in Z, for exactly q"! values of x € Zg.

A function f: GF(2)" — GF(2) is perfect nonlinear if and only if f is bent.

Nyberg used his generalisation of the work of Meier and Staffelbach in
similar cryptographic applications.



A quasi-quadric of PG(2m —1,q) is a set of points that has the same
number of points as a non-degenerate quadric @ and the same
intersection numbers with respect to hyperplanes as Q. Quasi-quadrics
were introduced in 2000 by De Clerck-Hamilton-O’Keefe-P, building on
work of Tonchev 1993, which, in turn used work of Dillon-Shatz 1987 and
Kantor 1983. Note that these are two-intersection sets, and so related
to strongly regular graphs and to two-weight error-correcting codes,
by work of Delsarte in several papers in the 1970's.

Theorem (Tonchev 1993 /Kantor 1983/Dillon 1974)

To each quasi-quadric of PG(2m — 1,2), there corresponds a bent function
GF(2)?>™ — GF(2), and conversely.

Many constructions of quasi-quadrics were given in the paper that
introduced them. There is also a connection between quasi-quadrics of
PG(2m—1,2) and symmetric designs with the symmetric difference
property (that the symmetric difference of any three blocks is either a
block or the complement of a block). Kantor showed in 1983 that such
designs have parameters (227,22m=1 4 om=1 22m=2 4 om—1) that the
number of isomorphism classes of such designs grows exponentially with m.



A class of bent functions introduced in John Dillon’s Ph. D. thesis in 1974
was extended by Carlet and Mesnager in 2011 and the extended class
called Niho bent functions. We give them in bivariate form. Let n=2m.
Identifying GF(2)" with GF(2™)2, a (normalised) Niho bent function is
a bent function of the form Trpy,(xG(y/x)), where G: GF(2™) — GF(2™)
with G(0) =0 and G(1) =1.

In the same paper, Carlet and Mesnager proved that Trp,(xG(y/x)) is a
bent function if and only if {(1,x,G(x)): x € GF(2™)}uU{(0,1,0),(0,0,1)}
is a hyperoval of PG(2,2™) (a set of 2™+ 2 points, no three collinear). A
function G: GF(2™) — GF(2™) with G(0) =0 and G(1) =1 and such
that {(1,x,G(x)): x € GF(2™)}U{(0,1,0),(0,0,1)} is a hyperoval of
PG(2,2™) is called an o-polynomial.

Theorem (Carlet-Mesnager 2011)

Niho bent functions define o-polynomials and, conversely, every
o-polynomial defines a Niho bent function.




Bentness is preserved by extended-affine (EA) equivalence. Two Boolean
functions f and g are called EA-equivalent if there exists an affine
automorphism A and an affine Boolean function £ such that f = go A+/.
Two hyperovals of PG(2,2™) are projectively equivalent if they are in
the same orbit of the automorphism group PI'L(3,2™) of PG(2,2™).

Carlet and Mesnager 2011 also discovered that projectively equivalent
hyperovals can lead to EA-inequivalent Niho bent functions.

So the two concepts of equivalence don’t match.



Here are (up to projective equivalence of hyperovals) the known
o-polynomials over GF(2™).

0 F(z)= 22" with ged(i,m) =1 [Segre (1957)].

@ F(z) = 25 with m odd [Segre (1962),Segre-Bartocci (1971)].

Q F(z) =232 with m =2k —1 [Glynn (1983)].

Q F(z) =2z%2" with m= 4k —1 [Glynn (1983)].

Q F(z)=z2""+2"" \ith m =4k +1 [Glynn (1983)].

Q F(z)=27? +22 +2 +z32 4 with m =2k — 1 [Cherowitzo (1998)].
Q F(z)= 76 422 + 28 with m odd [Payne(1985)].

Q F(z)= (= 42) tﬁ(;ztgifz)(z +27) + z1/2, where

Trm(d) = 1,d? + d +1 # 0 [Cherowitzo-P-Pinneri-Royle (1996)
Subiaco plus a slight variant for m =2 (mod 4)].

@ F(z) = even more complicated, m even [Cherowitzo-O'Keefe-P
(2003), Adelaide].

