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Quadratic functions

A quadratic function Q : Fpn → Fp can uniquely be represented as

Q(x) = Trn(

bn/2c∑
i=0

aix
pi+1).

with ai ∈ Fpn , 0 ≤ i < n/2, and if n is even the coefficient an/2 is
taken modulo K = {a ∈ Fpn | Trn/(n/2)(a) = 0}.

Property: For all a ∈ Fpn the derivative in direction a

DaQ(x) = Q(x + a)− Q(x)

is either balanced or constant. Quadratic functions are partially
bent functions.

Definition: The set Ω of elements a ∈ Fpn for which DaQ(x) is
constant is a subspace of Fpn , the linear space of Q.
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Quadratic functions and Walsh transform

The Walsh transform Q̂ of Q is the complex valued function

Q̂(b) =
∑
x∈Fpn

ε
Q(x)−Trn(bx)
p with εp = e2πi/p .

Q̂(b) is called the Walsh coefficient of Q at b.

Parially bent functions are always plateaued. For a quadratic
function Q : Fpn → Fp we have:

p = 2: Q̂(b) ∈ {0,±2
n+s

2 }

p odd:

Q̂(b) ∈ {0,±ip
n+s

2 ε
f ∗(b)
p } if n − s odd p ≡ 3 mod 4

Q̂(b) ∈ {0,±p
n+s

2 ε
f ∗(b)
p } otherwise.

The value for s is exactly the dimension of the linear space Ω of Q.
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The linear space Ω and its dimension s

Q(x) = Trn(
∑bn/2c

i=0 aix
pi+1) −−−−−−−→

squaring

method

L(x) =
∑bn/2c

i=0 aix
pi

+ ap
n−i

i xp
n−i

The linear space Ω is the kernel (in Fpn) of L(x).

s = dimFpKer(L(x)); i.e.

deg(gcd(xp
n − x , L(x))) = ps .
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Some explicitly known Walsh coefficients:

p = 2:

Q(x) = Trn(ax2`+1) with a ∈ Fpn

Wolfmann (1989), Coulter (1999), Hou (2007)

Q(x) = Trn(x2k+1 + x2`+1) with n odd and
gcd(k + `, n) = gcd(k − `, n) = 1
Lahtonen-McGuire-Ward (2007) which are semi bent functions!

All (n − 2)-plateaued quadratic functions

Q(x) = Trn(
∑

aix
2i+1) with ai ∈ F2 by Fitzgerald (2005)

and with ai ∈ F4 by Özbudak-E. Saygı-Z. Saygı (2011-2012)

p odd:

Q(x) = Trn(axp
`+1) with a ∈ Fpn

Wolfmann (1989), Coulter (1999), Helleseth-Kholosha (2006)



Quadratic Functions with Coefficients in the Prime Field

Our interest: Quadratic functions

Q(x) = Trn(

bn/2c∑
i=0

aix
pi+1), ai ∈ Fp.

Some previous results:

Khoo, Gong, Stinson 2006: Determine n for which all quadratic
functions are near-bent for p = 2.

Yul, Gong 2006: Number of quadratic binary bent functions for
n = 2vp, p prime, ordp2 = p − 1 or (p − 1)/2.

Hu, Feng 2007: Number of quadratic binary bent functions for
n = 2vpn, p prime, ordp2 = p − 1 or (p − 1)/2.

Li, Hu, Zeng 2008: Number of quadratic p-ary bent functions for
n = pvqn, n = 2pvqn, q prime, ordqp = q − 1 or (q − 1)/2.

Fitzgerald 2009: Enumeration of binary quadratic functions,
prescribed s, for n = p and n = pq, p, q prime.
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Method II: Number theoretical approach

Quadratic Functions and Artin-Schreier Curves
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Associates

If Q(x) = Trn(
∑bn/2c

i=0 aix
pi+1), ai ∈ Fp, then

L(x) =
∑bn/2c

i=0 aix
pi + aix

pn−i
.

By Lidl, Niederreiter, Finite Fields, Theorem 6.62:

The linear space Ω of Q has dimension

s = deg(gcd(A(x), xn − 1)),

where

A(x) =

bn/2c∑
i=0

aix
i + aix

n−i

is the associate of L(x).

