
Generation of good
bijective S-BOXes using a
Reversed Genetic Algorithm

Georgi Ivanov, IMI-BAS, Bulgaria
Nikolay Nikolov, IMI-BAS, Bulgaria
Svetla Nikova, KU Leuven, Belgium

International Workshop on Boolean Functions and their Applications,
Rosendal, Norway, September 2–7, 2014

S-boxes – often the only non-linear part of an symmetric
crypto algorithm

To ensure resistance against linear/differential cryptanalysis:
o Increase number of active S-boxes (by stronger linear

layer)
o Large S-boxes

Outline
• Construction Techniques
• Motivation
• Our algorithms
• Results

Construction Techniques
• Algebraic constructions

o Finite Field Inversion
o Power Mappings

• Constructions from small to large s-boxes
o Gerard et. al at CHES 2013, Gross et.al at FSE 2014.
o Previously used in Whirlpool, Noekeon, Misty, Khazard,

etc.
• Pseudo-random Generation
• Heuristic Approaches

Known Results (n = 8)
Non-
linearity

degree

|AC|max

δ

Fixed
points

Linear
redundancy

Finite Field Inv.,
Power mappings

112 7 32 4 0-2 complete

4-bit to 8-bit
constructions

64-96 6-7 - 16-32 - -

PRND Search 94-100 6-7 96-106 8 0 zero

Heuristics

98-104 6-7 56-80 6 0-2 zero

Motivation and goals
• Obtaining large sets of bijective S-boxes, from (8 x 8) to

(16 x 16), with properties close to the best ones known

• Use a Genetic Algorithm working in a reverse way in

order to save time and memory.

• Starting from the properties of the Finite Field Inversion-
based S-boxes until reaching some threshold values
chosen in advance

AES S-box

Start here!

AES S-box

Start here!

AES S-box

Start here!

AES S-box

Start here!

AES S-box

Start here!

Target Criteria
• MAX of S-BOX nonlinearity NS ⇔ MIN of the largest non-

trivial value in LATS (LC)
• MAX of S-BOX (minimal) algebraic degree deg(S) (LOA)
• MIN of the largest non-trivial value δ in DDTS (differential

δ-uniformity) (DC)
• MIN of the largest non-trivial absolute autocorrelation

value |AC|max (DC)
• Non-existence of fixed points (SA)
• Non-possession of linear redundancy (AA)

GAs, Evolution and Natural Selection
• Population of parents interbreeds to produce children

• Mutation – helps in providing genetic variation

• Selection Process – only the fittest survive to become the

next generation

GAs Terminology
• Parent Pool (PP) – current set of t candidate solutions
• Parents – a pair of individuals in the PP chosen for

breeding
• Breeding – the mating process of two parents to produce

children
• Children – the offspring, resulting from the breeding
• Fitness – measure to ascertain surviving individuals
• Offspring Pool (OP) – set of t children passed the fitness

test

Genetic Algorithm 1
 Step 1: Initial PP

 Generate a set of t bijective (n x n) S-BOXes, P1, P2, … , Pt,
representing the PP.

 PP is generated using affine transformations of the finite field
inversion.

 PP - constructed as an (t x 2n) array

15

 Step 2: Breeding

 Choose the first pair of parents (P1,P2):

 (Ch1,Ch2) = breeding (P1,P2,CoP1,CoP2,cnt)

 CoP1 & CoP2 – random numbers between 1 and 2n,

pointing out the breaking positions of parents genes.

 cnt – a 5-valued counter, specifying the order (straight
or reverse) in which the parent genes are copied into the
children.

Genetic Algorithm 1

Example

P1

V1 V2 . . . V123 V124 V125 . . . V256

P2

V1 V2 V210 V211 . . . V256

Ch1 V1 V2 . . . V123 V124 V125 . . . V256

Ch2 V1 V2 V210 V211 . . . V256

Let P1, P2 are (8 x 8) bijective S-BOXes,
CoP_1 = 123, CoP_2 = 210 and cnt = 1:

• Unwanted mutation – repeated genes?

• Restore bijection – modeling (Ch)

 If for some k > 123 and s ≤ 123: Vk = Vs, randomly generate

Vrnd until Vrnd ≠ Vs, ∀s ≤ 123.