@ F(z) =2+ w20 + w2028 4 wilz10 4 6712 | 11,14 4 716 |
wllz18 4 20,20 4 11,22 | 6,24 111,26 | ;28 \yhere
w® = w?+1,m=5 [O'Keefe-P (1991)].



An o-permutation is a non-zero scalar multiple of an o-polynomial. An
oval of PG(2,2™) is a set of 2™+ 1 points, no three collinear.

In 2002 O’ Keefe and P introduced an action of PI'L(2,2™) on the vector
space V of functions with domain and codomain GF(2™) we called the
magic action. The magic action was shown to take o-permutations to
o-permutations. The focus of that paper on certain sets of ovals called
herds (and the corresponding generalised quadrangles) led to the emphasis
on o-permutations rather than on o-polynomials. We hereby introduce a
slight modification of the magic action that takes o-polynomials to
o-polynomials. It is most easily specified by giving generators:

O: Frof: xr—>xf(x_1);
Py: F 3 pyf: x> yofoyt, for ye Aut(GF(2™));
G, f—0Lf: x+— —ff((é's), for a€ GF(2™M)*;

. . f(x+c)+f m
Te: thcf.xHW,forceGFQ ).



Since the only alterations to the maps are to multiply 6, and 1. by
appropriate constants, the two actions are identical on the projective space
PV and since the new maps preserve the property f(1) =1, we have:

Theorem (BCHKP)

The modified magic action is an action of PI'L(2,2™) which takes
o-polynomials to o-polynomials.

In that same paper of O'Keefe-P, an equivalence of o-permutations under
the magic action is shown to be induced by an explicit collineation taking
the corresponding hyperovals to one another and fixing (0,0,1) (and hence
taking the ovals obtained by deleting (0,0,1) to one another). By following
this collineation by an appropriately chosen homology with centre (0,0,1)
and axis z =0, it follows that an equivalence of o-polynomials under the
modified magic action is induced by an explicit collineation taking the
corresponding hyperovals to one another and fixing (0,0,1).



Thus the magic action (and the modified magic action) transfer oval
equivalence to o-permutation equivalence (and o-polynomial equivalence).
We now extend the modified magic action in order to transfer hyperoval
equivalence to o-polynomial equivalence.

Let G be the group generated by

{0,py,04,7c: Y€ Aut(GF(2™)),a € GF(2™)",c € GF(2™)}

and the inversion map f — f~1. Suppose f and g are o-polynomials in the
same orbit under G. Then since the generators of G take hyperovals
arising from o-polynomials to equivalent hyperovals arising from the image
o-polynomials, the hyperovals arising from f and g are equivalent.
Conversely, if the hyperovals H arising from f and H’ arising from g are
equivalent via a collineation, then consider the preimage of (0,0,1) under
that collineation. If it is (0,0,1), then by Theorem 4 of O'Keefe-P 2002
and its slight modification above, f and g are in the same orbit of G.



If the preimage of (0,0,1) is (0,1,0) then apply inversion to H to obtain a
hyperoval H” equivalent to H" where the preimage of (0,0,1) is (0,0,1)
and apply the above argument again: f and g are in the same orbit of G.
If the preimage of (0,0,1) is (1,t,f(t)), then choose an element of
PrL(2,2™) taking (1,t) to (0,1), and apply this element via the modified
magic action to f to obtain a hyperoval H"” equivalent to H' where the
preimage of (0,0,1) under the new collineation is (0,1,0) and apply the
immediately preceding argument: f and g are in the same orbit of G.

Theorem (o-polynomial equivalence and hyperoval equivalence)

Two o-polynomials f and f' arise from equivalent hyperovals of PG(2,2™)
if and only if they lie in the same orbit of the group generated by

{0,py,04,7c: Y€ Aut(GF(2™)),a € GF(2™)",c € GF(2™)}

and the inversion map f +— f~1.

The corresponding concepts for Niho bent functions are called restricted
o-equivalence (for the modified magic action) and o-equivalence (for
the extended modified magic action).



A spread of a vector space of dimension 2m is a collection of subspaces of
dimension m that pairwise meet in the zero vector and whose union is the
whole vector space. Given a spread, the incidence structure with points
the vectors of the vector spaces and with line the additive cosets of the
elements of the spread is an affine plane.

A spread is Desarguesian is the affine plane arising from it is
Desarguesian. In order to admit affine maps, we move to the projective
perspective, and view the spread in the hyperplane at infinity. Affine maps
take spreads to spreads, and Desarguesian spreads to Desarguesian spreads.

A necessary and sufficient condition for a bent function f to be Niho is
that there exists a Desarguesian spread such that the restriction of f to
each element of the spread is linear (Carlet-Mesnager (2011),p. 2398.) (In
the definition of Niho bent functions the spread is

{{(x,ax) : x € GF(2™)} :a€ GF(2™)} U{{(0,y) : y € GF(2™)}.)

So the question arises: For a Niho bent function, is the associated
Desarguesian spread fixed by the group of the bent function? As is often
the case in finite seometryv. the classical case behaves differently.



The stabiliser of the Niho bent function arising from the conic
{(1,x,x}/?)) : x € GF(2™)}U{(0,1,0)} does not fix the associated
Desarguesian spread. It turns out that the support of the Niho bent
function is the complement in PG(2m —1,2) of the hyperbolic quadric
Trm(xy) = 0. Such Niho bent functions form a single EA-equivalence class
C , for PGL(2m,2) is transitive on hyperbolic quadrics. We will need to
isolate this case via a characterisation in turn of symmetry. We also need
the observation that the union of an elliptic quadric in PG(2m —1,2) with
the origin is the support of a bent function, and that bent function also
lies in C.

A Niho bent function GF(2)?>™ — GF(2) with stabiliser in GL(2m,?2)
containing Q*(2b,2?), for some a, b with m = ab and b > 1 arises from a
conic.

Proof: There's only one Q*(2b,27)-invariant set of the right size to be the
support of a bent function; since Q*(2b,27) < Q*(2m,?2), it arises from a
conic.



A Niho type bent function that does not arise from a conic has an
associated Desarguesian spread fixed by its stabiliser.

Proof: Suppose not. It was shown by Carlet-Mesnager (2001), 3.1.2 that
there are elements of the extended affine equivalence group, inducing a
subgroup H of AGL(2m,?2) isomorphic to PI'L(2,2™), which induces
equivalence of ovals (that is, the modified, but not extended, magic
action) in its action on Niho bent functions. H stabilises a Desarguesian
spread X in the hyperplane at infinity which is associated to each
corresponding Niho bent function. Let O be an orbit of (cosets of the set
A of affine functions with representatives) Niho bent functions under H
and let Gy be the group induced on the hyperplane at infinity by the
subgroup G of AGL(2m,2) induced by the stabiliser of O in the extended
affine equivalence group. Let f+ A€ O. Gy is a proper overgroup of
PrL(2,2™) in GL(2m,2). The main theorem of Guralnick-P-Praeger-Saxl
1999 lists all possibilities for G;. We also know that O has size dividing
|PTL(2,2™)| and so the stabiliser S of f in the extended affine equivalence
group has size divisible by |G1|/|PTL(2,2™)].



Applying the main theorem of Guralnick-P-Praeger-Saxl 1999 again, this
time to the group K induced by S on the hyperplane at infinity, eventually
reduces to the cases where PSp(2b,2?) <1 Gy, Q%(2b,27)<K , where

m = ab,b > 1. (The two cases correspond to whether or not the support
of f contains the origin or not.) The preceding theorem applied to f shows
that the oval is a conic. Unfortunately, this proof depends on the
classification of finite simple groups.

Given two Niho bent functions in bivariate form not arising from a conic,
the affine map in any EA-equivalence between them is in AT L(2,2™).

Proof: The affine map is an automorphism of the affine plane AG(2,2™)
arising from the (common) Desarguesian spread. Hence it is in
ATL(2,2™), by the fundamental theorem of affine geometry.

We also need to remark that, for m > 2, the Niho bent functions Try,(xy)
and Trm(x%y?"2) are inequivalent, in order to deal with Niho bent
functions arising from a regular hyperoval.



Given two Niho bent functions, they are EA-equivalent if and only if the
corresponding ovals are projectively equivalent. Hence, the number of
EA-equivalence classes of Niho bent functions arising from a hyperoval of
PG(2,2™) is the number of orbits of the collineation stabiliser of the
hyperoval on the points of the hyperoval.

Proof: Suppose that two ovals arising from Niho bent functions not arising
from a conic are projectively equivalent. Let f, g be their o-polynomials.
Then, by Theorem 4 of O'Keefe-P 2002, there is an element of PI'L(2,2™)
such that, under the magic action, it takes f to g. This gives an
EA-equivalence between the Niho bent functions. Conversely, by the
preceding Corollary, an EA-equivalence between the Niho bent functions
gives an element of PIL(2,2™) taking the first o-polynomial to the second
in the (modified) magic action. Hence, by Theorem 4 of O'Keefe-P 2002,
the ovals are projectively equivalent.



Known Niho bent functions

By combining the results of the survey article O'Keefe-P 1994 with:
Gevaert-Payne-Thas 1988,

O'Keefe-P 1991,

Payne-P-Pinneri 1995,

O'Keefe-Thas 1996,

Payne-Thas 2005,

Bayens-Cherowitzo-P 2007/8,

the groups of the known hyperovals in finite Desarguesian planes are
known. From each of the groups’ orbits on points of the hyperoval,
the projective equivalence classes of known ovals in finite Desarguesian
planes are known.

In principle, this allows us to give explicit bent functions for all the known
Niho bent functions.



Related structures

o

2]
o
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Difference sets; symmetric designs with a regular elementary abelian
2-group; Strongly regular graphs.

Walsh transforms taking two values; Hadamard matrices.

Signal sets with minimal simultaneous cross correlation and
autocorrelation magnitudes; Signalling applications.

Meets upper bound of nonlinearity from covering radius bound for
Reed-Muller code; Cryptographic applications.

Perfect non-linear functions; Cryptographic applications.
Quasi-quadrics; Two-intersection sets; Two weight codes; Uniformly
packed codes (Goethals-van Tilborg; Mesnager).

Symmetric and quasi-symmetric designs with the symmetric difference
property (Jungnickel, Tonchev for the quasi-symmetric designs).
Hyperovals; Doubly dual dimensional dual hyperovals (Dempwolff).
Generalised quadrangles (Tits; Ahrens-Szekeres; Hall; Payne).

Partial geometries (Wallis; Thas); Howell designs (Anderson).
Semibent functions (Carlet, Mesnager); Vectorial bent functions
(Mesnager); Constant weight codes (Mesnager); S-boxes (Mesnager).



“We have obtained a large number of potentially new bent functions
(more precisely, infinite classes of bent functions, since their numbers of
variables range over infinite sets) whose bivariate expressions are explicit,
after noticing that the condition for a function to be in this class is
equivalent to the fact that a polynomial directly related to its definition is
an o-polynomial (a notion from finite geometry), and thanks to an
abundant literature on these polynomials. "

Claude Carlet, Sihem Mesnager 2011
“Theorem 1 provides several new classes of infinite (optimal) bent
vectorial functions thanks to the hard work of the geometers over

approximately 40 years.”

Sihem Mesnager 2014



An e-error-correcting code C in GF(q)" is said to be uniformly packed
with parameters A and u if for x € GF(q)" we have

(1) if d(x,C) = e then B(x,e+1) =A, and

(2) if d(x,C) =e+1 then B(x,e+1) =y, where
A<(n—e)(g—1)/(e+1).

(The last inequality just says that the code is not perfect, and B(x,i) is
the number of codewords at distance i/ from x.) By a theorem of Goethals
and van Tilborg, an e-error correcting code is uniformly packed if and only
if its dual code has exactly e+ 1 weights.

Let n and s be integers where n <s <2n—1. A square of side s such that
each cell is empty or contains an unordered pair of integers from amongst
1,2,...,2n is called a Howell design of type H(s,2n), provided:

(1) each integer from 1 to 2n appears exactly once in each row and each
column and

(2) every unordered pair of integers appears at most once in a cell of the
square. The range of possible values of sis n <s<2n—1.
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