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Introduction

I Study of APN and PN functions is motivated by
conventional differential cryptanalysis.

I Other types of attacks may (?) require stronger
countermeasures.

I We will survey recent results on links between statistical
attacks on block ciphers.

I The statistical models of distinguishers will be discussed.
I Some bent functions are more vulnerable than some

others.
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Brief History

I Biham-Shamir Crypto1990: Differential Cryptanalysis
I Lai, Massey, and Murphy EC1990: Markov Ciphers and

Differential cryptanalysis
I K.N. EC1991: Perfect Nonlinear S-boxes
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Differential Cryptanalysis

Difference between plaintext and ciphertext pairs

--

--

EkEk

x ′x

y ′y

6?

6?

δ

∆

Input difference δ
Output Difference ∆

Differential Probability:

Pr[δ
Ek→ ∆] = Pr[ Ek (x)⊕ Ek (x ⊕ δ) = ∆]

Markov cipher Ek = fk ◦ gk

Pr[δ
Ek→ ∆] =

∑
γ

Pr[δ
gk→ γ]Pr[γ

fk→ ∆]
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Provable Security Theorem
with L. Knudsen, Crypto 1992 Rump Session, J Crypt 1995

Theorem ( KN -Theorem) It is assumed that in a DES-like
cipher with F : Fm

2 → Fn
2 the round keys are independent and

uniformly random. Then the probability of an s-round
differential, s ≥ 4, is less than or equal to 2p2

max .

Here
pmax = max

β
max
α 6=0

Pr[α F→ β]

If F bijective, then the claim of Theorem holds for s ≥ 3.
Later Aoki showed that the constant 2 can be removed.

Minimize pmax ⇔ F APN
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CRADIC
Cipher Resistant Against Differential Cryptanalysis

aka KN -Cipher

6-round Feistel cipher with round function f : F32
2 → F32

2 based
on the power three operation in F33

2

No key schedule, 198-bit key

Jakobsen & Knudsen FSE1997 break KN -Cipher
I with 512 chosen plaintexts and 241 running time,
I or with 32 chosen plaintexts and 270 running time
I using higher order differential cryptanalysis

Round-function based on the inverse mapping not any more
resistant.

This approach was then abandonded

... but resumed again recently, see [Boura-Canteaut IEEE
Trans. IT 2013].
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Linear Cryptanalysis

I M. Matsui (EC1993 Bergen) Linear Cryptanalysis
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Linear Cryptanalysis

x

y = Ek(x)
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Linear approximation with mask vector
(u, τ,w) is a relation

u · x + τ · k + w · Ek (x)

Input mask u
Key mask τ
Output mask w

Bias:
ε = 2−n#{x ∈ Fn

2| u · x + τ · k + w · y = 0} − 1
2

Correlation: corx (u,w) = 2ε
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Matsui’s Algorithms

Matsui’s Algorithm 1 is a statistical cryptanalysis method for
finding one bit of the key k based on the observed correlation of
a linear approximation

u · x + w · Ek (x)

Matsui’s Algorithm 2 is a statistical cryptanalysis method for
finding a part of the last round key for a block cipher based on
distinguishing cipher data from more random data using
observed correlations of a linear approximation

u · x + w · E ′k (x)
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Linear Hull

Or What is the Equivalent of Differential in
Linear Cryptanalysis?
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Correlation for Iterated Block Cipher
We focus on key alternating iterated block ciphers. Let (k1, k2, . . . , kr )
be the extended key with the round keys ki derived from k and
assume that Ek has the following structure

Ek (x) = g(. . . g(g(g(x + k1) + k2) . . .) + kr ).

Then [Daemen FSE1994]

corx (u · x + w · Ek (x)) =
∑
τ

(−1)τ ·k
r∏

i=1

corx (τi · x + τi+1 · g(x)),

where τ = (τ1, τ2, . . . , τr ), τ1 = u and τr+1 = w .

-
k1

-
k2 k3

- -
kr

-x g g g g
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Estimating Correlation

I Assumption for Matsui’s algorithms: magnitudes of
correlations about the same for all keys.

I In general, correlation magnitude varies with the key
except when there is a single dominating trail with key
mask τ and trail correlation

c̃(u, τ,w) =
r∏

i=1

corx (τi · x + τi+1 · g(x))

= Avgkcor(u · x + τ · k + w · y)
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The Linear Hull Theorem
By Jensen’s inequality

Avgk corx (u · x + τ · k + w · Ek (x))2 ≥ c̃(u, τ,w)2,

for all τ , and in general a strict inequality holds. More accurately, the
following theorem holds

The Linear Hull Theorem [K.N. EC1994, K.N. DAM 2001] If the
round keys of a block cipher Ek are uniformly distributed, then

Avgk corx (u · x + w · Ek (x))2 =
∑
τ

c̃(u, τ,w)2

I Squared correlations of linear hull correspond to probabilities of
differentials.