 Replace Vk with Vrnd and repeat the same process from the
right-hand neighbor of Vk.

 At the end Ch1 & Ch2 are permutations.

Ch1 V1 . . . V123

V124

. . .

Vk . . . V256

Ch1 V1 . . . V123

V124

. . .

Vrnd . . . V256

Step 3: Fitness test (GA1):

 NCh = fitness (Ch)

 - The test is passed if Nch > Nthr.
 Ch survives and is placed in the OP.

 - The test is passed if Nch = Nthr.
 Ch is placed in the OP and in addition
 saved in a file.

 - The test is not passed if Nch < Nthr.
 Ch is left off.

Step 3: (Fitness test GA2):

 Nch = fitness (Ch) and Cch = cost (Ch), where:
 - cost (Ch) = ƩvεGF(2n)* ƩwεGF(2n) |Fv.Ch(w) – 21|7
 - Fv.Ch(w) is the WHT spectral coefficient of the component

function of Ch = (f1,f2,…,fn) corresponding to v:
 v.Ch = v1f1⊕ v2f2⊕ …⊕ vnfn.

 - Test is passed if Nch > Nthr and Cch < CP.
 Ch survives and is placed in the OP.

 - Test is passed if Nch = Nthr and Cch < CP.
 Ch is placed in the OP and saved in a file.

 - Test is not passed if Nch < Nthr or Cch > CP.

Step 4: Solution Pool

• Until OP gets full of children, repeat the breeding process
with parental pairs (P1,P3)…(P1,Pt), (P2,P3)…(P2,Pt)…(Pt-

1,Pt)

• If after the breeding of all PP pairs the OP is not totally
full, the breeding process starts all over, again with (P1,P2)

• If OP is full:
 - If Nch = Nthr, ∀ Ch ∈ OP,
 the Algorithm stops
 - Otherwise, PP = OP and go to the
 next generation (step 2)

Results from GA1 and GA2

n = 8 Non-
linearity

deg |AC|max

δ

Fixed
points

Linear
redundancy

Inversion 112 7 32 4 2 complete

PRND
Search

94-100 6-7 96-106 8 0 zero

4-bit to
8-bit

64-96 6-7 - 16-32 - -

Heuristics 98-104 6-7 56-80 6 0-2 zero

GA1/GA2 104/106 7/6 64/48 6/6 2/0 zero

GA1/GA2 106/110 6/7 56/40 6/6 2/0 zero

GA1/GA2 108/112 6/7 48/32 6/6 0/0 zero

More than 200 8-bit S-boxes

 Nthr = 32 400, t = 50 S-BOXes

 N deg |AC|max

Inversion 32512 15 512

GA 1 32400 15 976

GA 1 32400 14 984

Nthr = 32428 and 32476

GA1 32428 15 864

GA1 32476 14 616

Results from GA1, n =16

Algorithm variations and future work

• Execute the algorithm long after all children from the OP
reach Nthr

• Add to initial pool some S-BOXes based on power mappings

• Modify the children modeling technique to speed-up the
process

• Add more criteria to be measured in fitness function – for now
not applicable for big n

Most recent results
• Differential-uniformity added to the fitness function

n = 8 Non-
linearity

deg |AC|max

δ

Linear
redundancy

Inversion 112 7 32 4 complete

δ in the fitness
function

110 6 40 4 zero

only nonlinearity
in the fitness
function

110 7 40 6 zero

Thank you!

	Generation of good�bijective S-BOXes using a �Reversed Genetic Algorithm��Georgi Ivanov, IMI-BAS, Bulgaria�Nikolay Nikolov, IMI-BAS, Bulgaria �Svetla Nikova, KU Leuven, Belgium�
	Slide Number 2
	Outline
	�Construction Techniques
	Known Results (n = 8)
	Motivation and goals
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Target Criteria
	GAs, Evolution and Natural Selection
	GAs Terminology
	Genetic Algorithm 1
	Genetic Algorithm 1
	Example
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Results from GA1 and GA2
	Results from GA1, n =16
	Algorithm variations and future work
	Most recent results
	Thank you!���

