On Niho Bent Functions and o－Polynomials

Alexander Kholosha

joint work with
L．Budaghyan，C．Carlet，T．Helleseth，S．Mesnager

Selmer Center，Department of Informatics，University of Bergen Norway

5 September 2014

Boolean Functions - Representations

Multivariate representation

A Boolean function $f(x): \mathbb{F}_{2}^{n} \mapsto \mathbb{F}_{2}$ can be represented uniquely in Algebraic Normal Form(ANF)

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{l \subset\{1,2, \ldots, n\}} a_{l} \prod_{i \in I} x_{i}, \quad a_{l} \in \mathbb{F}_{2}
$$

Univariate representation

Alternatively, one can consider the Boolean function as a univariate function $f(x): \mathbb{F}_{2^{n}} \mapsto \mathbb{F}_{2}$

$$
f(x)=\sum_{i=0}^{2^{n}-1} b_{i} x^{i}=\operatorname{Tr}_{n}(F(x)), \quad b_{i} \in \mathbb{F}_{2^{n}}, b_{2 i}=b_{i}^{2}
$$

where $\operatorname{Tr}_{n}(x)=\sum_{i=0}^{n-1} x^{2^{i}}$.

Bent Functions - Rothaus (1976)

Definition

Functions $f, g: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ are extended-affine equivalent if there exist affine permutation L of \mathbb{F}_{2}^{n} and an affine function $I: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ such that $g(x)=(f \circ L)(x)+I(x)$. A class of functions is complete if it is a union of EA-equivalence classes. The completed class is the smallest possible complete class that contains the original one.

Definition (Walsh transform)

$f(x): \mathbb{F}_{2}^{n} \mapsto \mathbb{F}_{2}$ Inner product $x \cdot b=\sum_{i=1}^{n} x_{i} b_{i}\left(=\operatorname{Tr}_{n}(b x)\right)$

$$
\hat{f}(b)=\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{f(x)+x \cdot b} \quad\left(\text { or } \sum_{x \in \mathbb{F}_{2^{n}}}(-1)^{\operatorname{Tr}_{n}(F(x)+b x)}\right)
$$

- $f(x)$ is a bent function iff $\hat{f}(b)= \pm 2^{n / 2}$ for all $b \in \mathbb{F}_{2}^{n}$.
- Bent functions exist for even n only.
- Dual bent function $f^{*}(b)$ defined by $\hat{f}(b)=2^{n / 2}(-1)^{f^{*}(b)}$.

Maiorana-McFarland Construction

The best known construction of bent functions is the Maiorana-McFarland construction (not bivariate representation).

Definition

Let $n=2 m$.
Let $\pi: \mathbb{F}_{2}^{m} \mapsto \mathbb{F}_{2}^{m}$ be a permutation.
Let $g: \mathbb{F}_{2}^{m} \mapsto \mathbb{F}_{2}$ any mapping.
Then

$$
f(x, y)=x \cdot \pi(y)+g(y), \quad x, y \in \mathbb{F}_{2}^{m}
$$

is a bent function in $n=2 m$ variable.
The dual of such a bent function is also a member of this class.

Representation in Bivariate Form

Let $n=2 m$ and consider $\mathbb{F}_{2}^{n} \approx \mathbb{F}_{2^{m}} \times \mathbb{F}_{2^{m}}$.

$$
f(x, y)=\sum_{0 \leq i, j \leq 2^{m}-1} a_{i j} x^{i} y^{j}, \quad a_{i j} \in \mathbb{F}_{2^{m}}
$$

Representing $f(x, y)$ in trace form

$$
f(x, y)=\operatorname{Tr}_{m}(P(x, y))
$$

for some polynomial $P(x, y)$ with coefficients in $\mathbb{F}_{2^{m}}$.
The Walsh transform becomes

$$
\hat{f}(a, b)=\sum_{x, y \in \mathbb{F}_{2^{m}}}(-1)^{f(x, y)+\operatorname{Tr}_{m}(a x+b y)}, \quad a, b \in \mathbb{F}_{2^{m}}
$$

Dillon's Class H

The bent functions in Dillon's class H are defined by

Definition

$$
f(x, y)=\operatorname{Tr}_{m}\left(y+x F\left(y x^{2^{m}-2}\right)\right), \quad x, y \in \mathbb{F}_{2^{m}}
$$

where

- $F(x)$ is a permutation of $\mathbb{F}_{2^{m}}$.
- $F(x)+x$ does not vanish.
- $F(x)+\beta x$ is 2-to-1 for any $\beta \in \mathbb{F}_{2 m}^{*}$.

Dillon found only constructions in the Maiorana-McFarland class so this class has received less attention.

The Extension to Family \mathcal{H}

$$
g(x, y)=\left\{\begin{array}{lll}
\operatorname{Tr}_{m}\left(x G\left(\frac{y}{x}\right)\right) & \text { if } & x \neq 0 \\
\operatorname{Tr}_{m}(\mu y) & \text { if } & x=0
\end{array}\right.
$$

Note g is linear on $\left\{(x, a x) \mid x \in \mathbb{F}_{2^{m}}\right\}$ and $\left\{(0, y) \mid y \in \mathbb{F}_{2^{m}}\right\}$.

Theorem

The Walsh transform of $g(x, y)$ is

$$
\hat{g}(\alpha, \beta)=\sum_{x, y}(-1)^{g(x, y)+\operatorname{Tr}_{m}(\alpha x+\beta y)}= \begin{cases}2^{m} N_{\alpha, \beta} & \text { if } \beta=\mu \\ 2^{m}\left(N_{\alpha, \beta}-1\right) & \text { if } \beta \neq \mu\end{cases}
$$

where $N_{\alpha, \beta}=\left|\left\{z \in \mathbb{F}_{2^{m}} \mid G(z)+\beta z+\alpha=0\right\}\right|$.

Corollary

The function $g(x, y)$ is bent iff

- $F(z)=G(z)+\mu z$ is a permutation of $\mathbb{F}_{2^{m}}$.
- $F(z)+\beta z$ is 2-to-1 on $\mathbb{F}_{2^{m}}$ for any $\beta \in \mathbb{F}_{2^{m}}^{*}$.

Dual Bent Functions to Family \mathcal{H}

Theorem

The dual of $g(x, y)$ is

$$
g^{*}(\alpha, \beta)= \begin{cases}1 & \text { if } G(z)+\beta z=\alpha \text { has no solution in } \mathbb{F}_{2^{m}} \\ 0 & \text { otherwise }\end{cases}
$$

Problem

Find polynomial expressions for dual of bent functions in family \mathcal{H}. Expand the class \mathcal{H} so it would contain also the dual functions.

Solved just for bent functions corresponding to Frobenius mappings. This dual does not belong to \mathcal{H}.

Family \mathcal{H} and o-Polynomials

Definition

A permutation polynomial $F(z)$ over $\mathbb{F}_{2^{m}}$ is called an o-polynomial if $F(0)=0, F(1)=1$ and

$$
\frac{F(z+\gamma)+F(\gamma)}{z}
$$

is a permutation polynomial for all $\gamma \in \mathbb{F}_{2^{m}}$.

Theorem

A polynomial $F(z)$ over $\mathbb{F}_{2^{m}}$ is an o-polynomial iff $F(x)+\beta x$ is a 2-1 mapping for any $\beta \in \mathbb{F}_{2^{m}}^{*}$.

There is a close connection between hyperovals and o-polynomials. Maschietti used monomial hyperovals to construct new important difference sets.

Monomial o-Polynomials

- $F(z)=z^{2^{i}}$, where $(i, m)=1$.
- $F(z)=z^{6}$, where m is odd. (Segre (1962))
- $F(z)=z^{2^{k}+2^{2 k}}$, where $m=4 k-1$. (Glynn (1983))
- $F(z)=z^{2^{2 k+1}+2^{3 k+1}}$, where $m=4 k+1$. (Glynn (1983))
- $F(z)=z^{2^{k}+2}$ with $m=2 k-1$
- $F(z)=z^{2^{m-1}}+2^{m-2}$ with modd
- $F(z)=z^{3 \cdot 2^{k}+4}$, where m is $2 k-1$. (Glynn (1983))

Example

To construct a bivariate bent function from $F(z)=z^{6}$ where m is odd:

$$
g(x, y)=\operatorname{Tr}_{m}\left(y^{6} x^{-5}\right)
$$

o-Trinomials

- $F(z)=z^{2^{k}}+z^{2^{k}+2}+z^{3 \cdot 2^{k}+4}$, where $m=2 k-1$
- $F(z)=z^{\frac{1}{6}}+z^{\frac{1}{2}}+z^{\frac{5}{6}}$, where m is odd

Problem (Glynn conjecture)

No other o-monomials exist (up to o-equivalence).

Not all o-polynomials consist of a sum of o-monomials.

Subiaco o-Polynomials

Theorem (Cherowitzo, Penttila, Pinneri, and Royle 1996)

If m odd, let $a=1$

$$
f(z)=\frac{z^{2}+z}{\left(z^{2}+z+1\right)^{2}}+z^{1 / 2} \text { and } g(z)=\frac{z^{4}+z^{3}}{\left(z^{2}+z+1\right)^{2}}+z^{1 / 2} .
$$

If $m \equiv 2(\bmod 4)$ and $\omega^{2}+\omega+1$, let $a=\omega$

$$
f(z)=\frac{\omega z\left(z^{2}+z+\omega^{2}\right)}{\left(z^{2}+\omega z+1\right)^{2}}+\omega^{2} z^{1 / 2} \text { and } g(z)=\frac{\omega z\left(z^{2}+z+1\right)}{z^{2}+z+1}+z^{1 / 2}
$$

Then $g(z)$ is an o-polynomial and

$$
f_{s}(z)=\frac{f(z)+\operatorname{asg}(z)+s^{1 / 2} z^{1 / 2}}{1+a s+s^{1 / 2}}
$$

is an o-polynomial for any $s \in \mathbb{F}_{2^{m}}$.

Niho Bent Functions

Let $n=2 m$ then d is a Niho exponent if $d \equiv 2^{i}\left(\bmod 2^{m}-1\right)$.

Theorem $(2006,2012)$

If $a=b^{2^{m}+1}$ then $f(t)=\operatorname{Tr}_{m}\left(a t^{2^{m}+1}\right)+\operatorname{Tr}_{n}\left(b t^{d_{2}}\right)$ is bent on $\mathbb{F}_{2^{n}}$ if

- $d_{2}=\left(2^{m}-1\right) 3+1$
- $6 d_{2}=\left(2^{m}-1\right)+6$, and m even.

These functions have degree m and do not belong to the completed Maiorana-McFarland class.

Theorem (2006)

Take $0<r<m$ with $\operatorname{gcd}(r, m)=1$. Then

$$
f(t)=\operatorname{Tr}_{m}\left(t^{2^{m}+1}\right)+\operatorname{Tr}_{n}\left(\sum_{i=1}^{2^{r-1}-1} t^{\left(2^{m-r} i+1\right)\left(2^{m}-1\right)+1}\right)
$$

is a bent function of degree $r+1$ and belongs to the completed Maiorana-McFarland class. The dual of f is not a Niho bent function.

Niho Equation

Assume that

$$
d_{i}=\left(2^{m}-1\right) s_{i}+1 \quad(i=1, \ldots, r)
$$

are Niho exponents and

$$
f(t)=\operatorname{Tr}_{n}\left(\sum_{i=1}^{r} \alpha_{i} t^{d_{i}}\right)
$$

with $\alpha_{i} \in \mathbb{F}_{2^{n}}$. Then for every $c \in \mathbb{F}_{2^{n}}$ we have $\hat{f}(c)=(N(c)-1) 2^{m}$, where $N(c)$ is the number of $u \in \mathcal{S}$ such that

$$
c u+\overline{c u}+\sum_{i=1}^{r}\left(\alpha_{i} u^{1-2 s_{i}}+\overline{\alpha_{i}} \bar{u}^{1-2 s_{i}}\right)=0
$$

where $\bar{x}=x^{2^{m}}$ and $\mathcal{S}=\left\{u \in \mathbb{F}_{2^{n}}: u \bar{u}=1\right\}$. In particular, f is bent if and only if $N(c) \in\{0,2\}$.

Niho Bent Functions in 2-Variables

Niho bent function in univariate form ($t \in \mathbb{F}_{2^{n}}, n=2 m$)

$$
f(t)=\operatorname{Tr}_{n}\left(\sum_{i} \alpha_{i} t^{\left(2^{m}-1\right) s_{i}+1}\right)
$$

Niho bent function in bivariate form $\left(x, y \in \mathbb{F}_{2^{m}}\right)$

$$
g(x, y)=f(u x+v y)=\operatorname{Tr}_{m}\left(x \operatorname{Tr}_{m}^{n}\left(\sum_{i} \alpha_{i}\left(u+v \frac{y}{x}\right)^{\left(2^{m}-1\right) s_{i}+1}\right)\right)
$$

$$
g(x, y)= \begin{cases}\operatorname{Tr}_{m}\left(x G\left(\frac{y}{x}\right)\right) & \text { if } x \neq 0 \\ \operatorname{Tr}_{m}(\mu y) & \text { if } x=0 .\end{cases}
$$

- $G(z)=\operatorname{Tr}_{m}^{n}\left(\sum_{i} \alpha_{i}(u+v z)^{\left(2^{m}-1\right) s_{i}+1}\right)$
- $\mu=\operatorname{Tr}_{m}^{n}\left(\sum_{i} \alpha_{i} v^{\left(2^{m}-1\right) s_{i}+1}\right)$
- For a bent function $F(z)=G(z)+\mu z$ is an o-polynomial

Niho Polynomials with 2^{r-1} Terms (Frobenius)

Theorem (2011)

Let $r>1$ with $\operatorname{gcd}(r, m)=1$ and

$$
f(t)=\operatorname{Tr}_{m}\left(t^{2^{m}+1}\right)+\operatorname{Tr}_{n}\left(\sum_{i=1}^{2^{r-1}-1} t^{\left(2^{m-r} i+1\right)\left(2^{m}-1\right)+1}\right)
$$

Let $u \in \mathbb{F}_{2^{n}} \backslash \mathbb{F}_{2^{m}}$ and $v \in \mathbb{F}_{2^{m}}$. Then $f(t)$ belongs to \mathcal{H} with $\mu=v$ and o-polynomial

$$
F(z)^{2^{r}}=\left(u+u^{2^{m}}\right)^{2^{r}-1} v z+\frac{u^{2^{m}+2^{r}}+u^{2^{m+r}+1}}{u+u^{2^{m}}}
$$

Take $u+u^{2^{m}}=v=1$ then the dual of $f(t)$ is

$$
f^{*}(w)=\operatorname{Tr}_{n}\left(\left(u\left(1+w+w^{2^{m}}\right)+u^{2^{n-r}}+w^{2^{m}}\right)\left(1+w+w^{2^{m}}\right)^{1 /\left(2^{r}-1\right)}\right) .
$$

Both $f(t)$ and $f^{*}(w)$ belong to the completed Maiorana-McFarland class, $f^{*}(w)$ does not belong to \mathcal{H}.

Niho Binomial with $d=\left(2^{m}\right.$

Theorem (2012)

Let $n=2 m, a=b^{2^{m}+1}$ and

$$
f(t)=\operatorname{Tr}_{m}\left(a 2^{2^{m}+1}\right)+\operatorname{Tr}_{n}\left(b t^{\left(2^{m}-1\right) 3+1}\right) .
$$

m odd: Let $v=1$ and $u \in \mathbb{F}_{4} \backslash\{0,1\}$. Then
$F(z)=a^{\frac{1}{2}}+\operatorname{Tr}_{m}^{n}(b u)+a^{\frac{1}{2}} f_{s}(z)$. If $b=1$ then

$$
F(z)=\frac{z^{2}+z}{\left(z^{2}+z+1\right)^{2}}+z^{1 / 2}
$$

is an o-polynomial (thus $f(t)$ bent).
$m \equiv 2(\bmod 4):$ Let $v=1$ and $u \in \mathbb{F}_{16} \backslash \mathbb{F}_{4}$ with $u^{5}=1$ and $u+u^{2^{m}}=\omega$. Then

$$
F(z)=a^{\frac{1}{2}}+\operatorname{Tr}_{m}^{n}(b)+\left(1+w s+s^{\frac{1}{2}}\right) \operatorname{Tr}_{m}^{n}\left(b\left(u^{4}+1\right)\right) f_{s}(z)
$$

is an o-polynomial (thus $f(t)$ bent) also for b not a 5 -th power.

Bent Functions from Quadratic o-Monomials (1)

Take $m>2$ and $n=2 m$; select $a \in \mathbb{F}_{2^{n}}$ with $a+a^{2^{m}}=1$. For any $0 \leq J<I<m-1$ define

$$
\begin{aligned}
& A_{1}=a^{2^{\prime}}+1 \\
& A_{2}=a^{2^{\prime}}+a^{2^{J}} \\
& A_{3}=a^{2^{\prime}}+a^{2^{J}}+1 .
\end{aligned}
$$

and the following Boolean function over $\mathbb{F}_{2^{n}}$

$$
f(t)=\operatorname{Tr}_{m}\left(A_{3} t^{2^{m-1}\left(2^{m}+1\right)}\right)+\operatorname{Tr}_{n}\left(\sum_{i=1}^{2^{m-J-1}-1} C_{i} t^{\left(2^{J} i+1\right)\left(2^{m}-1\right)+1}\right)
$$

with coefficients repeated in a cycle of length 2^{c+1} (with $c=I-J$) as follows

$$
\underbrace{i}_{C_{i}=}=\underbrace{1, \ldots, 2^{c}-1}_{A_{1}}, \underbrace{2^{c}}_{A_{2}}, \underbrace{2^{c}+1, \ldots, 2^{c+1}-1}_{A_{1}^{2^{m}}}, \underbrace{2^{c+1}}_{A_{3}}, \ldots, 2^{m-J-1}
$$

Bent Functions from Quadratic o-Monomials (2)

- For odd $m>3$ take $I=2$ and $J=1$

$$
F(z)=z^{6}+a^{6}+(a+1)\left(a^{4}+a^{2}+1\right)
$$

- For $m=4 k-1>3$ take $I=2 k$ and $J=k$

$$
F(z)=z^{2^{2 k}}+2^{k}+a^{2^{2 k}+2^{k}}+(a+1)\left(a^{2^{2 k}}+a^{2^{k}}+1\right)
$$

- For $m=4 k+1>5$ take $I=3 k+1$ and $J=2 k+1$

$$
F(z)=z^{2^{3 k+1}+2^{2 k+1}}+a^{2^{3 k+1}+2^{2 k+1}}+(a+1)\left(a^{2^{3 k+1}}+a^{2^{2 k+1}}+1\right)
$$

- For $m=2 k-1>3$ take $I=k$ and $J=1$

$$
F(z)=z^{2^{k}+2}+a^{2^{k}+2}+(a+1)\left(a^{2^{k}}+a^{2}+1\right)
$$

To $F(z)=z^{2^{m-1}+2^{m-2}}$ apply transformation $z F\left(z^{-1}\right)$ to obtain $z^{2^{m-2}}$ that is a Frobenius o-polynomial if and only if m is odd.

Bent Functions from Cubic o-Polynomials (1)

Take any $m=2 k-1>5$ and $n=2 m$; select $a \in \mathbb{F}_{2^{n}}$ with $a+a^{2^{m}}=1$. For any $0<J+1<I<m-1$ define $e=2^{I-1}\left(2^{m}-1\right)$,

$$
\begin{aligned}
& A_{1}=a^{3 \cdot 2^{I-1}} \\
& A_{2}=a^{2^{I}}\left(a^{2^{I-1}}+a^{2^{J}}\right) \\
& A_{3}=a^{3 \cdot 2^{I-1}+2^{J}}+(a+1)^{3 \cdot 2^{I-1}+2^{J}} .
\end{aligned}
$$

and the following Boolean function over $\mathbb{F}_{2^{n}}$

$$
f(t)=\operatorname{Tr}_{m}\left(A_{3} t^{2^{m-1}\left(2^{m}+1\right)}\right)+\operatorname{Tr}_{n}\left(\sum_{i=1}^{2^{m-J-1}-1} C_{i} t^{\left(2^{j} i+1\right)\left(2^{m}-1\right)+1}\right)
$$

with coefficients repeated in a cycle of length 2^{c+1} (with $c=I-J$)

$$
\begin{aligned}
& \underbrace{i}_{C_{i}=}=\underbrace{1, \ldots, 2^{c-1}-1}_{A_{1}}, \underbrace{2^{c-1}}_{A_{2}}, \underbrace{2^{c-1}+1, \ldots, 2^{c}-1}_{a^{e} A_{1}}, \underbrace{2^{c}}_{a^{e} A_{2}} \\
& \underbrace{2^{c}+1, \ldots, 3 \cdot 2^{c-1}-1}_{a^{2 e} A_{1}}, \underbrace{3 \cdot 2^{c-1}}_{a^{2 e} A_{2}}, \underbrace{3 \cdot 2^{c-1}+1, \ldots, 2^{c+1}-1}_{a^{3 e} A_{1}}, \underbrace{2^{c+1}}_{A_{3}}, \ldots, 2^{m-J-1}
\end{aligned}
$$

Bent Functions from Cubic o-Polynomials (2)

For $m=2 k-1>5$ take $I=k+1$ and $J=2$

$$
F(z)=z^{3 \cdot 2^{k}+4}+a^{3 \cdot 2^{k}+5}+(a+1)^{3 \cdot 2^{k}+5}
$$

Take the following o-trinomial of degree three

$$
F(z)=z^{2^{k}}+z^{2^{k}+2}+z^{3 \cdot 2^{k}+4} \text { with } m=2 k-1>5 .
$$

For $n=2 m$ select $a \in \mathbb{F}_{2^{n}}$ with $a+a^{2^{m}}=1$. Take a sum of three Niho bent functions that correspond to each of the following o-monomials

- Frobenius map $z^{2^{k}}$ (here $r=k-1$);
- quadratic o-monomial $z^{2^{k}+2}$ (here $r=m-1$);
- cubic o-monomial $z^{3 \cdot 2^{k}+4}$ (here $r=m-2$).

The resulting bent function has the form of LK with $r=m-1$ and coefficients taking on one of at most ten different values.

Problem

Find explicit expressions for coefficients in any Niho bent function.

General Form of a Niho Bent Function (1)

- For any $d \in\left\{1, \ldots, 2^{m}-1\right\}$ let $I \in\{0, \ldots, m-1\}$ be the position of the least significant one-digit in the binary expansion of d.
- Take any $\lambda \in \mathbb{F}_{2^{m}}^{*}$ and define bivariate function over $\mathbb{F}_{2^{m}} \times \mathbb{F}_{2^{m}}$

$$
g(x, y)=\operatorname{Tr}_{m}\left(\lambda x^{2^{m}-d} y^{d}\right)
$$

- Take $t \in \mathbb{F}_{2^{n}}$ and a a primitive element of $\mathbb{F}_{2^{n}}$. Use

$$
x=t+t^{2^{m}} \quad \text { and } \quad y=a t+a^{2^{m}} t^{2^{m}}
$$

to obtain the univariate form of $g(x, y)$.

- For any $d \in\left\{1, \ldots, 2^{m}-1\right\}$ define

$$
\tilde{d}= \begin{cases}d, & \text { if } d<2^{m-1} \\ d+2^{m-1}\left(2^{m}-1\right), & \text { otherwise } .\end{cases}
$$

General Form of a Niho Bent Function (2)

This results in

$$
\operatorname{Tr}_{n}\left(a^{\tilde{d}} t^{2^{m-1}\left(2^{m}+1\right)}+\sum_{i=1}^{2^{m-l-1}-1} A_{i} t^{\left(2^{m}-1\right)\left(2^{\prime} i+1\right)+1}\right)
$$

with $A_{i} \in \mathbb{F}_{2^{n}}^{*}$, plus a linear term. Any Niho bent function in the univariate form, up to EA-equivalence, is obtained as a sum of such functions with $l>0$ (so $2^{\prime} i+1$ is odd).

Problem (Dobbertin et al. (2006))

Prove that the leading term in a univariate polynomial giving a Niho bent function is always $t^{2^{m}+1}$ (in particular, show that $\tilde{F}(a) \neq 0$ for any $a \in \mathbb{F}_{2^{n}} \backslash \mathbb{F}_{2^{m}}$). This would confirm that the only existing monomial Niho bent function is the quadratic one $\operatorname{Tr}_{m}\left(a t^{2^{m}+1}\right)$ with $a \in \mathbb{F}_{2^{m}}^{*}$.

Function $g(x, y)=\operatorname{Tr}_{m}\left(\lambda x^{2^{m}-d} y^{d}\right)$ has algebraic degree $m+w t(d)-w t(d-1)=m-I+1 \leq m$ since $I>0$. Therefore, algebraic degree of a Niho bent function is at most m (as for any bent function).

Hyperovals

A hyperoval of the projective plane $\mathrm{PG}\left(2,2^{m}\right)$ is a set of $2^{m}+2$ points no three of which are collinear.

Two hyperovals are equivalent if they are mapped to each other by a collineation (a permutation of the point set of $\operatorname{PG}\left(2,2^{m}\right)$ mapping lines to lines).

