On Quadratic Functions from $\mathbb{F}_{p^{n}}$ to \mathbb{F}_{p}

Wilfried Meidl

（joint works with Nurdagül Anbar，Ayça Çeșmelioğlu，Canan Kasikci，Sankhadip Roy，Alev Topuzoğlu）

International Workshop on Boolean Functions and Their Applications，September 2 －September 7 2014，Bergen

Quadratic functions

A quadratic function $Q: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p}$ can uniquely be represented as

$$
Q(x)=\operatorname{Tr}_{\mathrm{n}}\left(\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1}\right)
$$

with $a_{i} \in \mathbb{F}_{p^{n}}, 0 \leq i<n / 2$, and if n is even the coefficient $a_{n / 2}$ is taken modulo $K=\left\{a \in \mathbb{F}_{p^{n}} \mid \operatorname{Tr}_{\mathrm{n} /(\mathrm{n} / 2)}(a)=0\right\}$.

Property: For all $a \in \mathbb{F}_{p^{n}}$ the derivative in direction a

Quadratic functions

A quadratic function $Q: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p}$ can uniquely be represented as

$$
Q(x)=\operatorname{Tr}_{\mathrm{n}}\left(\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1}\right)
$$

with $a_{i} \in \mathbb{F}_{p^{n}}, 0 \leq i<n / 2$, and if n is even the coefficient $a_{n / 2}$ is taken modulo $K=\left\{a \in \mathbb{F}_{p^{n}} \mid \operatorname{Tr}_{\mathrm{n} /(\mathrm{n} / 2)}(a)=0\right\}$.

Property: For all $a \in \mathbb{F}_{p^{n}}$ the derivative in direction a

$$
D_{a} Q(x)=Q(x+a)-Q(x)
$$

is either balanced or constant. Quadratic functions are partially bent functions.

Definition:

Quadratic functions

A quadratic function $Q: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p}$ can uniquely be represented as

$$
Q(x)=\operatorname{Tr}_{\mathrm{n}}\left(\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1}\right)
$$

with $a_{i} \in \mathbb{F}_{p^{n}}, 0 \leq i<n / 2$, and if n is even the coefficient $a_{n / 2}$ is taken modulo $K=\left\{a \in \mathbb{F}_{p^{n}} \mid \operatorname{Tr}_{\mathrm{n} /(\mathrm{n} / 2)}(a)=0\right\}$.

Property: For all $a \in \mathbb{F}_{p^{n}}$ the derivative in direction a

$$
D_{a} Q(x)=Q(x+a)-Q(x)
$$

is either balanced or constant. Quadratic functions are partially bent functions.

Definition: The set Ω of elements $a \in \mathbb{F}_{p^{n}}$ for which $D_{a} Q(x)$ is constant is a subspace of $\mathbb{F}_{p^{n}}$, the linear space of Q.

Quadratic functions and Walsh transform

The Walsh transform \widehat{Q} of Q is the complex valued function

$$
\widehat{Q}(b)=\sum_{x \in \mathbb{F}_{p^{n}}} \epsilon_{p}^{Q(x)-\operatorname{Tr}_{n}(b x)} \text { with } \epsilon_{p}=e^{2 \pi i / p}
$$

$\widehat{Q}(b)$ is called the Walsh coefficient of Q at b.

Quadratic functions and Walsh transform

The Walsh transform \widehat{Q} of Q is the complex valued function

$$
\widehat{Q}(b)=\sum_{x \in \mathbb{F}_{p^{n}}} \epsilon_{p}^{Q(x)-\operatorname{Tr}_{n}(b x)} \text { with } \epsilon_{p}=e^{2 \pi i / p}
$$

$\widehat{Q}(b)$ is called the Walsh coefficient of Q at b.
Parially bent functions are always plateaued. For a quadratic function $Q: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p}$ we have:
$p=2: \widehat{Q}(b) \in\left\{0, \pm 2^{\frac{n+s}{2}}\right\}$

Quadratic functions and Walsh transform

The Walsh transform \widehat{Q} of Q is the complex valued function

$$
\widehat{Q}(b)=\sum_{x \in \mathbb{F}_{p^{n}}} \epsilon_{p}^{Q(x)-\operatorname{Tr}_{n}(b x)} \text { with } \epsilon_{p}=e^{2 \pi i / p}
$$

$\widehat{Q}(b)$ is called the Walsh coefficient of Q at b.
Parially bent functions are always plateaued. For a quadratic function $Q: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p}$ we have:
$p=2: \widehat{Q}(b) \in\left\{0, \pm 2^{\frac{n+s}{2}}\right\}$
p odd:

$$
\begin{aligned}
& \widehat{Q}(b) \in\left\{0, \pm i p^{\frac{n+s}{2}} \epsilon_{p}^{f^{*}(b)}\right\} \text { if } n-s \text { odd } p \equiv 3 \bmod 4 \\
& \widehat{Q}(b) \in\left\{0, \pm p^{\frac{n+s}{2}} \epsilon_{p}^{f^{*}(b)}\right\} \text { otherwise. }
\end{aligned}
$$

Quadratic functions and Walsh transform

The Walsh transform \widehat{Q} of Q is the complex valued function

$$
\widehat{Q}(b)=\sum_{x \in \mathbb{F}_{p^{n}}} \epsilon_{p}^{Q(x)-\operatorname{Tr}_{n}(b x)} \text { with } \epsilon_{p}=e^{2 \pi i / p}
$$

$\widehat{Q}(b)$ is called the Walsh coefficient of Q at b.
Parially bent functions are always plateaued. For a quadratic function $Q: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p}$ we have:
$p=2: \widehat{Q}(b) \in\left\{0, \pm 2^{\frac{n+s}{2}}\right\}$
p odd:

$$
\begin{aligned}
& \widehat{Q}(b) \in\left\{0, \pm i p^{\frac{n+s}{2}} \epsilon_{p}^{f^{*}(b)}\right\} \text { if } n-s \text { odd } p \equiv 3 \bmod 4 \\
& \widehat{Q}(b) \in\left\{0, \pm p^{\frac{n+s}{2}} \epsilon_{p}^{f^{*}(b)}\right\} \text { otherwise. }
\end{aligned}
$$

The value for s is exactly the dimension of the linear space Ω of Q.

The linear space Ω and its dimension s

$$
Q(x)=\operatorname{Tr}_{n}\left(\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1}\right) \xrightarrow[\substack{\text { squaring } \\ \text { method }}]{ } L(x)=\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}}+a_{i}^{p^{n-i}} x^{p^{n-i}}
$$

The linear space Ω is the kernel (in $\mathbb{F}_{p^{n}}$) of $L(x)$.

The linear space Ω and its dimension s

$$
Q(x)=\operatorname{Tr}_{n}\left(\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1}\right) \xrightarrow[\substack{\text { squaring } \\ \text { method }}]{ } L(x)=\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}}+a_{i}^{p^{n-i}} x^{p^{n-i}}
$$

The linear space Ω is the kernel (in $\mathbb{F}_{p^{n}}$) of $L(x)$. $s=\operatorname{dim}_{\mathbb{F}_{p}} \operatorname{Ker}(L(x))$; i.e.

$$
\operatorname{deg}\left(\operatorname{gcd}\left(x^{p^{n}}-x, L(x)\right)\right)=p^{s} .
$$

Some explicitly known Walsh coefficients:

$p=2$:

- $Q(x)=\operatorname{Tr}_{n}\left(a x^{2^{\ell}+1}\right)$ with $a \in \mathbb{F}_{p^{n}}$ Wolfmann (1989), Coulter (1999), Hou (2007)
- $Q(x)=\operatorname{Tr}_{n}\left(x^{2^{k}+1}+x^{2^{\ell}+1}\right)$ with n odd and $\operatorname{gcd}(k+\ell, n)=\operatorname{gcd}(k-\ell, n)=1$
Lahtonen-McGuire-Ward (2007) which are semi bent functions!
- All $(n-2)$-plateaued quadratic functions $Q(x)=\operatorname{Tr}_{n}\left(\sum a_{i} x^{2^{i}+1}\right)$ with $a_{i} \in \mathbb{F}_{2}$ by Fitzgerald (2005) and with $a_{i} \in \mathbb{F}_{4}$ by Özbudak-E. Saygı-Z. Saygı (2011-2012)

p odd:

- $Q(x)=\operatorname{Tr}_{n}\left(a x^{p^{\ell}+1}\right)$ with $a \in \mathbb{F}_{p^{n}}$

Wolfmann (1989), Coulter (1999), Helleseth-Kholosha (2006)

Quadratic Functions with Coefficients in the Prime Field

Our interest: Quadratic functions

$$
Q(x)=\operatorname{Tr}_{\mathrm{n}}\left(\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1}\right), a_{i} \in \mathbb{F}_{p} .
$$

Some previous results:

- Khoo, Gong, Stinson 2006: Determine n for which all quadratic functions are near-bent for $p=2$.
- Yul, Gong 2006: Number of quadratic binary bent functions for $n=2^{\vee} p, p$ prime, $\operatorname{ord}_{p} 2=p-1$ or $(p-1) / 2$.
- Hu, Feng 2007: Number of quadratic binary bent functions for $n=2^{\vee} p^{n}, p$ prime, ord $_{p} 2=p-1$ or $(p-1) / 2$.
- Li, Hu, Zeng 2008: Number of quadratic p-ary bent functions for $n=p^{\vee} q^{n}, n=2 p^{\vee} q^{n}, q$ prime, $\operatorname{ord}_{q} p=q-1$ or $(q-1) / 2$.
- Fitzgerald 2009: Enumeration of binary quadratic functions, prescribed s, for $n=p$ and $n=p q, p, q$ prime.

Outline

- Quadratic Functions, Definitions, Properties

Outline

- Quadratic Functions, Definitions, Properties
- Enumeration of s-plateaued Quadratic Functions with given s
- Method I: Discrete Fourier Transform
- Enumeration results
- Subcodes of the second order Reed-Muller code
- Method II: Number theoretical approach

Outline

- Quadratic Functions, Definitions, Properties
- Enumeration of s-plateaued Quadratic Functions with given s
- Method I: Discrete Fourier Transform
- Enumeration results
- Subcodes of the second order Reed-Muller code
- Method II: Number theoretical approach
- Quadratic Functions and Artin-Schreier Curves

Associates

If $Q(x)=\operatorname{Tr}_{\mathrm{n}}\left(\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1}\right), a_{i} \in \mathbb{F}_{p}$, then
$L(x)=\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}}+a_{i} x^{p^{n-i}}$.
By Lidl, Niederreiter, Finite Fields, Theorem 6.62
The linear space Ω of Q has dimension

where

is the associate of $L(x)$.
self-reciprocal polynomial $f(x)$.

Associates

If $Q(x)=\operatorname{Tr}_{\mathrm{n}}\left(\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1}\right), a_{i} \in \mathbb{F}_{p}$, then $L(x)=\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}}+a_{i} x^{p^{n-i}}$.
By Lidl, Niederreiter, Finite Fields, Theorem 6.62:
The linear space Ω of Q has dimension

$$
s=\operatorname{deg}\left(\operatorname{gcd}\left(A(x), x^{n}-1\right)\right)
$$

where

$$
A(x)=\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{i}+a_{i} x^{n-i}
$$

is the associate of $L(x)$.
self-reciprocal polynomial $f(x)$

Associates

If $Q(x)=\operatorname{Tr}_{\mathrm{n}}\left(\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1}\right), a_{i} \in \mathbb{F}_{p}$, then $L(x)=\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}}+a_{i} x^{p^{n-i}}$.
By Lidl, Niederreiter, Finite Fields, Theorem 6.62:
The linear space Ω of Q has dimension

$$
s=\operatorname{deg}\left(\operatorname{gcd}\left(A(x), x^{n}-1\right)\right)
$$

where

$$
A(x)=\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{i}+a_{i} x^{n-i}
$$

is the associate of $L(x)$.
Note: $\operatorname{gcd}\left(A(x), x^{n}-1\right)=(x-1)^{\epsilon} f(x), \epsilon \in\{0,1\}$, for a self-reciprocal polynomial $f(x)$.

Prime self-reciprocal factorization of $x^{n}-1$

Definition

A prime self-reciprocal polynomial $f \in \mathbb{F}_{q}[x]$ is a self-reciprocal polynomial which is
(i) irreducible over \mathbb{F}_{q} or,
(ii) $f=u g g^{*}$, where g is irreducible over \mathbb{F}_{q}, the polynomial $g^{*} \neq g$ is the reciprocal of g and $u \in \mathbb{F}_{q}^{*}$ is a constant.

[^0]where α is a primitive nth root of unity, and $C_{j_{t}}$ are the cyclotomic
cosets modulo n relative to nowers of n
If $C_{j_{t}}=C_{-j_{t}}$, then $f_{j_{t}}$ is (prime) self-reciprocal, otherwise $f_{j_{t}} f_{-j_{t}}$ is

Prime self-reciprocal factorization of $x^{n}-1$

Definition

A prime self-reciprocal polynomial $f \in \mathbb{F}_{q}[x]$ is a self-reciprocal polynomial which is
(i) irreducible over \mathbb{F}_{q} or,
(ii) $f=u g g^{*}$, where g is irreducible over \mathbb{F}_{q}, the polynomial $g^{*} \neq g$ is the reciprocal of g and $u \in \mathbb{F}_{q}^{*}$ is a constant.

Factorization of $x^{n}-1, \operatorname{gcd}(n, p)=1$.

$$
x^{n}-1=f_{j_{1}} f_{j_{2}} \cdots f_{j_{k}} \text { with } f_{j_{t}}=\prod_{j \in C_{j t}}\left(x-\alpha^{j}\right)
$$

where α is a primitive nth root of unity, and $C_{j t}$ are the cyclotomic cosets modulo n relative to powers of p.

Prime self-reciprocal factorization of $x^{n}-1$

Definition

A prime self-reciprocal polynomial $f \in \mathbb{F}_{q}[x]$ is a self-reciprocal polynomial which is
(i) irreducible over \mathbb{F}_{q} or,
(ii) $f=u g g^{*}$, where g is irreducible over \mathbb{F}_{q}, the polynomial $g^{*} \neq g$ is the reciprocal of g and $u \in \mathbb{F}_{q}^{*}$ is a constant.

Factorization of $x^{n}-1, \operatorname{gcd}(n, p)=1$.

$$
x^{n}-1=f_{j_{1}} f_{j_{2}} \cdots f_{j_{k}} \text { with } f_{j_{t}}=\prod_{j \in C_{j t}}\left(x-\alpha^{j}\right)
$$

where α is a primitive nth root of unity, and $C_{j_{t}}$ are the cyclotomic cosets modulo n relative to powers of p.
If $C_{j_{t}}=C_{-j_{t}}$, then $f_{j_{t}}$ is (prime) self-reciprocal, otherwise $f_{j_{t}} f_{-j_{t}}$ is prime self-reciprocal.

Prime self-reciprocal factorization of $x^{n}-1$

Example: $p=2, n=3^{2} \cdot 5=45$.
Cyclotomic cosets: $\left(C_{0}=\{0\}\right), C_{5}=C_{40}=\{5,10,20,40,35,25\}$,

$$
C_{9}=C_{36}=\{9,18,36,27\}, C_{15}=C_{30}=\{15,30\} .
$$

$$
C_{1}=\{1,2,4,8,16,32,19,38,31,17,34,23\}
$$

$$
C_{-1}=\{7,14,28,11,22,44,43,41,37,29,13,26\},
$$

$$
C_{3}=\{3,6,12,24\}, C_{-3}=\{21,42,39,33\}
$$

Prime self-reciprocal factorization of $x^{n}-1$

Example: $p=2, n=3^{2} \cdot 5=45$.
Cyclotomic cosets: $\left(C_{0}=\{0\}\right), C_{5}=C_{40}=\{5,10,20,40,35,25\}$,
$C_{9}=C_{36}=\{9,18,36,27\}, C_{15}=C_{30}=\{15,30\}$.
$C_{1}=\{1,2,4,8,16,32,19,38,31,17,34,23\}$,
$C_{-1}=\{7,14,28,11,22,44,43,41,37,29,13,26\}$,
$C_{3}=\{3,6,12,24\}, C_{-3}=\{21,42,39,33\}$.
Degrees: 1, $24,6,8$, and 24 .

Prime self-reciprocal factorization of $x^{n}-1$

Example: $p=2, n=3^{2} \cdot 5=45$.
Cyclotomic cosets: $\left(C_{0}=\{0\}\right), C_{5}=C_{40}=\{5,10,20,40,35,25\}$,
$C_{9}=C_{36}=\{9,18,36,27\}, C_{15}=C_{30}=\{15,30\}$.
$C_{1}=\{1,2,4,8,16,32,19,38,31,17,34,23\}$,
$C_{-1}=\{7,14,28,11,22,44,43,41,37,29,13,26\}$,
$C_{3}=\{3,6,12,24\}, C_{-3}=\{21,42,39,33\}$.
Degrees: 1, $24,6,8$, and 24.
Factorization of $x^{n}-1$ into prime self-reciprocal polynomials:
$x^{n}-1=(x-1) f_{j_{1}} f_{j_{2}} \cdots f_{j_{r}} g_{j_{r+1}} \cdots g_{j_{r+1}}$ with

$$
f_{j_{t}}=\prod_{j \in C_{j_{t}}}\left(x-\alpha^{j}\right), \quad g_{j_{s}}=\prod_{j \in C_{j s} \cup C_{-j s}}\left(x-\alpha^{j}\right),
$$

where $C_{j_{t}}, 1 \leq t \leq r$ are the cyclotomic cosets different from $\{0\}$ with $C_{j_{t}}=C_{-j_{t}}$ and $C_{j_{s}}, C_{-j_{s}}, r+1 \leq s \leq r+I$, are the cyclotomic cosets with $C_{j_{s}} \neq C_{-j_{s}}$.

Linear complexity and non-linearity

Linear complexity $L(S)$ of an n-periodic sequence $S=s_{0}, s_{1}, \ldots$ over \mathbb{F}_{p} (Blahut's Theorem):

$$
L(S)=n-\operatorname{deg}\left(\operatorname{gcd}\left(x^{n}-1, S(x)\right)\right)
$$

where $S(x)=s_{0}+s_{1} x+\cdots+s_{n-1} x^{n-1}$.

Linear complexity and non-linearity

Linear complexity $L(S)$ of an n-periodic sequence $S=s_{0}, s_{1}, \ldots$ over \mathbb{F}_{p} (Blahut's Theorem):

$$
L(S)=n-\operatorname{deg}\left(\operatorname{gcd}\left(x^{n}-1, S(x)\right)\right)
$$

where $S(x)=s_{0}+s_{1} x+\cdots+s_{n-1} x^{n-1}$.
Note that for $A(x)=\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i}\left(x^{i}+x^{n-i}\right)$

$$
\begin{gathered}
\operatorname{gcd}\left(x^{n}-1, A(x)\right)=\operatorname{gcd}\left(x^{n}-1, \bar{A}(x)\right), \text { where } \\
\bar{A}(x)=\sum_{i=1}^{\lfloor n / 2\rfloor} a_{i}\left(x^{i}+x^{n-i}\right)+2 a_{0} .
\end{gathered}
$$

Linear complexity and non-linearity

Linear complexity $L(S)$ of an n-periodic sequence $S=s_{0}, s_{1}, \ldots$ over \mathbb{F}_{p} (Blahut's Theorem):

$$
L(S)=n-\operatorname{deg}\left(\operatorname{gcd}\left(x^{n}-1, S(x)\right)\right),
$$

where $S(x)=s_{0}+s_{1} x+\cdots+s_{n-1} x^{n-1}$.
Note that for $A(x)=\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i}\left(x^{i}+x^{n-i}\right)$

$$
\begin{gathered}
\operatorname{gcd}\left(x^{n}-1, A(x)\right)=\operatorname{gcd}\left(x^{n}-1, \bar{A}(x)\right), \quad \text { where } \\
\bar{A}(x)=\sum_{i=1}^{\lfloor n / 2\rfloor} a_{i}\left(x^{i}+x^{n-i}\right)+2 a_{0} .
\end{gathered}
$$

Consequence: Let $A(x)=\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i}\left(x^{i}+x^{n-i}\right)$ be the polynomial associated with $Q(x)$. Then $Q(x)$ is s-plateaued with $s=n-L$, where L is the linear complexity of the n-periodic sequence over \mathbb{F}_{p} with generating polynomial $\bar{A}(x)=\sum_{i=1}^{\lfloor n / 2\rfloor} a_{i}\left(x^{i}+x^{n-i}\right)+2 a_{0}$.

Method I: Discrete Fourier Transform

$\operatorname{gcd}(p, n)=1, \alpha \in \mathbb{F}_{p}(\alpha)$ primitive nth root of unity.
DFT: $\mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}(\alpha)^{n}$ with $\left(s_{0}, s_{1}, \ldots, s_{n-1}\right) \rightarrow \mathcal{S}=\left(\mathcal{S}_{0}, \ldots, \mathcal{S}_{n-1}\right)$ where

$$
\mathcal{S}_{j}=\sum_{i=0}^{n-1} s_{i} \alpha^{j i}=S\left(\alpha^{j}\right)
$$

with $S(x)=s_{0}+s_{1} x+\cdots+s_{n-1} x^{n-1}$.

Method I: Discrete Fourier Transform

$\operatorname{gcd}(p, n)=1, \alpha \in \mathbb{F}_{p}(\alpha)$ primitive nth root of unity.
DFT: $\mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}(\alpha)^{n}$ with $\left(s_{0}, s_{1}, \ldots, s_{n-1}\right) \rightarrow \mathcal{S}=\left(\mathcal{S}_{0}, \ldots, \mathcal{S}_{n-1}\right)$ where

$$
\mathcal{S}_{j}=\sum_{i=0}^{n-1} s_{i} \alpha^{j i}=S\left(\alpha^{j}\right)
$$

with $S(x)=s_{0}+s_{1} x+\cdots+s_{n-1} x^{n-1}$.
Note: $H w\left(\left(\mathcal{S}_{0}, \ldots, \mathcal{S}_{n-1}\right)\right)=n-\operatorname{deg}\left(\operatorname{gcd}\left(x^{n}-1, S(x)\right)\right)$.

Method I: Discrete Fourier Transform

$\operatorname{gcd}(p, n)=1, \alpha \in \mathbb{F}_{p}(\alpha)$ primitive nth root of unity.
DFT: $\mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}(\alpha)^{n}$ with $\left(s_{0}, s_{1}, \ldots, s_{n-1}\right) \rightarrow \mathcal{S}=\left(\mathcal{S}_{0}, \ldots, \mathcal{S}_{n-1}\right)$ where

$$
\mathcal{S}_{j}=\sum_{i=0}^{n-1} s_{i} \alpha^{j i}=S\left(\alpha^{j}\right)
$$

with $S(x)=s_{0}+s_{1} x+\cdots+s_{n-1} x^{n-1}$.
Note: $H w\left(\left(\mathcal{S}_{0}, \ldots, \mathcal{S}_{n-1}\right)\right)=n-\operatorname{deg}\left(\operatorname{gcd}\left(x^{n}-1, S(x)\right)\right)$.
$Q(x)=\operatorname{Tr}_{\mathrm{n}}\left(\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1}\right), a_{i} \in \mathbb{F}_{p}$, is s-partially bent with

$$
s=n-H w(\operatorname{DFT}(\mathbf{a}))
$$

$$
\mathbf{a}=\left\{\begin{array}{c}
\left(2 a_{0}, a_{1}, \ldots, a_{(m-1) / 2}, a_{(m-1) / 2}, \ldots, a_{1}\right) \tag{1}
\end{array}: \quad n \text { odd } . \quad . \quad n \text { even. } .\right.
$$

Lemma (Roy, Topuzoğlu, M.)

Let $\operatorname{gcd}(p, n)=1$ and $\bar{A}(x)$ be as above. Consider the cyclotomic $\operatorname{coset} C_{j}$ of j modulo n for $0 \leq j \leq n-1$. Suppose $0 \leq k \leq n-1$ is an element of C_{j}, i.e., $k \equiv j p^{r} \bmod n$ for some $r \geq 0$. Then
(i) $\bar{A}\left(\alpha^{k}\right)=\bar{A}\left(\alpha^{j}\right)^{p^{r}}$,
(ii) $\bar{A}\left(\alpha^{-j}\right)=\bar{A}\left(\alpha^{j}\right)$,
(iii) $\bar{A}\left(\alpha^{j}\right) \in \mathbb{F}_{p^{\prime}}$, where $I_{j}=\left|C_{j}\right|$. If $j \notin\{0, n / 2\}$ and $-j \in C_{j}$, then $\bar{A}\left(\alpha^{j}\right) \in \mathbb{F}_{p^{j} / 2}$.
(iv) $\bar{A}(1)=0$, if $p=2$.

Lemma (Roy, Topuzoğlu, M.)

Let $\operatorname{gcd}(p, n)=1$ and $\bar{A}(x)$ be as above. Consider the cyclotomic $\operatorname{coset} C_{j}$ of j modulo n for $0 \leq j \leq n-1$. Suppose $0 \leq k \leq n-1$ is an element of C_{j}, i.e., $k \equiv j p^{r} \bmod n$ for some $r \geq 0$. Then
(i) $\bar{A}\left(\alpha^{k}\right)=\bar{A}\left(\alpha^{j}\right)^{p^{r}}$,
(ii) $\bar{A}\left(\alpha^{-j}\right)=\bar{A}\left(\alpha^{j}\right)$,
(iii) $\bar{A}\left(\alpha^{j}\right) \in \mathbb{F}_{p^{\prime}}$, where $I_{j}=\left|C_{j}\right|$. If $j \notin\{0, n / 2\}$ and $-j \in C_{j}$, then $\bar{A}\left(\alpha^{j}\right) \in \mathbb{F}_{p^{\prime j / 2}}$.
(iv) $\bar{A}(1)=0$, if $p=2$.

We call n-tuples $\mathcal{A}=\left(\bar{A}(1), \bar{A}(\alpha), \ldots, \bar{A}\left(\alpha^{n-1}\right)\right)$ of the form described in the Lemma n-tuples over $\mathbb{F}_{p}(\alpha)$ in sfdt-form.

Theorem (Roy, Topuzoğlu, M.)

There is a one to one correspondence between n-tuples over \mathbb{F}_{p} of the form (1) and n-tuples \mathcal{A} over $\mathbb{F}_{p}(\alpha)$ in sfdt-form.

> Consequence: We can count s-plateaued quadratic functions with coefficients in the prime field by counting n-tuples over $\mathbb{F}_{p}(\alpha)$ in sfdt-form with Hamming weight $n-s$.

Theorem (Roy, Topuzoğlu, M.)

There is a one to one correspondence between n-tuples over \mathbb{F}_{p} of the form (1) and n-tuples \mathcal{A} over $\mathbb{F}_{p}(\alpha)$ in sfdt-form.

Consequence: We can count s-plateaued quadratic functions with coefficients in the prime field by counting n-tuples over $\mathbb{F}_{p}(\alpha)$ in sfdt-form with Hamming weight $n-s$.

Generating Function

Let $\mathcal{N}_{n}(s)$ be the number of s-plateaued quadratic functions with coefficients in the prime field and let $\mathcal{G}_{n}(z)=\sum_{t=0}^{n} \mathcal{N}_{n}(n-t) z^{t}$.

Theorem (Roy, Topuzoğlu, M., IEEE Trans. Inform. Theory 2014)
Let $p=2$, n be odd, and let $x^{n}+1=(x+1) r_{1} \cdots r_{k}$ be the factorization of $x^{n}-1$ into prime self-reciprocal polynomials over \mathbb{F}_{2}. Then $\mathcal{G}_{n}(z)$ is given by

$$
\mathcal{G}_{n}(z)=2 \prod_{j=1}^{k}\left[1+\left(2^{\frac{\operatorname{deg}\left(r_{j}\right)}{2}}-1\right) z^{\operatorname{deg}\left(r_{j}\right)}\right]
$$

Generating Function

Theorem (Roy, Topuzoğlu, M. and Çeșmelioğlu, M.)

Let $p \geq 3, n$ be odd, $\operatorname{gcd}(n, p)=1$, and let
$x^{n}-1=(x-1) r_{1} \cdots r_{k}$ be the factorization of $x^{n}-1$ over \mathbb{F}_{p} with prime self-reciprocal polynomials r_{1}, \ldots, r_{k}. Then $\mathcal{G}_{n}(z)$ is given by

$$
\mathcal{G}_{n}(z)=(1+(p-1) z) \prod_{j=1}^{k}\left[1+\left(p^{\frac{\operatorname{deg}\left(r_{j}\right)}{2}}-1\right) z^{\operatorname{deg}\left(r_{j}\right)}\right] .
$$

Let $p \geq 3, n$ be even, $\operatorname{gcd}(n, p)=1$, and
$x^{n}-1=(x-1)(x+1) r_{1} \cdots r_{k}$ be the factorization of $x^{n}-1$ over \mathbb{F}_{p} with prime self-reciprocal polynomials r_{1}, \ldots, r_{k}. Then $\mathcal{G}_{n}(z)$ is given by

$$
\mathcal{G}_{n}(z)=(1+(p-1) z)^{2} \prod_{j=1}^{k}\left[1+\left(p^{\frac{\operatorname{deg}\left(r_{j}\right)}{2}}-1\right) z^{\operatorname{deg}\left(r_{j}\right)}\right]
$$

Corollaries

- Explicit formulas for $\mathcal{N}_{n}(s)$ for all s, for several classes of integers n.
(n prime; power of a prime; $p=2, n=2 m-1, m$ odd prime; $p=2, n=3 q, \operatorname{ord}_{q} 2=2 k, k$ odd $)$
- Explicit formulas for the number of quadratic bent functions and semi-bent functions (coefficients in the prime field) for all n with $\operatorname{gcd}(n, p)=1$.
- Expected value for s for all n with $\operatorname{gcd}(n, p)=1$.

Second Order Reed-Muller Codes

Recall r th order Reed-Muller code $R(r, n)$ of length p^{n} :

$$
R(r, n)=\left\{\left(f\left(\alpha_{1}\right), f\left(\alpha_{2}\right), \cdots, f\left(\alpha_{p^{n}}\right)\right) \mid f \in P_{r}\right\}
$$

where P_{r} is the set of all polynomials over \mathbb{F}_{p} in n variables (or polynomial functions from $\mathbb{F}_{p^{n}}$ to \mathbb{F}_{p}) of algebraic degree at most r.

For $p=2$ the dimension is $\left(n^{2}+n+2\right) / 2$. For n odd the dimension is $\left(n^{2}+3 n+2\right) / 2$ Weight distribution in Mc Elliece (1969), Sloane, Berlekamp (1970), v.d. Geer, v.d Vlught (1992)

Our interest: Subcodes of $R(2 n)$ from functions with coefficients
in the prime field

Second Order Reed-Muller Codes

Recall r th order Reed-Muller code $R(r, n)$ of length p^{n} :

$$
R(r, n)=\left\{\left(f\left(\alpha_{1}\right), f\left(\alpha_{2}\right), \cdots, f\left(\alpha_{p^{n}}\right)\right) \mid f \in P_{r}\right\}
$$

where P_{r} is the set of all polynomials over \mathbb{F}_{p} in n variables (or polynomial functions from $\mathbb{F}_{p^{n}}$ to \mathbb{F}_{p}) of algebraic degree at most r. $R(2, n)$:
For $p=2$ the dimension is $\left(n^{2}+n+2\right) / 2$.
For p odd the dimension is $\left(n^{2}+3 n+2\right) / 2$.
Weight distribution in Mc Elliece (1969), Sloane, Berlekamp (1970), v.d. Geer, v.d Vlught (1992).

Second Order Reed-Muller Codes

Recall r th order Reed-Muller code $R(r, n)$ of length p^{n} :

$$
R(r, n)=\left\{\left(f\left(\alpha_{1}\right), f\left(\alpha_{2}\right), \cdots, f\left(\alpha_{p^{n}}\right)\right) \mid f \in P_{r}\right\}
$$

where P_{r} is the set of all polynomials over \mathbb{F}_{p} in n variables (or polynomial functions from $\mathbb{F}_{p^{n}}$ to \mathbb{F}_{p}) of algebraic degree at most r. $R(2, n)$:
For $p=2$ the dimension is $\left(n^{2}+n+2\right) / 2$.
For p odd the dimension is $\left(n^{2}+3 n+2\right) / 2$.
Weight distribution in Mc Elliece (1969), Sloane, Berlekamp (1970), v.d. Geer, v.d Vlught (1992).

Our interest: Subcodes of $R(2, n)$ from functions with coefficients in the prime field.

Weight of code words and Walsh transform

If c_{f} is the codeword corresponding to $f: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p}$, then

$$
w t\left(c_{f}\right)=p^{n}-\frac{1}{p} \sum_{a \in \mathbb{F}_{p}} \widehat{a f}(0)
$$

Weight of code words and Walsh transform

If c_{f} is the codeword corresponding to $f: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p}$, then

$$
w t\left(c_{f}\right)=p^{n}-\frac{1}{p} \sum_{a \in \mathbb{F}_{p}} \widehat{a f}(0)
$$

In particular, for a quadratic function $Q: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p}$

$$
\begin{aligned}
& w t\left(c_{Q}\right)=p^{n}-p^{n-1} \quad \text { if } p \text { is odd } n-s \text { is odd } \\
& w t\left(c_{Q}\right)=p^{n}-p^{n-1}-\frac{p-1}{p} \widehat{Q}(0) \quad \text { if } p \text { is odd } n-s \text { is even } \\
& w t\left(c_{Q}\right)=2^{n-1}-\frac{1}{2} \widehat{Q}(0) \quad \text { if } p=2 .
\end{aligned}
$$

A subcode of $R(2, n)$

$C=\left\{c_{Q} \mid Q(x)=\operatorname{Tr}_{n}\left(\sum_{i=1}^{\lfloor(n-1) / 2\rfloor} a_{i} x^{2^{i}+1}+b x+c\right)\right\}$ with $a_{1}, \ldots, a_{(n-1) / 2} \in \mathbb{F}_{2}, b \in \mathbb{F}_{2^{n}}$ and $c \in\{0, \gamma\}$, where $\operatorname{Tr}_{n}(\gamma)=1$.

Let A_{i} be the number of codewords in C of weight i. Then

A subcode of $R(2, n)$

$C=\left\{c_{Q} \mid Q(x)=\operatorname{Tr}_{n}\left(\sum_{i=1}^{\lfloor(n-1) / 2\rfloor} a_{i} x^{2^{i}+1}+b x+c\right)\right\}$ with $a_{1}, \ldots, a_{(n-1) / 2} \in \mathbb{F}_{2}, b \in \mathbb{F}_{2^{n}}$ and $c \in\{0, \gamma\}$, where $\operatorname{Tr}_{n}(\gamma)=1$.

Let A_{i} be the number of codewords in C of weight i. Then

$$
\begin{aligned}
\sum_{i=0}^{2^{n}} A_{i} x^{i}= & \sum_{k=0}^{n} \mathcal{N}_{n}(n-k) 2^{k}\left(x^{2^{n-1}-2^{n-1-\frac{k}{2}}}+x^{2^{n-1}+2^{n-1-\frac{k}{2}}}\right) \\
& +\mathcal{N}_{n}(n-k)\left(2^{n+1}-2^{k+1}\right) x^{2^{n-1}}
\end{aligned}
$$

Observations

- Solely $x^{2^{n-1} \mp 2^{n-1-\frac{k}{2}}}$ and $x^{2^{n-1}}$ can have nonzero coefficients.

Observations

- Solely $x^{2^{n-1} \mp 2^{n-1-\frac{k}{2}}}$ and $x^{2^{n-1}}$ can have nonzero coefficients.
- The coefficient of $x^{2^{n-1} \mp 2^{n-1-\frac{k}{2}}}$ is equal to the coefficient of z^{k} in $\frac{1}{2} \mathcal{G}_{n}(2 z)$.
- The coefficient of $x^{2^{n-1}}$ is

$$
\sum_{k=0}^{n} \mathcal{N}_{n}(n-k)\left(2^{n+1}-2^{k+1}\right)=2^{n} \mathcal{G}_{n}(1)-\mathcal{G}_{n}(2)
$$

Observations

- Solely $x^{2^{n-1} \mp 2^{n-1-\frac{k}{2}}}$ and $x^{2^{n-1}}$ can have nonzero coefficients.
- The coefficient of $x^{2^{n-1} \mp 2^{n-1-\frac{k}{2}}}$ is equal to the coefficient of z^{k} in $\frac{1}{2} \mathcal{G}_{n}(2 z)$.
- The coefficient of $x^{2^{n-1}}$ is

$$
\sum_{k=0}^{n} \mathcal{N}_{n}(n-k)\left(2^{n+1}-2^{k+1}\right)=2^{n} \mathcal{G}_{n}(1)-\mathcal{G}_{n}(2)
$$

- If n is odd or $n=2 k, k$ odd, then C is a
$\left[2^{n},(3 n+1) / 2,2^{n-1}-2^{n-1-\frac{r}{2}}\right]$ code, where r is the minimal degree of a prime self-reciprocal divisor of $x^{n}-1$ different from $x+1$.

Method II: Number Theoretical Approach

$$
\begin{aligned}
R_{p}= & \left\{f \in \mathbb{F}_{p}[x]: f \text { is self-reciprocal }\right\}, \\
& \text { For } f \in \mathbb{F}_{p}[x] \\
C(f)= & \left\{g \in R_{p}: \operatorname{deg}(g) \text { is even, } \operatorname{deg}(g)<\operatorname{deg}(f)\right\}, \\
K(f)= & \{g \in C(f): \operatorname{gcd}(g(x), f(x))=1\}, \text { and } \\
\phi_{p}(f)= & |K(f)| .
\end{aligned}
$$

Method II: Number Theoretical Approach

$$
\begin{aligned}
R_{p}= & \left\{f \in \mathbb{F}_{p}[x]: f \text { is self-reciprocal }\right\}, \\
& \text { For } f \in \mathbb{F}_{p}[x] \\
C(f)= & \left\{g \in R_{p}: \operatorname{deg}(g) \text { is even, } \operatorname{deg}(g)<\operatorname{deg}(f)\right\}, \\
K(f)= & \{g \in C(f): \operatorname{gcd}(g(x), f(x))=1\}, \text { and } \\
\phi_{p}(f)= & |K(f)| .
\end{aligned}
$$

Let $p=2$. Define

$$
\mathcal{N}_{n}(f ; t):=\sum_{\substack{d \mid f \\ \operatorname{deg}(d)=t}} \phi_{2}(d)
$$

where the summation is over all divisors d of $f, d \in R_{2, t}$, $\mathcal{N}_{n}(f ; 0)=1$, and

$$
\mathcal{G}_{n}(f ; z)=\sum_{t \geq 0} \mathcal{N}_{n}(f ; t) z^{t}
$$

Express $\mathcal{N}_{n}(s)$

$$
A(x)=a_{0}+a_{1} x+\cdots+a_{1} x^{n-1}+a_{0} x^{n}, \bar{A}(x)=a_{1} x+\cdots+a_{1} x^{n-1}
$$

Express $\mathcal{N}_{n}(s)$

$A(x)=a_{0}+a_{1} x+\cdots+a_{1} x^{n-1}+a_{0} x^{n}, \bar{A}(x)=a_{1} x+\cdots+a_{1} x^{n-1}$. n odd, then for a self-reciprocal polynomial $f_{1}(x), \operatorname{deg}\left(f_{1}\right)=s-1$

$$
\operatorname{gcd}\left(\bar{A}(x), x^{n}-1\right)=(x+1) f_{1}(x) \Rightarrow \bar{A}(x)=(x+1) f_{1}(x) g(x)
$$

Express $\mathcal{N}_{n}(s)$

$A(x)=a_{0}+a_{1} x+\cdots+a_{1} x^{n-1}+a_{0} x^{n}, \bar{A}(x)=a_{1} x+\cdots+a_{1} x^{n-1}$.
n odd, then for a self-reciprocal polynomial $f_{1}(x), \operatorname{deg}\left(f_{1}\right)=s-1$

$$
\operatorname{gcd}\left(\bar{A}(x), x^{n}-1\right)=(x+1) f_{1}(x) \Rightarrow \bar{A}(x)=(x+1) f_{1}(x) g(x)
$$

Properties of g :

- g is self-reciprocal of even degree smaller than $n-s$,
- $\operatorname{gcd}\left(\frac{x^{n}-1}{(x+1) f_{1}(x)}, g(x)\right)=1$.

Express $\mathcal{N}_{n}(s)$

$A(x)=a_{0}+a_{1} x+\cdots+a_{1} x^{n-1}+a_{0} x^{n}, \bar{A}(x)=a_{1} x+\cdots+a_{1} x^{n-1}$.
n odd, then for a self-reciprocal polynomial $f_{1}(x), \operatorname{deg}\left(f_{1}\right)=s-1$

$$
\operatorname{gcd}\left(\bar{A}(x), x^{n}-1\right)=(x+1) f_{1}(x) \Rightarrow \bar{A}(x)=(x+1) f_{1}(x) g(x)
$$

Properties of g :

- g is self-reciprocal of even degree smaller than $n-s$,
- $\operatorname{gcd}\left(\frac{x^{n}-1}{(x+1) f_{1}(x)}, g(x)\right)=1$.

Consequence: $g \in K(d)$ for $d(x)=\frac{x^{n}-1}{(x+1) f_{1}(x)}$. Recall $|K(d)|=\phi_{2}(d)$.

Express $\mathcal{N}_{n}(s)$

$A(x)=a_{0}+a_{1} x+\cdots+a_{1} x^{n-1}+a_{0} x^{n}, \bar{A}(x)=a_{1} x+\cdots+a_{1} x^{n-1}$.
n odd, then for a self-reciprocal polynomial $f_{1}(x), \operatorname{deg}\left(f_{1}\right)=s-1$

$$
\operatorname{gcd}\left(\bar{A}(x), x^{n}-1\right)=(x+1) f_{1}(x) \Rightarrow \bar{A}(x)=(x+1) f_{1}(x) g(x)
$$

Properties of g :

- g is self-reciprocal of even degree smaller than $n-s$,
- $\operatorname{gcd}\left(\frac{x^{n}-1}{(x+1) f_{1}(x)}, g(x)\right)=1$.

Consequence: $g \in K(d)$ for $d(x)=\frac{x^{n}-1}{(x+1) f_{1}(x)}$. Recall $|K(d)|=\phi_{2}(d)$.
Hence

$$
\mathcal{N}_{n}(s)=2 \sum_{\substack{d \mid\left(x^{n}+1\right) /(x+1) \\ \operatorname{deg}(d)=n-s}} \phi_{2}(d)=2 \mathcal{N}_{n}\left(\frac{x^{n}+1}{x+1} ; n-s\right) .
$$

Theorem

Consider $\mathcal{N}_{n}(s)$, the number of s-plateaued functions $\mathcal{F}_{2, n}$.
(i) If n is odd, then $\mathcal{N}_{n}(n)=2$ and

$$
\mathcal{N}_{n}(s)=2 \mathcal{N}_{n}\left(\frac{x^{n}+1}{x+1} ; n-s\right)=2 \sum_{\substack{d \mid\left(x^{n}+1\right) /(x+1) \\ \operatorname{deg}(d)=n-s}} \phi_{2}(d),
$$

$$
\text { for } 0 \leq s \leq n-1
$$

(ii) If $n=2 m, m$ is odd, then $\mathcal{N}_{n}(n)=2$ and

$$
\begin{aligned}
\mathcal{N}_{n}(s) & =2 \mathcal{N}_{n}\left(\frac{x^{n}+1}{(x+1)^{2}} ; n-s\right) \\
& =2 \sum_{\substack{d \mid\left(x^{n}+1\right) /(x+1)^{2} \\
\operatorname{deg}(d)=n-s}} \phi_{2}(d),
\end{aligned}
$$

for $0 \leq s \leq n-1$.

Properties of $\phi_{p}(d)$

For monic $f \in R_{p}, \operatorname{deg}(f)>0$, not divisible by $x+1$, we have

$$
\begin{gathered}
\sum_{d \mid f} \phi_{p}(d)=p^{\frac{\operatorname{deg}(f)}{2}}-1, \\
\phi_{p}(f)=\sum_{d \mid f} \mu_{p}(d) p^{\frac{\operatorname{deg}(f)-\operatorname{deg}(d)}{2}},
\end{gathered}
$$

where the sum is over all monic self-reciprocal divisors d of f.
Let $f, f_{1}, f_{2} \in \mathbb{F}_{p}[x]$ be monic
degree, not divisible by $x+1$

Properties of $\phi_{p}(d)$

For monic $f \in R_{p}, \operatorname{deg}(f)>0$, not divisible by $x+1$, we have

$$
\begin{gathered}
\sum_{d \mid f} \phi_{p}(d)=p^{\frac{\operatorname{deg}(f)}{2}}-1, \\
\phi_{p}(f)=\sum_{d \mid f} \mu_{p}(d) p^{\frac{\operatorname{deg}(f)-\operatorname{deg}(d)}{2}},
\end{gathered}
$$

where the sum is over all monic self-reciprocal divisors d of f. Let $f, f_{1}, f_{2} \in \mathbb{F}_{p}[x]$ be monic self-reciprocal polynomials of positive degree, not divisible by $x+1$. If $f=f_{1} f_{2}$ and $\operatorname{gcd}\left(f_{1}, f_{2}\right)=1$, then

$$
\phi_{p}(f)=\phi_{p}\left(f_{1}\right) \phi_{p}\left(f_{2}\right)
$$

If $f=r_{1}^{e_{1}} r_{2}^{e_{2}} \cdots r_{k}^{e_{k}}$ is the canonical factorization of f into monic prime self-reciprocal polynomials, then

$$
\phi_{p}(f)=p^{\frac{\operatorname{deg}(f)}{2}} \prod_{j=1}^{k}\left(1-p^{-\frac{\operatorname{deg}\left(r_{j}\right)}{2}}\right)
$$

Generating function (with Roy, Topuzoğlu)

Let $f=f_{1} f_{2} \in R_{2}, f_{1}, f_{2} \in R_{2}$, not divisible by $x+1$. If $\operatorname{gcd}\left(f_{1}, f_{2}\right)=1$, then

$$
\mathcal{G}_{n}(f ; z)=\mathcal{G}_{n}\left(f_{1} ; z\right) \mathcal{G}_{n}\left(f_{2} ; z\right) .
$$

Generating function (with Roy, Topuzoğlu)

Let $f=f_{1} f_{2} \in R_{2}, f_{1}, f_{2} \in R_{2}$, not divisible by $x+1$. If $\operatorname{gcd}\left(f_{1}, f_{2}\right)=1$, then

$$
\mathcal{G}_{n}(f ; z)=\mathcal{G}_{n}\left(f_{1} ; z\right) \mathcal{G}_{n}\left(f_{2} ; z\right) .
$$

Recall $\mathcal{G}_{n}(z)=\sum_{t=0}^{n} \mathcal{N}_{n}(n-t) z^{t}$.
If n is odd and $x^{n}+1=(x+1) r_{1} \cdots r_{k}$ is the factorization of $x^{n}+1$ into prime self-reciprocal polynomials, then

$$
\mathcal{G}_{n}(z)=2 \prod_{j=1}^{k}\left[1+\left(2^{\frac{\operatorname{deg}\left(r_{j}\right)}{2}}-1\right) z^{\operatorname{deg}\left(r_{j}\right)}\right] .
$$

If $n=2 m, m$ is odd, and $x^{n}+1=(x+1)^{2} r_{1}^{2} \cdots r_{k}^{2}$ is the factorization of $x^{n}+1$ into prime self-reciprocal polynomials, then
$\mathcal{G}_{n}(z)=2 \prod_{j=1}^{k}\left[1+\left(2^{\frac{\operatorname{deg}\left(r_{j}\right)}{2}}-1\right) z^{\operatorname{deg}\left(r_{j}\right)}+\left(2^{\operatorname{deg}\left(r_{j}\right)}-2^{\frac{\operatorname{deg}\left(r_{j}\right)}{2}}\right) z^{2 \operatorname{deg}\left(r_{j}\right)}\right]$.

Artin-Schreier curves (with N. Anbar)

Our object: Artin-Schreier curves \mathcal{X} over $\mathbb{F}_{p^{n}, p}$ odd prime, from quadratic functions,

$$
\mathcal{X}: y^{p}-y=\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1}
$$

Properties:

Artin-Schreier curves (with N. Anbar)

Our object: Artin-Schreier curves \mathcal{X} over $\mathbb{F}_{p^{n}}, p$ odd prime, from quadratic functions,

$$
\mathcal{X}: y^{p}-y=\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1}
$$

Properties:

- By Hurwitz Genus Formula, the genus of \mathcal{X} is $g(\mathcal{X})=\frac{(p-1)}{2} p^{\prime}$, where I is the largest integer for which $a_{l} \neq 0$.

Artin-Schreier curves (with N. Anbar)

Our object: Artin-Schreier curves \mathcal{X} over $\mathbb{F}_{p^{n}}, p$ odd prime, from quadratic functions,

$$
\mathcal{X}: y^{p}-y=\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1}
$$

Properties:

- By Hurwitz Genus Formula, the genus of \mathcal{X} is $g(\mathcal{X})=\frac{(p-1)}{2} p^{\prime}$, where I is the largest integer for which $a_{l} \neq 0$.
- By Hilbert's Theorem 90, the number of rational points of \mathcal{X} is $N(\mathcal{X})=1+p\left|\left\{x ; \operatorname{Tr}_{n}\left(\sum_{i=0}^{l} a_{i} x^{p^{i}+1}\right)=0\right\}\right|$.

Maximal and minimal curves

$N(\mathcal{X})$: the number of rational points of \mathcal{X} $g(\mathcal{X})$: the genus of \mathcal{X}

The Hasse-Weil Bound

$$
\begin{gathered}
p^{n}+1-2 g(\mathcal{X}) p^{n / 2} \leq N(\mathcal{X}) \leq p^{n}+1+\underset{\Downarrow}{2 g(\mathcal{X}) p^{n / 2}} \downarrow \Downarrow
\end{gathered}
$$

Maximal and minimal curves

$N(\mathcal{X})$: the number of rational points of \mathcal{X} $g(\mathcal{X})$: the genus of \mathcal{X}

The Hasse-Weil Bound

$$
\begin{gathered}
p^{n}+1-2 g(\mathcal{X}) p^{n / 2} \leq N(\mathcal{X}) \leq p^{n}+1+2 g(\mathcal{X}) p^{n / 2} \\
\Downarrow \\
\Downarrow \\
\text { minimal }
\end{gathered}
$$

Maximal and minimal curves

$N(\mathcal{X})$: the number of rational points of \mathcal{X} $g(\mathcal{X})$: the genus of \mathcal{X}

The Hasse-Weil Bound

$$
\begin{gathered}
p^{n}+1-2 g(\mathcal{X}) p^{n / 2} \leq N(\mathcal{X}) \leq p^{n}+1+2 g(\mathcal{X}) p^{n / 2} \\
\Downarrow \\
\Downarrow \\
\text { minimal }
\end{gathered}
$$

Target: Construct maximal and minimal curves over $\mathbb{F}_{p^{n}}$ of the form

$$
\mathcal{X}: y^{p}-y=\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1}
$$

Walsh transform and the number of points

Let

$$
Q(x)=\operatorname{Tr}_{n}\left(\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1}\right)
$$

be a quadratic function with s-dimensional linear space Ω, and

$$
\mathcal{X}: y^{p}-y=\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1}
$$

Walsh transform and the number of points

Let

$$
Q(x)=\operatorname{Tr}_{n}\left(\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1}\right)
$$

be a quadratic function with s-dimensional linear space Ω, and

$$
\begin{gathered}
\mathcal{X}: y^{p}-y=\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1} \\
N(\mathcal{X})=1+p N_{0}(Q) \text { with } N_{0}(Q)=\left|\left\{x \in \mathbb{F}_{p^{n}} ; Q(x)=0\right\}\right| .
\end{gathered}
$$

Walsh transform and the number of points

Let

$$
Q(x)=\operatorname{Tr}_{n}\left(\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1}\right)
$$

be a quadratic function with s-dimensional linear space Ω, and

$$
\mathcal{X}: y^{p}-y=\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1}
$$

$$
N(\mathcal{X})=1+p N_{0}(Q) \quad \text { with } \quad N_{0}(Q)=\left|\left\{x \in \mathbb{F}_{p^{n}} ; Q(x)=0\right\}\right|
$$

Lemma:

$$
N_{0}(Q)= \begin{cases}p^{n-1}+\frac{p-1}{p} \widehat{Q}(0) & \text { if } n-s \equiv 0 \quad \bmod 2 \\ p^{n-1} & \text { if } n-s \equiv 1 \bmod 2\end{cases}
$$

Walsh transform and the number of points

Theorem:

Let $\mathcal{X}: y^{p}-y=\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1}$ be a curve over $\mathbb{F}_{p^{n}}$ for an odd prime p. Then

$$
N(\mathcal{X})= \begin{cases}1+p^{n}+\Lambda(p-1) p^{\frac{n+s}{2}} & \text { if } n-s \text { is even } \\ 1+p^{n} & \text { if } n-s \text { is odd }\end{cases}
$$

where $\Lambda=\left\{\begin{aligned} 1 & \text { if } \widehat{Q}(0)=p^{\frac{n+s}{2}} \\ -1 & \text { if } \widehat{Q}(0)=-p^{\frac{n+s}{2}}\end{aligned}\right.$

Requirements for maximal and minimal curves:
where I is the largest integer for which al is nonzero
(curve is maximal or minimal)

Walsh transform and the number of points

Theorem:

Let $\mathcal{X}: y^{p}-y=\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1}$ be a curve over $\mathbb{F}_{p^{n}}$ for an odd prime p. Then

$$
N(\mathcal{X})= \begin{cases}1+p^{n}+\Lambda(p-1) p^{\frac{n+s}{2}} & \text { if } n-s \text { is even } \\ 1+p^{n} & \text { if } n-s \text { is odd }\end{cases}
$$

where $\Lambda=\left\{\begin{aligned} 1 & \text { if } \widehat{Q}(0)=p^{\frac{n+s}{2}} \\ -1 & \text { if } \widehat{Q}(0)=-p^{\frac{n+s}{2}}\end{aligned}\right.$
Requirements for maximal and minimal curves:
I. $s=2$ l, where l is the largest integer for which a_{l} is nonzero. (curve is maximal or minimal)
II. $\Lambda=1$ for maximal curve, $\Lambda=-1$ for minimal curve.

Constructing maximal and minimal curves

Step I: Find a quadratic function $Q: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p}$

$$
Q(x)=\operatorname{Tr}_{\mathrm{n}}\left(\sum_{i=0}^{l} a_{i} x^{p^{i}+1}\right)
$$

and its linear space Ω such that the of dimension of Ω is $s=21$.
The corresponding curves is then maximal or minimal.

Find a complement Ω^{c} in $\mathbb{F}_{p^{n}}$ of Ω
Determine $\Omega(0)$ as

Hope for good luck!$Q(z)$ is something simple when $z \in \Omega^{C}$, so that we can

Constructing maximal and minimal curves

Step I: Find a quadratic function $Q: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p}$

$$
Q(x)=\operatorname{Tr}_{\mathrm{n}}\left(\sum_{i=0}^{l} a_{i} x^{p^{i}+1}\right)
$$

and its linear space Ω such that the of dimension of Ω is $s=2 l$.
The corresponding curves is then maximal or minimal.
Step II: Determination of (the sign of) $\widehat{Q}(0)= \pm p^{\frac{n+s}{2}}$:
Find a complement Ω^{c} in $\mathbb{F}_{p^{n}}$ of Ω.
Determine $\widehat{Q}(0)$ as

$$
\widehat{Q}(0)=\sum_{x \in \mathbb{F}_{p^{n}}} \epsilon_{p}^{Q(x)}=\left(\sum_{y \in \Omega} \epsilon_{p}^{Q(y)}\right)\left(\sum_{z \in \Omega^{c}} \epsilon_{p}^{Q(z)}\right)=p^{s} \sum_{z \in \Omega^{c}} \epsilon_{p}^{Q(z)} .
$$

Hope for good luck!

Constructing maximal and minimal curves

Step I: Find a quadratic function $Q: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p}$

$$
Q(x)=\operatorname{Tr}_{\mathrm{n}}\left(\sum_{i=0}^{l} a_{i} x^{p^{i}+1}\right)
$$

and its linear space Ω such that the of dimension of Ω is $s=2 l$.
The corresponding curves is then maximal or minimal.
Step II: Determination of (the sign of) $\widehat{Q}(0)= \pm p^{\frac{n+s}{2}}$:
Find a complement Ω^{c} in $\mathbb{F}_{p^{n}}$ of Ω.
Determine $\widehat{Q}(0)$ as

$$
\widehat{Q}(0)=\sum_{x \in \mathbb{F}_{p^{n}}} \epsilon_{p}^{Q(x)}=\left(\sum_{y \in \Omega} \epsilon_{p}^{Q(y)}\right)\left(\sum_{z \in \Omega^{c}} \epsilon_{p}^{Q(z)}\right)=p^{s} \sum_{z \in \Omega^{c}} \epsilon_{p}^{Q(z)}
$$

Hope for good luck!
i.e. $Q(z)$ is something simple when $z \in \Omega^{c}$, so that we can evaluate the character sum $\sum_{z \in \Omega^{c}} \epsilon_{p}^{Q(z)}$.

Achieving Step I

$Q(x)=\operatorname{Tr}_{n}\left(\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1}\right)$ with $a_{i} \in \mathbb{F}_{p}$
$\Longrightarrow L(x)=\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}}+a_{i} x^{p^{n-i}}$
Determine s by the associate of $L(x): A(x)=\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{i}+a_{i} x^{n-i}$
$s=\operatorname{deg}\left(\operatorname{gcd}\left(A(x), x^{n}-1\right)\right)=\operatorname{deg}\left(\frac{x^{n}-1}{h(x)}\right)$ for some $h(x) \in \mathbb{F}_{p}[x]$
$\operatorname{deg}(h)=k=n-s$: the codimension of Q

Achieving Step I

$Q(x)=\operatorname{Tr}_{n}\left(\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1}\right)$ with $a_{i} \in \mathbb{F}_{p}$
$\Longrightarrow L(x)=\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}}+a_{i} x^{p^{n-i}}$
Determine s by the associate of $L(x): A(x)=\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{i}+a_{i} x^{n-i}$

$$
s=\operatorname{deg}\left(\operatorname{gcd}\left(A(x), x^{n}-1\right)\right)=\operatorname{deg}\left(\frac{x^{n}-1}{h(x)}\right) \text { for some } h(x) \in \mathbb{F}_{p}[x]
$$

$\operatorname{deg}(h)=k=n-s$: the codimension of Q
Choose $h(x)=x^{k}-1$ for some even divisor k of n. Maximal or minimal curves can be obtained only if

- n / k even: $A(x)=c\left(x^{\frac{k}{2}}+x^{\frac{3 k}{2}}+\cdots+x^{n-\frac{k}{2}}\right), c \in \mathbb{F}_{p}^{*}$
- n / k odd: $A(x)=c\left(1+2 x^{k}+\cdots+2 x^{n-k}+x^{n}\right), c \in \mathbb{F}_{p}^{*}$

Achieving Step I

$Q(x)=\operatorname{Tr}_{n}\left(\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1}\right)$ with $a_{i} \in \mathbb{F}_{p}$
$\Longrightarrow L(x)=\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}}+a_{i} x^{p^{n-i}}$
Determine s by the associate of $L(x): A(x)=\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{i}+a_{i} x^{n-i}$

$$
s=\operatorname{deg}\left(\operatorname{gcd}\left(A(x), x^{n}-1\right)\right)=\operatorname{deg}\left(\frac{x^{n}-1}{h(x)}\right) \text { for some } h(x) \in \mathbb{F}_{p}[x]
$$

$\operatorname{deg}(h)=k=n-s$: the codimension of Q
Choose $h(x)=x^{k}-1$ for some even divisor k of n. Maximal or minimal curves can be obtained only if

- n / k even: $A(x)=c\left(x^{\frac{k}{2}}+x^{\frac{3 k}{2}}+\cdots+x^{n-\frac{k}{2}}\right), c \in \mathbb{F}_{p}^{*}$
- n / k odd: $A(x)=c\left(1+2 x^{k}+\cdots+2 x^{n-k}+x^{n}\right), c \in \mathbb{F}_{p}^{*}$
- n / k even: $Q(x)=c \operatorname{Tr}_{n}\left(x^{p^{\frac{k}{2}}+1}+x^{p^{\frac{3 k}{2}}+1}+\cdots+x^{p^{\frac{n-k}{2}}+1}\right)$
- n / k odd: $Q(x)=c \operatorname{Tr}_{n}\left(x^{2}+2 x^{p^{k}+1}+\cdots+2 x^{p^{\frac{n-k}{2}}+1}\right)$

Performing Step II

If $\left.\operatorname{gcd}\left(A(x), x^{n}-1\right)\right)=\frac{x^{n}-1}{x^{k}-1}$ then Ω is the kernel in $\mathbb{F}_{p^{n}}$ of $L(x)=x+x^{p^{k}}+\cdots+x^{p^{n-2 k}}+x^{p^{n-k}}$.

Performing Step II

If $\left.\operatorname{gcd}\left(A(x), x^{n}-1\right)\right)=\frac{x^{n}-1}{x^{k}-1}$ then Ω is the kernel in $\mathbb{F}_{p^{n}}$ of $L(x)=x+x^{p^{k}}+\cdots+x^{p^{n-2 k}}+x^{p^{n-k}}$.
If $\operatorname{gcd}(n, p)=1$, then $\Omega^{c}=\mathbb{F}_{p^{k}}$.

Performing Step II

If $\left.\operatorname{gcd}\left(A(x), x^{n}-1\right)\right)=\frac{x^{n}-1}{x^{k}-1}$ then Ω is the kernel in $\mathbb{F}_{p^{n}}$ of $L(x)=x+x^{p^{k}}+\cdots+x^{p^{n-2 k}}+x^{p^{n-k}}$.
If $\operatorname{gcd}(n, p)=1$, then $\Omega^{c}=\mathbb{F}_{p^{k}}$.
If n / k is even, where $Q(x)=\operatorname{Tr}_{n}\left(x^{p^{\frac{k}{2}}+1}+x^{p^{\frac{3 k}{2}}+1}+\cdots+x^{p^{\frac{n-k}{2}}+1}\right)$ for $z \in \Omega^{c}=\mathbb{F}_{p^{k}}$ we have

$$
Q(z)=\operatorname{Tr}_{k}\left(\alpha z^{p^{\frac{k}{2}}+1}\right) \quad \text { with } \quad \alpha=\frac{n}{k}\left(\frac{n}{2 k}\right)^{p^{\frac{n}{2}}}
$$

GOOD LUCK!
and the sign is obtained with the known results on quadratic

Performing Step II

If $\left.\operatorname{gcd}\left(A(x), x^{n}-1\right)\right)=\frac{x^{n}-1}{x^{k}-1}$ then Ω is the kernel in $\mathbb{F}_{p^{n}}$ of $L(x)=x+x^{p^{k}}+\cdots+x^{p^{n-2 k}}+x^{p^{n-k}}$.
If $\operatorname{gcd}(n, p)=1$, then $\Omega^{c}=\mathbb{F}_{p^{k}}$.
If n / k is even, where $Q(x)=\operatorname{Tr}_{n}\left(x^{p^{\frac{k}{2}}+1}+x^{p^{\frac{3 k}{2}}+1}+\cdots+x^{p^{\frac{n-k}{2}}+1}\right)$ for $z \in \Omega^{c}=\mathbb{F}_{p^{k}}$ we have

$$
Q(z)=\operatorname{Tr}_{k}\left(\alpha z^{p^{\frac{k}{2}}+1}\right) \quad \text { with } \quad \alpha=\frac{n}{k}\left(\frac{n}{2 k}\right)^{p^{\frac{n}{2}}}
$$

GOOD LUCK!

$$
\text { Then } \quad \widehat{Q}(0)=p^{s} \sum_{z \in \mathbb{F}_{p^{k}}} \epsilon_{p}^{\operatorname{Tr}_{k_{k}}\left(\alpha z^{p^{\frac{k}{2}}+1}\right)}
$$

and the sign is obtained with the known results on quadratic monomials.

Performing Step II

Similar, for n / k odd, where
$Q(x)=\operatorname{Tr}_{n}\left(x^{2}+2 x^{p^{k}+1}+\cdots+2 x^{p^{\frac{n-k}{2}}+1}\right)$ for $z \in \Omega^{c}=\mathbb{F}_{p^{k}}$ we have

$$
Q(z)=\operatorname{Tr}_{k}\left(\alpha z^{2}\right) \quad \text { with } \quad \alpha=\left(\frac{n}{k}\right)^{2}
$$

GOOD LUCK again. The exact value for $\widehat{Q}(0)$ follows from results on quadratic monomials.
N. Anbar, W. Meidl, Quadratic functions and maximal Artin Schreier curves, Finite Fields Appl. 30 (2014), 49-71.

Performing Step II

Similar, for n / k odd, where
$Q(x)=\operatorname{Tr}_{n}\left(x^{2}+2 x^{p^{k}+1}+\cdots+2 x^{p^{\frac{n-k}{2}}+1}\right)$ for $z \in \Omega^{c}=\mathbb{F}_{p^{k}}$ we have

$$
Q(z)=\operatorname{Tr}_{k}\left(\alpha z^{2}\right) \quad \text { with } \quad \alpha=\left(\frac{n}{k}\right)^{2}
$$

GOOD LUCK again. The exact value for $\widehat{Q}(0)$ follows from results on quadratic monomials.
N. Anbar, W. Meidl, Quadratic functions and maximal Artin Schreier curves, Finite Fields Appl. 30 (2014), 49-71.

$\operatorname{gcd}(n, p)>1$

$\operatorname{gcd}(n / k, p)=1$ can be dealt with like the case that $\operatorname{gcd}(n, p)=1$ If $\operatorname{gcd}(n / k, p)=p^{e} m$ then $\mathbb{F}_{p^{k}}$ is not a complement of Ω.

$\operatorname{gcd}(n, p)>1$

$\operatorname{gcd}(n / k, p)=1$ can be dealt with like the case that $\operatorname{gcd}(n, p)=1$
If $\operatorname{gcd}(n / k, p)=p^{e} m$ then $\mathbb{F}_{p^{k}}$ is not a complement of Ω.
There exists $\alpha \in \mathbb{F}_{p^{p^{k} k}}$ for which $\alpha \mathbb{F}_{p^{k}}$ is a complement of Ω.
Show: One can choose α in \mathbb{F}
Example: Case n / k odd:

$\operatorname{gcd}(n, p)>1$

$\operatorname{gcd}(n / k, p)=1$ can be dealt with like the case that $\operatorname{gcd}(n, p)=1$
If $\operatorname{gcd}(n / k, p)=p^{e} m$ then $\mathbb{F}_{p^{k}}$ is not a complement of Ω.
There exists $\alpha \in \mathbb{F}_{p^{\rho^{e} k}}$ for which $\alpha \mathbb{F}_{p^{k}}$ is a complement of Ω.
Show: One can choose α in $\mathbb{F}_{p^{p^{e+1}}}, k=p^{\prime} r$.
Example: Case n/k odd:

$\operatorname{gcd}(n, p)>1$

$\operatorname{gcd}(n / k, p)=1$ can be dealt with like the case that $\operatorname{gcd}(n, p)=1$
If $\operatorname{gcd}(n / k, p)=p^{e} m$ then $\mathbb{F}_{p^{k}}$ is not a complement of Ω.
There exists $\alpha \in \mathbb{F}_{p^{p^{k}}}$ for which $\alpha \mathbb{F}_{p^{k}}$ is a complement of Ω.
Show: One can choose α in $\mathbb{F}_{p^{p^{e+1}}}, k=p^{\prime} r$.
Example: Case n / k odd:

$$
\widehat{Q}(0)=p^{s} \sum_{t \in \mathbb{F}_{p^{k}}} \epsilon_{p}^{\operatorname{Tr}_{k}\left(m \beta t^{2}\right)}=(-1)^{\frac{p+1}{2}} \eta(\beta) p^{\frac{s}{2}},
$$

$\beta=\operatorname{Tr}_{\mathbb{F}_{p^{p^{e} k} /} / \mathbb{F}_{p^{k}}}\left(\alpha^{p^{k / 2}+1}+\alpha^{p^{3 k / 2}+1}+\cdots+\alpha^{p^{(n-k) / 2}+1}\right)$.

$\operatorname{gcd}(n, p)>1$

$\operatorname{gcd}(n / k, p)=1$ can be dealt with like the case that $\operatorname{gcd}(n, p)=1$
If $\operatorname{gcd}(n / k, p)=p^{e} m$ then $\mathbb{F}_{p^{k}}$ is not a complement of Ω.
There exists $\alpha \in \mathbb{F}_{p^{p^{k}}}$ for which $\alpha \mathbb{F}_{p^{k}}$ is a complement of Ω.
Show: One can choose α in $\mathbb{F}_{p^{p+1}}, k=p^{\prime} r$.
Example: Case n / k odd:

$$
\widehat{Q}(0)=p^{s} \sum_{t \in \mathbb{F}_{p^{k}}} \epsilon_{p}^{\operatorname{Tr}_{k}\left(m \beta t^{2}\right)}=(-1)^{\frac{p+1}{2}} \eta(\beta) p^{\frac{s}{2}},
$$

$\beta=\operatorname{Tr}_{\mathbb{F}_{p^{p^{e} k}} / \mathbb{F}_{p^{k}}}\left(\alpha^{p^{k / 2}+1}+\alpha^{p^{3 k / 2}+1}+\cdots+\alpha^{p^{(n-k) / 2}+1}\right)$.
Show β is a square in $\mathbb{F}_{p^{k}}$.

Theorem: (Anbar, M.)

Let k be an even divisor of n, and let $Q: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p}$ be a quadratic function with coefficients in \mathbb{F}_{p} for which the associate $A(x) \in \mathbb{F}_{p}[x]$ of the corresponding linearized polynomial $L(x)$ satisfies that

$$
\operatorname{gcd}\left(A(x), x^{n}-1\right)=\frac{x^{n}-1}{x^{k}-1}=1+x^{k}+\cdots+x^{n-2 k}+x^{n-k} .
$$

The curve \mathcal{X} over $\mathbb{F}_{p^{n}}$ obtained from Q is maximal if and only if

- $Q(x)=c \operatorname{Tr}_{n}\left(x^{2}+2 x^{p^{k}+1}+\cdots+2 x^{p^{\frac{n-k}{2}}+1}\right), c \in \mathbb{F}_{p}^{*}, p \equiv 3 \bmod 4$ and $n \equiv 2 \bmod 4$.

The curve \mathcal{X} over $\mathbb{F}_{p^{n}}$ obtained from Q is minimal if and only if

- n / k is odd, $Q(x)=c \operatorname{Tr}_{n}\left(x^{2}+2 x^{p^{k}+1}+\cdots+2 x^{p^{\frac{n-k}{2}}+1}\right), c \in \mathbb{F}_{p}^{*}$, $p \equiv 1 \bmod 4$, or $p \equiv 3 \bmod 4$ and $n \equiv 0 \bmod 4$;
- n / k is even and $Q(x)=c \operatorname{Tr}_{n}\left(x^{p^{\frac{k}{2}}+1}+x^{p^{\frac{3 k}{2}}+1}+\cdots+x^{p^{\frac{n-k}{2}}+1}\right)$, $c \in \mathbb{F}_{p}^{*}$.

Complete solution codimension $2\left(g(\mathcal{X})=\frac{p-1}{2} p^{n-2}\right)$

Theorem: (Anbar, M.)

Let p be an odd prime and let $Q: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p}$ be a quadratic function with coefficients in \mathbb{F}_{p} of codimension 2.
The curve \mathcal{X} over $\mathbb{F}_{p^{n}}$ obtained from Q is maximal if and only if

- $n \equiv 2 \bmod 4, p \equiv 3 \bmod 4$, and

$$
Q(x)=c \operatorname{Tr}_{n}\left(x^{2}+2 x^{p^{2}+1}+\cdots+2 x^{p^{\frac{n}{2}-1}+1}\right), c \in \mathbb{F}_{p}^{*}
$$

The curve \mathcal{X} over $\mathbb{F}_{p^{n}}$ obtained from Q is minimal if and only if

- $n \equiv 2 \bmod 4, p \equiv 1 \bmod 4$, and

$$
Q(x)=c \operatorname{Tr}_{n}\left(x^{2}+2 x^{p^{2}+1}+\cdots+2 x^{p^{\frac{n}{2}-1}+1}\right), c \in \mathbb{F}_{p}^{*} \text {, or }
$$

- $n \equiv 0 \bmod 4$, and

$$
Q(x)=c \operatorname{Tr}_{n}\left(x^{p+1}+x^{p^{3}+1}+\cdots+x^{p^{\frac{n}{2}-1}+1}\right), c \in \mathbb{F}_{p}^{*}
$$

Questions

- Can one use generalized discrete Fourier transform for the case $\operatorname{gcd}(n, p)>1$?
- Find the "sign distribution" for the Walsh transform of quadratic function with coefficients in the prime field.
- Find the weight distribution of subcodes of $R(2, n)$ also for odd characteristic.
- Apply the number theortical method to further classes of quadratic functions with coefficients in the prime field.
- Can one determine more quadratic character sums with our method?

Questions

- Can one use generalized discrete Fourier transform for the case $\operatorname{gcd}(n, p)>1$?
- Find the "sign distribution" for the Walsh transform of quadratic function with coefficients in the prime field.
- Find the weight distribution of subcodes of $R(2, n)$ also for odd characteristic.
- Apply the number theortical method to further classes of quadratic functions with coefficients in the prime field.
- Can one determine more quadratic character sums with our method?

Thank you!

[^0]: Factorization of $x^{n}-1, \operatorname{gcd}(n, p)=1$