I An analogue of the KN -Theorem for linear cryptanalysis is
obtained.
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More Generally: The Fundamental Theorem

f : Fn
2 × F`2 → F2, f̂ (u, v) =

∑
x∈Fr

2, z∈F
s
2

(−1)u·x+v ·z+f (x,z)

fz(x) = f (x , z), fz : Fn
2 → F2, z ∈ F`2

Theorem [K.N. EC1994] For all u ∈ Fn
2

2`
∑
z∈F`2

f̂z(u)2 =
∑
v∈F`2

f̂ (u, v)2, or equivalently,

2−`
∑
z∈F`2

corx (u · x + fz(x))2 =
∑
v∈F`2

corx ,z(u · x + v · z + f (x , z))2.

A. Canteaut, C. Carlet, P. Charpin, C. Fontaine. On cryptographic properties of the
cosets of r(1, m). IEEE Trans. IT 47(4), 14941513 (2001)

N. Linial, Y. Mansour and N. Nisan. Constant depth circuits, Fourier transform, and

learnability. Journal of the ACM 40 (3), 607-620 (1993).
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Estimation of Correlation

Methods to catch significant trails:
I Dominant trails: By hand
I Branch and Bound algorithm
I Transition matrices
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Computing an Estimate of Correlation

Avgk corx (u · x + w · Ek (x))2 =
∑

τ2,...,τr

r∏
i=1

cz (τi · z + τi+1 · g(z))2

=
∑
τr

cz (τr · z + w · g(z))2
∑
τr−1

cz (τr−1 · z + τr · g(z))2

· · · · · ·
∑
τ3

cz (τ3 · z + τ4 · g(z))2

∑
τ2

cz (τ2 · z + τ3 · g(z))2cz (u · z + τ2 · g(z))2

I This expression gives an iterative algorithm: start from the bottom line to
compute for each τ3 the value on the last line.

I Can be made feasible by restricting to τ with low Hamming weight and keeping
only the largest values from each iteration.

I Restrictions on τ will lead to a lower bound, which is still much larger than any
single c̃(u, τ,w)2.
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Statistical Attacks
LINEAR CONTEXT DIFFERENTIAL CONTEXT

Differential Cryptanalysis [Biham, Shamir 90]Linear Cryptanalysis [Tardy, Gilbert 92] [Matsui 93]

Differential-Linear Cryptanalysis [Langford, Hellman 94]

Truncated Differential Cryptanalysis [Knudsen 94]

Higher Order Differential cryptanalysis [Lai 94] [Knudsen 94]

Square Attack, Integral · · · [Daemen, Rijmen, Knudsen 97]

Statistical Saturation [Collard, Standaert 09]

Impossible Differential Cryptanalysis [Knudsen 98]Zero Correlation [Bogdanov, Rijmen 11]

Multiple Differential Cryptanalysis [Albrecht, Leander 12]
[Blondeau, Gérard, Nyberg 12]

Multiple Linear Cryptanalysis
[Biryukov, de Cannière, Quisquater 04]

Multidimensional Linear Cryptanalysis [Cho, Hermelin, Nyberg 08]

· · · · · · · · · · · ·
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Truncated Differential Cryptanalysis

--

--

EkEk

x ′x

y ′y

6?

6?

δ

∆

Input difference δ
Output difference ∆

Set of input differences: δ ∈ C

Set of output differences: ∆ ∈ D

Probability of truncated differential

1
|C|

∑
δ∈C

∑
∆∈D

P[δ
F→ ∆]
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Multidimensional Linear Cryptanalysis

x

y = Ek(x)
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Multidimensional linear approximation:

Set of masks (u,w) ∈ U ×W

Capacity:
∑

u∈U

∑
w∈W

corx (u · x + w · y)2 − 1
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Recent Links
[Leander EC2011] :

Statistical Saturation⇔ Multidimensional Linear

[Bogdanov et al AsiaCrypt2012] :

Integral⇔ Zero Correlation Linear

Proofs follow from the Fundamental Theorem [N 1994]

[C.Blondeau-K.N. EC2013] :

Zero Correlation Linear⇔ Impossible Differential

[C.Blondeau-K.N. EC2014] :

Multidimensional Linear⇔ Truncated Differential

Proofs follow from the Chabaud-Vaudenay Link EC1994
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Chabaud-Vaudenay Link

[Chabaud-Vaudenay EC1994]

F : Fn
2 → Fm

2

Link between differential and linear cryptanalysis

Pr[δ F→ ∆] = 2−m
∑
u∈Fn

2

∑
w∈Fm

2

(−1)u·δ+w ·∆cor(u · x + w · F (x))2

I Used for theory (almost bent⇒ APN)
I Not really used for cryptanalysis
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Splitting the Spaces

s︷ ︸︸ ︷ t︷ ︸︸ ︷

q
︸ ︷︷ ︸

r
︸ ︷︷ ︸

Ek

m

n

︸ ︷︷ ︸

︷ ︸︸ ︷
Focus on the left side:

multidimensional linear context

I all non-zero input and output masks

truncated differential context
I zero input and output differences

Omit the right side:

multidimensional linear context

I zero input and output masks

truncated differential context
I all input and output differences
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Zero Correlation Linear

Fs
2

Fq
2

s︷ ︸︸ ︷ t︷ ︸︸ ︷

q
︸ ︷︷ ︸

r
︸ ︷︷ ︸

as 0

bq 0

?

6

Zero Correlation

Zero Correlation Linear :

corx ((as,0), (bq,0)) = 0

for all (as,bq) ∈ Fs
2 × Fq

2 \ {(0,0)}
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Impossible Differential

Ft
2

Fr
2

s︷ ︸︸ ︷ t︷ ︸︸ ︷

q
︸ ︷︷ ︸

r
︸ ︷︷ ︸

0 δt

0 ∆r

?

6

Truncated

Truncated Differential:∑
δt∈Ft

2

∑
∆r∈Fr

2

Pr [(0, δt )→ (0,∆r )] = 2t−q

If t=q and δt 6= 0

Impossible Differential:

Pr [(0, δt )→ (0,∆r )] = 0

for all (δt ,∆r ) ∈ Ft
2 × Fr

2 \ {(0,0)}
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Zero Correlation Linear and Impossible Differential

Ft
2

Fr
2

s︷ ︸︸ ︷ t︷ ︸︸ ︷

q = t
︸ ︷︷ ︸

r
︸ ︷︷ ︸

0 δt

0 ∆r

?

6

Impossible

If t = q

Zero Correlation Linear Distinguisher

is equivalent to

Impossible Differential Distinguisher
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Multidimensional Linear and Truncated Differential

s︷ ︸︸ ︷ t︷ ︸︸ ︷

q
︸ ︷︷ ︸

r
︸ ︷︷ ︸

?

6

Multidim Lin
?

6

Truncated Diff

Multidimensional Linear Distinguisher

is equivalent to

Truncated Differential Distinguisher
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Statistical Saturation Attack

For fixed xs ∈ Fs
2 denote by C(xs) the capacity of the

distribution of yq.

Chosen plaintext sampling for evaluation of the uniformity of the
distribution of yq, for a fixed xs.
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Focus on Distributions

Distribution of values (xs, yq) ∈ Fs
2 × Fq

2
I Multidimensional Linear has

Pr(xs, yq) = 2−(s+q)
∑

us,wq

(−1)us·xs+wq ·yq cor((us,0)·x+(wq,0)·y)

I Truncated Differential probability

P = 2−t
∑
δt∈Ft

2

∑
∆r∈Fr

2

Pr [(0, δt )→ (0,∆r )]

These are just different approaches to sampling of the cipher
data and measuring the nonuniformity of the same distribution
of (xs, yq) ∈ Fs

2 × Fq
2.
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The Mathematical Link

The capacity C of the multidimensional linear distribution is
defined as

C =
∑

(us,wq)6=0

cor((us,0) · x + (wq,0) · y)2.

We obtain the link [BN 2014]

P = 2−q(C + 1),

or
P = 2s

∑
xs,yq

Pr(xs, yq)2.
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Coincidences of (xs, yq)

Index of Coincidence
When solving the period of the key of a Vigènere cipher we
count coincidences in letters to evaluate the nonuniformity of
the distribution of the alphabet.[Friedman 1922]

Index of Coincidence is a method of ciphertext only differential
cryptanalysis, but the idea generalizes to plaintext-ciphertext
pairs:

Pr [(0, δt )→ (0,∆r )] = Pr( xs ↔ x ′s, yq = y ′q )↔
∑

Pr(xs, yq)2

So we can evaluate the χ2 statistic of the distribution of (xs, yq)
using truncated differential frequences.

Differential (collision) approach is used in distribution context.
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Efficient Online Entropy Estimator (Röck 2011)
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Using Correlations to Compute Differential
Probabilitites

I For some ciphers like PRESENT
I it is easier to estimate linear correlations than differential

probabilities
I Single-bit linear trails are dominant
I Computation of correlations using transition matrices

as for instance in [Cho CT-RSA2010]

I Use the Chabaud-Vaudenay Link to compute differential
probabilities using linear correlations [C.Blondeau-K.N.
EC2013]

I Use the linear property of the cipher to mount a differential
type of attack [C.Blondeau-K.N. EC2014]



Links

35/46

Outline
Introduction

Historical Notes
CRADIC
Matsui’s Algorithms
Linear Hull

Links Between Statistical Attacks
Newer Statistical Cryptanalysis
Recent Links
Multidimensional Linear and Truncated Differential
Properties
Index of Coincidence

Computing Differential Probabilities using Linear Correlations

Distinguishing Distributions

Conclusions



Links

36/46

Distinguishing Test
I Distinguishing probability distributions over a large set of values

of size M
I Uniform distribution
I Non-uniform distribution p with known capacity

C(p) = M
M∑
η=1

(p(η)− 1
M

)2.

I Problem. Determine the data complexity estimates of the χ2

distinguisher.
I Solution. Use statistic

T = NM
M∑
η=1

(q(η)− 1
M

)2,

where q is the distribution obtained from the data of amount N.
I Need to determine the probability distribution of T in both cases.
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χ2 Distributions of T

I If q is drawn from uniform distribution, then

T = T0 =
M∑
η=1

(Nq(η)− N/M)2

N/M
∼ χ2

M−1.

I If q is drawn from nonuniform distribution p, then

T = T1 =
M∑
η=1

(Nq(η)− N/M)2

N/M
∼ χ2

M−1(δ),

where

δ =
M∑
η=1

(Np(η)− N/M)2

N/M
= NC(p).

I Denote C(p) = C.
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Normal Approximations of Distributions of T

I If q is drawn from uniform distribution, then

T = T0 ∼ N (M,2M).

I If q is drawn from nonuniform distribution with capacity C,
then

T = T1 ∼ N (M + NC,2(M + 2NC)).

I Data complexity

N ≥
√

M
C

φ.

For typical error probabilities, we take φ = 4.
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Experiment on a Large Distribution

108 5∙108 109 

Number of data pairs N 

St
at

is
ti

c 
 T

/M
 

M = 108 
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Zero-Correlation Distribution
I With full code book of data the distribution of (xs, yq)

should be exactly uniform
I We must do sampling without replacement
I Using hypergeometric distribution, with data size N and

distribution size M + 1 = 2s+q, we get

Exp(T ) = M
2n − N
2n − 1

and Var(T ) = 2M
(

2n − N
2n − 1

)2

.

I Using normal approximation, we get data-complexity

N ≈ 2n− s+q
2 φ

Data-sampling without replacement would be more correct also
for ordinary linear cryptanalysis, in particular, when close to full
code book.
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Sampling Without Replacement
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Zero-Correlations on LBlock (Small Variant)
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Capacities of Bent Functions
I Capacities in some special multidimensional linear setting

for certain vectorial Boolean functions were determined in
[M.Hermelin-K.N. BFCA2008, M.Hermelin-K.N.
CCDS2012].

I Capacity of multidimensional linear approximation of bent
function f : Fn

2 → Fm
2

C =
∑

(as,bq)6=0

cor(as · x ,bq · f (x))2

= 2s(2q − 1)2−n,

where 0 ≤ s ≤ n and 0 < q ≤ m.
I A bent function can be distinguished from a random

function using data size

N = 2n− s+q
2 φ
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Statistical Saturation Distinguisher of Maiorana-McFarland
I Consider Maiorana-McFarland function f = (f1, ...fm)

fi (xs, xt ) = Ai (xs) · xt + gi (xs)

where s = t = q = m = n/2 [K.N. EC1991].
I For fixed xs 6= 0, f (xs, xt ) is a linear function, and for xs = 0 it is

constant.
I The capacity of the multidimensional distribution of this bent

function is equal to 2−s(2s − 1) and the multidimensional linear
attack has data complexity N = 2sφ

I C(xs) = 0, for xs 6= 0, and C(0) = 2s − 1.
I Pick random xs. It takes a few data to verify if f (xs, xt ) is

constant. If it is not constant, the distribution of f (xs, xt ) is
uniform as the function is bijective. It takes about

N = 2s+2− s
2 = 2

s
2φ

data to distinguish it from random.
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Conclusions
I Since the invention of linear and differential cryptanalysis

researchers have examined their relationships and
discovered analogies between their properties.

I Linear hull vs. differential.
I We extended the Chabaud-Vaudenay link to truncated

differentials and multidimensional linear approximations.
I Differential attacks can be seen as extensions of linear

cryptanalysis.
I Distribution of cipher data values and χ2 statistic offer a

sufficiently general setting to handle both differential and
linear statistical cryptanalysis.

I Chosen plaintext data sampling can be used for linear
cryptanalysis and, vice versa, known plaintext data
sampling for differential cryptanalysis.

I Chosen plaintext attack on the vectorial
Maiorana-McFarland bent function.
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