Every hyperoval is equivalent to one containing the "Fundamental Quadrangle" (i.e., the points ($1,0,0$), ($0,1,0$), $(0,0,1)$ and ($1,1,1)$).

Hyperovals

A hyperoval of the projective plane $\mathrm{PG}\left(2,2^{m}\right)$ is a set of $2^{m}+2$ points no three of which are collinear.

Two hyperovals are equivalent if they are mapped to each other by a collineation (a permutation of the point set of $\operatorname{PG}\left(2,2^{m}\right)$ mapping lines to lines).

Every hyperoval is equivalent to one containing the "Fundamental Quadrangle" (i.e., the points ($1,0,0$), ($0,1,0$), $(0,0,1)$ and ($1,1,1)$).

o-Equivalence

If F is an o-polynomial then

$$
F^{\prime}(x)=(F(x)+F(0)) /(F(1)+F(0))
$$

satisfies $F^{\prime}(0)=0$ and $F^{\prime}(1)=1$. The o-polynomials F and F^{\prime} define EA-equivalent Niho bent functions.

If F is an o-polynomial satisfying $F(0)=0$ and $F(1)=1$ then

$$
\Omega=\left\{(x, F(x), 1) \mid x \in \mathbb{F}_{2^{m}}\right\} \cup\{(1,0,0),(0,1,0)\}
$$

is a hyperoval containing the "Fundamental Quadrangle". Every hyperoval containing the "Fundamental Quadrangle" defines an o-polynomial F with $F(0)=0$ and $F(1)=1$.
o-polynomials F_{1} and F_{2} are projectively equivalent if F_{1}^{\prime} and F_{2}^{\prime} define equivalent hyperovals. Then the Niho bent functions corresponding to F_{1} and F_{2} are o-equivalent.

o-Equivalence and Symmetric Group S_{3}

The symmetric group S_{3} acts on the projective plane and leaves the set of o-polynomials invariant:
(1) $(x, F(x), 1) \rightarrow F(x)$;
(2) $(x, 1, F(x))=3 \circ 6 \circ 3 \longrightarrow\left(\left(F^{-1}\right)^{\prime}\right)^{-1}(x)$;
(3) $(F(x), x, 1) \rightarrow F^{-1}(x)$;
(4) $(1, x, F(x))=6 \circ 3 \rightarrow\left(F^{-1}\right)^{\prime}(x)$;
(5) $(F(x), 1, x)=3 \circ 6 \rightarrow\left(F^{\prime}\right)^{-1}(x)$;
(6) $(1, F(x), x) \longrightarrow x F\left(x^{\text {inv }}\right)=F^{\prime}(x)$.

Proposition Applying the symmetric group S_{3} to an o-polynomial F, one can derive up to three EA-inequivalent Niho bent functions corresponding to F, F^{-1} and $\left(F^{\prime}\right)^{-1}$.

There exist o-polynomials where this upper bound is achieved.

o-Equivalence and Group V of Order 24

S_{3} can be extended to a group V of transformations of order 24 which leaves the set of o-polynomials invariant (Cherowitzo 1988). This group can be obtained by applying S_{3} to the following 4 transformations:
(a) $(x, F(x), 1)$;
(b) $(x+1, F(x)+1,1) \rightarrow F(x+1)+1$;
(c) $(x, x+F(x), x+1)=6 \circ b \circ 6$;
(d) $(x+F(x), F(x), F(x)+1)=3 \circ 6 \circ b \circ 6 \circ 3$.

Theorem The group V gives at most four EA-inequivalent functions. For an o-polynomial F the four potentially
EA-inequivalent Niho bent functions correspond to F, F^{-1}, $\left(F^{\prime}\right)^{-1}$ and $F^{\circ}(x)=\left(x+x F\left(\frac{x+1}{x}\right)\right)^{-1}$ obtained from F by transformation $5 \circ b$.

There exists an o-polynomial F s.t. F° is EA-inequivalent to F, F^{-1} and $\left(F^{\prime}\right)^{-1}$.

Open Problems on o-Equivalence

- Find representations of $F^{-1},\left(F^{\prime}\right)^{-1}$ and F° for all known o-polynomials F (the cases when it is not known).
- In the group of all transformations which leave the set of o-polynomials invariant find all which lead to EA-inequivalent Niho bent functions.