Note: gcd(A(x), xn − 1) = (x − 1)εf (x), ε ∈ {0, 1}, for a
self-reciprocal polynomial f (x).
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Prime self-reciprocal factorization of xn − 1

Definition

A prime self-reciprocal polynomial f ∈ Fq[x ] is a self-reciprocal
polynomial which is

(i) irreducible over Fq or,

(ii) f = ugg∗, where g is irreducible over Fq, the polynomial
g∗ 6= g is the reciprocal of g and u ∈ F∗q is a constant.

Factorization of xn − 1, gcd(n, p) = 1.

xn − 1 = fj1fj2 · · · fjk with fjt =
∏
j∈Cjt

(x − αj),

where α is a primitive nth root of unity, and Cjt are the cyclotomic
cosets modulo n relative to powers of p.

If Cjt = C−jt , then fjt is (prime) self-reciprocal, otherwise fjt f−jt is
prime self-reciprocal.
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Prime self-reciprocal factorization of xn − 1

Example: p = 2, n = 32 · 5 = 45.
Cyclotomic cosets: (C0 = {0}), C5 = C40 = {5, 10, 20, 40, 35, 25},
C9 = C36 = {9, 18, 36, 27}, C15 = C30 = {15, 30}.
C1 = {1, 2, 4, 8, 16, 32, 19, 38, 31, 17, 34, 23},
C−1 = {7, 14, 28, 11, 22, 44, 43, 41, 37, 29, 13, 26},
C3 = {3, 6, 12, 24}, C−3 = {21, 42, 39, 33}.
Degrees: 1, 2 4, 6, 8, and 24.

Factorization of xn − 1 into prime self-reciprocal polynomials:
xn − 1 = (x − 1)fj1fj2 · · · fjr gjr+1 · · · gjr+l

with

fjt =
∏
j∈Cjt

(x − αj), gjs =
∏

j∈Cjs∪C−js

(x − αj),

where Cjt , 1 ≤ t ≤ r are the cyclotomic cosets different from {0}
with Cjt = C−jt and Cjs ,C−js , r + 1 ≤ s ≤ r + l , are the cyclotomic
cosets with Cjs 6= C−js .
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Linear complexity and non-linearity

Linear complexity L(S) of an n-periodic sequence S = s0, s1, . . .
over Fp (Blahut’s Theorem):

L(S) = n − deg(gcd(xn − 1,S(x))),

where S(x) = s0 + s1x + · · ·+ sn−1x
n−1.

Note that for A(x) =
∑bn/2c

i=0 ai (x
i + xn−i )

gcd(xn − 1,A(x)) = gcd(xn − 1, Ā(x)), where

Ā(x) =

bn/2c∑
i=1

ai (x
i + xn−i ) + 2a0.

Consequence: Let A(x) =
∑bn/2c

i=0 ai (x
i + xn−i ) be the polynomial

associated with Q(x). Then Q(x) is s-plateaued with s = n − L,
where L is the linear complexity of the n-periodic sequence over Fp

with generating polynomial Ā(x) =
∑bn/2c

i=1 ai (x
i + xn−i ) + 2a0.
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Method I: Discrete Fourier Transform

gcd(p, n) = 1, α ∈ Fp(α) primitive nth root of unity.
DFT:Fn

p → Fp(α)n with (s0, s1, . . . , sn−1)→ S = (S0, . . . ,Sn−1)
where

Sj =
n−1∑
i=0

siα
ji = S(αj),

with S(x) = s0 + s1x + · · ·+ sn−1x
n−1.

Note: Hw((S0, . . . ,Sn−1)) = n − deg(gcd(xn − 1,S(x))).

Q(x) = Trn(
∑bn/2c

i=0 aix
pi+1), ai ∈ Fp, is s-partially bent with

s = n − Hw(DFT (a)),

a =

{
(2a0, a1, . . . , a(m−1)/2, a(m−1)/2, . . . , a1) : n odd

(2a0, a1, . . . , am/2−1, am/2, am/2−1, . . . , a1) : n even.
(1)
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Lemma (Roy, Topuzoğlu, M.)

Let gcd(p, n) = 1 and Ā(x) be as above. Consider the cyclotomic
coset Cj of j modulo n for 0 ≤ j ≤ n − 1. Suppose 0 ≤ k ≤ n − 1
is an element of Cj , i.e., k ≡ jpr mod n for some r ≥ 0. Then

(i) Ā(αk) = Ā(αj)p
r
,

(ii) Ā(α−j) = Ā(αj),

(iii) Ā(αj) ∈ F
p
lj , where lj = |Cj |. If j 6∈ {0, n/2} and −j ∈ Cj ,

then Ā(αj) ∈ F
p
lj/2 .

(iv) Ā(1) = 0, if p = 2.

We call n-tuples A = (Ā(1), Ā(α), . . . , Ā(αn−1)) of the form
described in the Lemma n-tuples over Fp(α) in sfdt-form.
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Theorem (Roy, Topuzoğlu, M.)

There is a one to one correspondence between n-tuples over Fp of
the form (1) and n-tuples A over Fp(α) in sfdt-form.

Consequence: We can count s-plateaued quadratic functions
with coefficients in the prime field by counting n-tuples over
Fp(α) in sfdt-form with Hamming weight n − s.
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Generating Function

Let Nn(s) be the number of s-plateaued quadratic functions with
coefficients in the prime field and let Gn(z) =

∑n
t=0Nn(n − t)z t .

Theorem (Roy, Topuzoğlu, M., IEEE Trans. Inform. Theory 2014)

Let p = 2, n be odd, and let xn + 1 = (x + 1)r1 · · · rk be the
factorization of xn − 1 into prime self-reciprocal polynomials over
F2. Then Gn(z) is given by

Gn(z) = 2
k∏

j=1

[
1 + (2

deg(rj )

2 − 1)zdeg(rj )

]
.



Generating Function

Theorem (Roy, Topuzoğlu, M. and Çeşmelioğlu, M.)

Let p ≥ 3, n be odd, gcd(n, p) = 1, and let
xn− 1 = (x − 1)r1 · · · rk be the factorization of xn− 1 over Fp with
prime self-reciprocal polynomials r1, . . . , rk . Then Gn(z) is given by

Gn(z) = (1 + (p − 1)z)
k∏

j=1

[
1 + (p

deg(rj )

2 − 1)zdeg(rj )

]
.

Let p ≥ 3, n be even, gcd(n, p) = 1, and
xn − 1 = (x − 1)(x + 1)r1 · · · rk be the factorization of xn − 1 over
Fp with prime self-reciprocal polynomials r1, . . . , rk . Then Gn(z) is
given by

Gn(z) = (1 + (p − 1)z)2
k∏

j=1

[
1 + (p

deg(rj )

2 − 1)zdeg(rj )

]
.



Corollaries

Explicit formulas for Nn(s) for all s, for several classes of
integers n.
(n prime; power of a prime; p = 2, n = 2m − 1, m odd prime;
p = 2, n = 3q, ordq2 = 2k , k odd)

Explicit formulas for the number of quadratic bent functions
and semi-bent functions (coefficients in the prime field) for all
n with gcd(n, p) = 1.

Expected value for s for all n with gcd(n, p) = 1.



Second Order Reed-Muller Codes

Recall rth order Reed-Muller code R(r , n) of length pn:

R(r , n) = {(f (α1), f (α2), · · · , f (αpn)) | f ∈ Pr},

where Pr is the set of all polynomials over Fp in n variables (or
polynomial functions from Fpn to Fp) of algebraic degree at most r .

R(2, n):

For p = 2 the dimension is (n2 + n + 2)/2.

For p odd the dimension is (n2 + 3n + 2)/2.

Weight distribution in Mc Elliece (1969), Sloane, Berlekamp
(1970), v.d. Geer, v.d Vlught (1992).

Our interest: Subcodes of R(2, n) from functions with coefficients
in the prime field.
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Weight of code words and Walsh transform

If cf is the codeword corresponding to f : Fpn → Fp, then

wt(cf ) = pn − 1

p

∑
a∈Fp

âf (0) .

In particular, for a quadratic function Q : Fpn → Fp

wt(cQ) = pn − pn−1 if p is odd n − s is odd

wt(cQ) = pn − pn−1 − p − 1

p
Q̂(0) if p is odd n − s is even

wt(cQ) = 2n−1 − 1

2
Q̂(0) if p = 2.
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A subcode of R(2, n)

C = {cQ | Q(x) = Trn(
∑b(n−1)/2c

i=1 aix
2i+1 + bx + c)} with

a1, . . . , a(n−1)/2 ∈ F2, b ∈ F2n and c ∈ {0, γ}, where Trn(γ) = 1.

Let Ai be the number of codewords in C of weight i . Then

2n∑
i=0

Aix
i =

n∑
k=0

Nn(n − k)2k(x2n−1−2n−1− k
2 + x2n−1+2n−1− k

2 )

+Nn(n − k)(2n+1 − 2k+1)x2n−1
.
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Observations

Solely x2n−1∓2n−1− k
2 and x2n−1

can have nonzero coefficients.

The coefficient of x2n−1∓2n−1− k
2 is equal to the coefficient of

zk in 1
2Gn(2z).

The coefficient of x2n−1
is∑n

k=0Nn(n − k)(2n+1 − 2k+1) = 2nGn(1)− Gn(2).

If n is odd or n = 2k, k odd, then C is a
[2n, (3n + 1)/2, 2n−1 − 2n−1− r

2 ] code, where r is the minimal
degree of a prime self-reciprocal divisor of xn − 1 different
from x + 1.
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Method II: Number Theoretical Approach

Rp = {f ∈ Fp[x ] : f is self-reciprocal},
For f ∈ Fp[x ]

C (f ) = {g ∈ Rp : deg(g) is even, deg(g) < deg(f )},
K (f ) = {g ∈ C (f ) : gcd(g(x), f (x)) = 1}, and

φp(f ) = |K (f )|.
Let p = 2. Define

Nn(f ; t) :=
∑
d|f

deg(d)=t

φ2(d),

where the summation is over all divisors d of f , d ∈ R2,t ,
Nn(f ; 0) = 1, and

Gn(f ; z) =
∑
t≥0

Nn(f ; t)z t .
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Express Nn(s)

A(x) = a0 + a1x + · · ·+ a1x
n−1 + a0x

n, Ā(x) = a1x + · · ·+ a1x
n−1.

n odd, then for a self-reciprocal polynomial f1(x), deg(f1) = s − 1

gcd(Ā(x), xn − 1) = (x + 1)f1(x)⇒ Ā(x) = (x + 1)f1(x)g(x).

Properties of g :

g is self-reciprocal of even degree smaller than n − s,

gcd( xn−1
(x+1)f1(x) , g(x)) = 1.

Consequence: g ∈ K (d) for d(x) = xn−1
(x+1)f1(x) . Recall

|K (d)| = φ2(d).

Hence

Nn(s) = 2
∑

d|(xn+1)/(x+1)
deg(d)=n−s

φ2(d) = 2Nn

(
xn + 1

x + 1
; n − s

)
.
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Theorem

Consider Nn(s), the number of s-plateaued functions F2,n.

(i) If n is odd, then Nn(n) = 2 and

Nn(s) = 2Nn

(
xn + 1

x + 1
; n − s

)
= 2

∑
d|(xn+1)/(x+1)

deg(d)=n−s

φ2(d),

for 0 ≤ s ≤ n − 1.

(ii) If n = 2m, m is odd, then Nn(n) = 2 and

Nn(s) = 2Nn

(
xn + 1

(x + 1)2
; n − s

)
= 2

∑
d|(xn+1)/(x+1)2

deg(d)=n−s

φ2(d),

for 0 ≤ s ≤ n − 1.



Properties of φp(d)

For monic f ∈ Rp, deg(f ) > 0, not divisible by x + 1, we have∑
d |f

φp(d) = p
deg(f )

2 − 1,

φp(f ) =
∑
d |f

µp(d)p
deg(f )−deg(d)

2 ,

where the sum is over all monic self-reciprocal divisors d of f .

Let f , f1, f2 ∈ Fp[x ] be monic self-reciprocal polynomials of positive
degree, not divisible by x + 1. If f = f1f2 and gcd(f1, f2) = 1, then

φp(f ) = φp(f1)φp(f2).

If f = r e1
1 r e2

2 · · · r
ek
k is the canonical factorization of f into monic

prime self-reciprocal polynomials, then

φp(f ) = p
deg(f )

2

k∏
j=1

(
1− p−

deg(rj )

2

)
.
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Generating function (with Roy, Topuzoğlu)

Let f = f1f2 ∈ R2, f1, f2 ∈ R2, not divisible by x + 1. If
gcd(f1, f2) = 1, then

Gn(f ; z) = Gn(f1; z)Gn(f2; z).

Recall Gn(z) =
∑n

t=0Nn(n − t)z t .
If n is odd and xn + 1 = (x + 1)r1 · · · rk is the factorization of
xn + 1 into prime self-reciprocal polynomials, then

Gn(z) = 2
k∏

j=1

[
1 + (2

deg(rj )

2 − 1)zdeg(rj )

]
.

If n = 2m, m is odd, and xn + 1 = (x + 1)2r2
1 · · · r2

k is the
factorization of xn + 1 into prime self-reciprocal polynomials, then

Gn(z) = 2
k∏

j=1

[
1 + (2

deg(rj )

2 −1)zdeg(rj ) + (2deg(rj )−2
deg(rj )

2 )z2 deg(rj )

]
.
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Artin-Schreier curves (with N. Anbar)

Our object: Artin-Schreier curves X over Fpn , p odd prime, from
quadratic functions,

X : yp − y =

bn/2c∑
i=0

aix
pi+1

Properties:

By Hurwitz Genus Formula, the genus of X is
g(X ) = (p−1)

2 pl , where l is the largest integer for which
al 6= 0.

By Hilbert’s Theorem 90, the number of rational points of X
is N(X ) = 1 + p|{x ; Trn(

∑l
i=0 aix

pi+1) = 0}|.
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Maximal and minimal curves

N(X ): the number of rational points of X
g(X ): the genus of X

The Hasse-Weil Bound

pn + 1− 2g(X )pn/2 ≤ N(X ) ≤ pn + 1 + 2g(X )pn/2

⇓ ⇓
minimal maximal

Target: Construct maximal and minimal curves over Fpn of the
form

X : yp − y =

bn/2c∑
i=0

aix
pi+1
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Walsh transform and the number of points

Let

Q(x) = Trn(

bn/2c∑
i=0

aix
pi+1)

be a quadratic function with s-dimensional linear space Ω, and

X : yp − y =

bn/2c∑
i=0

aix
pi+1 .

N(X ) = 1 + pN0(Q) with N0(Q) = |{x ∈ Fpn ; Q(x) = 0}|.

Lemma:

N0(Q) =

{
pn−1 + p−1

p Q̂(0) if n − s ≡ 0 mod 2

pn−1 if n − s ≡ 1 mod 2
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Walsh transform and the number of points

Theorem:

Let X : yp − y =
∑bn/2c

i=0 aix
pi+1 be a curve over Fpn for an odd

prime p. Then

N(X ) =

{
1 + pn + Λ(p − 1)p

n+s
2 if n − s is even,

1 + pn if n − s is odd,

where Λ =

{
1 if Q̂(0) = p

n+s
2

−1 if Q̂(0) = −p
n+s

2
.

Requirements for maximal and minimal curves:

I. s = 2l , where l is the largest integer for which al is nonzero.
(curve is maximal or minimal)

II. Λ = 1 for maximal curve, Λ = −1 for minimal curve.
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Constructing maximal and minimal curves

Step I: Find a quadratic function Q : Fpn → Fp

Q(x) = Trn(
l∑

i=0

aix
pi+1)

and its linear space Ω such that the of dimension of Ω is s = 2l .

The corresponding curves is then maximal or minimal.
Step II: Determination of (the sign of) Q̂(0) = ±p

n+s
2 :

Find a complement Ωc in Fpn of Ω.

Determine Q̂(0) as

Q̂(0) =
∑
x∈Fpn

ε
Q(x)
p = (

∑
y∈Ω

ε
Q(y)
p )(

∑
z∈Ωc

ε
Q(z)
p ) = ps

∑
z∈Ωc

ε
Q(z)
p .

Hope for good luck!

i.e. Q(z) is something simple when z ∈ Ωc , so that we can

evaluate the character sum
∑

z∈Ωc ε
Q(z)
p .
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Achieving Step I

Q(x) = Trn(
∑bn/2c

i=0 aix
pi+1) with ai ∈ Fp

=⇒ L(x) =
∑bn/2c

i=0 aix
pi + aix

pn−i

Determine s by the associate of L(x): A(x) =
∑bn/2c

i=0 aix
i + aix

n−i

s = deg(gcd(A(x), xn − 1)) = deg( x
n−1
h(x) ) for some h(x) ∈ Fp[x ]

deg(h) = k = n − s: the codimension of Q

Choose h(x) = xk − 1 for some even divisor k of n.
Maximal or minimal curves can be obtained only if

n/k even: A(x) = c(x
k
2 + x

3k
2 + · · ·+ xn−

k
2 ), c ∈ F∗p

n/k odd: A(x) = c(1 + 2xk + · · ·+ 2xn−k + xn), c ∈ F∗p

n/k even: Q(x) = cTrn(xp
k
2 +1 + xp

3k
2 +1 + · · ·+ xp

n−k
2 +1)

n/k odd: Q(x) = cTrn(x2 + 2xp
k+1 + · · ·+ 2xp

n−k
2 +1)
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Performing Step II

If gcd(A(x), xn − 1)) = xn−1
xk−1

then Ω is the kernel in Fpn of

L(x) = x + xp
k

+ · · ·+ xp
n−2k

+ xp
n−k

.

If gcd(n, p) = 1, then Ωc = Fpk .

If n/k is even, where Q(x) = Trn(xp
k
2 +1 + xp

3k
2 +1 + · · ·+ xp

n−k
2 +1)

for z ∈ Ωc = Fpk we have

Q(z) = Trk

(
αzp

k
2 +1

)
with α =

n

k

( n

2k

)p n
2

.

GOOD LUCK!

Then Q̂(0) = ps
∑
z∈F

pk

ε
Trk (αzp

k
2 +1)

p ,

and the sign is obtained with the known results on quadratic
monomials.
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Performing Step II

Similar, for n/k odd, where

Q(x) = Trn(x2 + 2xp
k+1 + · · ·+ 2xp

n−k
2 +1) for z ∈ Ωc = Fpk we

have

Q(z) = Trk
(
αz2

)
with α =

(n
k

)2
.

GOOD LUCK again. The exact value for Q̂(0) follows from results
on quadratic monomials.

N. Anbar, W. Meidl, Quadratic functions and maximal Artin
Schreier curves, Finite Fields Appl. 30 (2014), 49–71.
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gcd(n, p) > 1

gcd(n/k , p) = 1 can be dealt with like the case that gcd(n, p) = 1

If gcd(n/k , p) = pem then Fpk is not a complement of Ω.

There exists α ∈ Fppek for which αFpk is a complement of Ω.

Show: One can choose α in F
ppe+l , k = pl r .

Example: Case n/k odd:

Q̂(0) = ps
∑
t∈F

pk

ε
Trk (mβt2)
p = (−1)

p+1
2 η(β)p

s
2 ,

β = TrF
pp

ek /Fpk
(αpk/2+1 + αp3k/2+1 + · · ·+ αp(n−k)/2+1).

Show β is a square in Fpk .
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Theorem: (Anbar, M.)

Let k be an even divisor of n, and let Q : Fpn → Fp be a quadratic
function with coefficients in Fp for which the associate A(x) ∈ Fp[x ] of
the corresponding linearized polynomial L(x) satisfies that

gcd(A(x), xn − 1) =
xn − 1

xk − 1
= 1 + xk + · · ·+ xn−2k + xn−k .

The curve X over Fpn obtained from Q is maximal if and only if

Q(x) = cTrn(x2 + 2xp
k+1 + · · ·+ 2xp

n−k
2 +1), c ∈ F∗p, p ≡ 3 mod 4

and n ≡ 2 mod 4.

The curve X over Fpn obtained from Q is minimal if and only if

n/k is odd, Q(x) = cTrn(x2 + 2xp
k+1 + · · ·+ 2xp

n−k
2 +1), c ∈ F∗p,

p ≡ 1 mod 4, or p ≡ 3 mod 4 and n ≡ 0 mod 4;

n/k is even and Q(x) = cTrn(xp
k
2 +1 + xp

3k
2 +1 + · · ·+ xp

n−k
2 +1),

c ∈ F∗p.



Complete solution codimension 2 (g(X ) = p−1
2 p

n−2
2 )

Theorem: (Anbar, M.)

Let p be an odd prime and let Q : Fpn → Fp be a quadratic
function with coefficients in Fp of codimension 2.
The curve X over Fpn obtained from Q is maximal if and only if

n ≡ 2 mod 4, p ≡ 3 mod 4, and

Q(x) = cTrn(x2 + 2xp
2+1 + · · ·+ 2xp

n
2−1+1), c ∈ F∗p.

The curve X over Fpn obtained from Q is minimal if and only if

n ≡ 2 mod 4, p ≡ 1 mod 4, and

Q(x) = cTrn(x2 + 2xp
2+1 + · · ·+ 2xp

n
2−1+1), c ∈ F∗p, or

n ≡ 0 mod 4, and

Q(x) = cTrn(xp+1 + xp
3+1 + · · ·+ xp

n
2−1+1), c ∈ F∗p.



Questions

Can one use generalized discrete Fourier transform for the
case gcd(n, p) > 1?

Find the ”sign distribution” for the Walsh transform of
quadratic function with coefficients in the prime field.

Find the weight distribution of subcodes of R(2,n) also for
odd characteristic.

Apply the number theortical method to further classes of
quadratic functions with coefficients in the prime field.

Can one determine more quadratic character sums with our
method?

Thank you!
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