
Some recent results and ideas on bent functions

and their graph theoretic aspects
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Topics (roughly)

Some recent results on vectorial bent functions

Z-bent and generalized bent as ”non-weird” stuff

Graph theoretic aspects of Boolean functions

Homogeneous bent functions (if time permits)
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Hyperbent functions in the PSap class

Let k |n, k < n, and GF (2n) be a finite field, then

Trnk (x) = x + x2 + x22
+ . . .+ xn/k−1,

is a function from GF (2n)→ GF (2k).

Monomial (vectorial) bent functions F (x) = Trnk (ax r ) ”easy”.

We can define a Boolean function f : GF (2n)→ GF (2) as

f (x) = Tr(ax2k−1 + bx r(2k−1))

for n = 2k , but also

F (x) = Trnk (ax2k−1 + bx r(2k−1))
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Dillon exponent - easy to treat

The exponent 2k − 1 is known as Dillon’s exponent, and for
n = 2k we have:

2n − 1 = (2k − 1)(2k + 1).

Note that #GF (2k) \ 0 = 2k − 1, and there is a cyclic group
U of (2k + 1)-th roots of unity of size 2k + 1 !!

{α(2k−1)i : i = 0, . . . 2k} = U.

And
GF (2n)∗ = ∪u∈UuGF (2k)∗
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Application of the unity circle

We were interested in the functions of type

fa,b,r (x) = Tr(ax2k−1 + bx r(2k−1))

Write any x ∈ GF (2n)∗ as x = uy for u ∈ U, y ∈ GF (2k)∗

fa,b,r (x) = fa,r (yu)

= Trn1 (u2k−1y2k−1 + au(2k−1)ry (2k−1)r )

= Trn1 (u2k−1 + au(2k−1)r )

= fa,b,r (u),

Generalize to F (x) = Trnk (
∑2k

i=0 aix
i(2k−1)) !!
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Specifying (hyper)bent vectorial functions in PSap

Theorem (EP et al. 2013)

Let n = 2k , K = GF (2k) and L = GF (2n). Define

F (x) = Trnk (
t∑

i=1

aix
ri (2k−1))

1 F is a vectorial bent function of dimension k .

2
∑

u∈U (−1)Tr
k
1 (λF (u)) = 1 for all λ ∈ K ∗.

3 There are two values u ∈ U s. t. F (u) = 0. If F (u0) = 0,
then F is one-to-one and onto from U0 = U \ u0 to K .

4 The elementary symmetric polynomials σe , used as
coefficients in the expansion of

∏
u∈U (x − F (u)), satisfy the

following: for any odd e, 1 ≤ e ≤ 2k + 1, we must have
σ2k−1 = 1, and σe = 0 otherwise.
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Specifying (hyper)bent vectorial functions in PSap II

Second equivalence leads to the whole class of vectorial
(hyper)bent functions. F (x) = Trnk (

∑t
i=1 aix

ri (2k−1)) !!

Let P(x) =
∑2k

t=0 atx
t so that F (x) = Trnk (P(x2k−1)).

Facts

- Assume Trnk (us) 6= 0, where us = α(2k−1)s . Then,

{Trnk (zus) = zTrnk (us) : z ∈ K} = K .

- Let θ : {0, 1, 2, . . . , 2k} → K be a surjective function and 0 is
taken twice.

- Interpolate (ui , usθ(i)) by P(x), that is, P(x) will satisfy
P(ui ) = usθ(i) for all ui ∈ U . This P(x) satisfies item 3, that is,

Trnk (
∑2k

t=0 atu
t) maps U to K ∪ {0} !!
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Main existence and counting result

Theorem (EP et al. 2014)

There are exactly (2k + 1)! 2k−1 vectorial (hyper)bent functions of
the above form.

Let Φ : {0, 1, . . . , 2k} → L be given by Φ(i) = usθ(i),
i = 0, 1, . . . , 2k , where θ : {0, 1, 2, . . . , 2k} → K is a surjective
function that takes the zero value two times. The coefficients of
the interpolating polynomial P(x) =

∑2k

t=0 atx
t of the points

(ui ,Φ(i)), i = 0, 1, . . . , 2k , are given by

a2k−t = us

2k∑
i=0

ut+1
i θ(i) for t = 0, 1, . . . 2k . (1)
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Sparse polynomial forms

Any surjective θ : {0, 1, 2, . . . , 2k} → K such that 0 is taken
twice gives a vectorial bent function.

Open problem:

Specify those θ that give binomial or trinomial bent functions ! We
tried something in this direction but ended up only in ensuring that
a small portion of coefficients is zero.
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Symmetric polynomials - nonexistence results

Open (solved) problem:

Let n = 2k ≡ 0 (mod 4), where k ≥ 2 is even, and let D odd
given by 2k + 1 = 3D + 2. Show that the condition

(Trnk (γD+1))−8 = Trnk (γD−2)

is never satisfied for any n, and for any γ ∈ U . Then,
F (x) = Trnk (x2k−1 + ax r(2k−1) is not vectorial bent !!

Solved recently EP 2014, was an easy open problem :)

Open problem:

Using similar approach derive similar (more complicated)
conditions for trinomials ...
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Making ”good” S-boxes out of bent functions

Assume F (K ) = 0 and replace all-zero values on K by a
permutation and call it F̃ !

Denote by δF̃ (a, b) = #{x ∈ Fn, F (Xn + a) + F (Xn) = b},
for n = 8 we have:

δF̃ (a, b) 0 14 16 18 20 22 24 26
Number 15 1421 1511 815 243 61 13 1

For n = 8 and G (x) = x−1 deleting last 4 coordinate
functions we have:

Table : The differential property of G1 = (g1, g2, g3, g4)

δG1
(a, b) 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Nmb. 1 4 30 117 263 488 749 806 699 495 283 103 39 3

11/51



A few words on ”forgotten” classes of Carlet

In 1994 Carlet proposed two new classes (extending
Maiorana-McFarland) of bent functions called C and D.

In particular, the subclass D0 defined by

(x , y)→
k∏

i=1

(xi + 1) + x · π(y), x , y ∈ Fk
2 ,

is not in completed MM or PS class !!!

We recently analyzed bent conditions of C class defined by,

x · π(y) + 1L⊥(x),

– L linear subspace of a ∈ GF (2)k .

– π any permutations s.t. π−1(L + a) is a flat ∀a ∈ GF (2)k .
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A few words on ”forgotten” classes of Carlet II

Conclusion : Hard problem to find L and π satisfying
“simple” conditions !!

Example

Denote φ = π−1. Consider dim(L) = 2 (easiest case) and
φ(x) = x1+2r+2s (for suitable r , s). No such 2-dimensional space L

Example

Suppose φ(x) = x2i+1, for all x ∈ F2k , where gcd(i , k) = e, k/e is
odd. Then, L = 〈u, cu〉 where c , u ∈ F∗

2k
satisfies the bent

condition !

Open problem:

Find more (L, π) and deduce whether we get new bent functions !
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A very few words on Z-bent functions

Z-bent framework - a nice approach to bent functions - an
open problem of Dobbertin and Leander of finding
non-splitting Z-bent functions was solved recently EP et al.

Recall f : Fn
2 →Wr ⊂ Z is Z-bent of level r if both image and

NFT values lies in

W0 = {−1, 1}
Wr = {w ∈ Z | −2r−1 ≤ w ≤ 2r−1}

Gangopadhyay et al., 2013, construct all bent functions for n = 6
by considering PS-type Z-bent functions !! A case of
non-equivalence to MM and PSap when n = 8.

Open problem:

Derive more interesting bent classes from Z-bent functions.
14/51
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Even less than a few words on generalized bent functions

Define f : Zn
2 → Zq, call it gbent function if

|Hf (ω|) = |2−
n
2

∑
x∈Zn

2

ζ f (x)(−1)ω·x | = 1.

FOLKLORE: If q = 4, then f (x) = a(x) + 2b(x) is gbent IFF
a and a + b are standard bent !!

What if f (x) = c1a(x) + c2b(x) and q arbitrary ?

Then we show that (mostly) c1 = q/2 and c2 = q/4 or c2 = 3q/4,
for q = 4s - necessary condition ! Also, the cases both a(x) and
b(x) are Boolean or a(x) and b(x) are gbent or a mixture of the
two are considered, EP and S. Hodzic, 2014.

Open problem:

Other direction, construct gbent f and decompose into bent
functions, e.g. q = 2r ! 15/51
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Recalling Cayley graph

Cayley graph of f : Fn
2 → F2, Γf = (Fn

2,Ef ),
Ef = {(w,u) ∈ Fn

2 × Fn
2 : f (w ⊕ u) = 1}.

Adjacency matrix Af = {ai ,j}, ai ,j = f (b(i)⊕ b(j));

Γf is a regular graph of degree wt(f ) = |Ωf |

Spectrum of Γf is the set of eigenvalues of Af (Γf ).
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Cayley graph example: f (x1, x2, x3) = x1x2 ⊕ x1x3 ⊕ x3

17/51



Recalling SRG Cayley graph

An r -regular graph Γ with parameters (v , r , d , e) is a strongly
regular graph (srg) iff ∃ e, d > 0 s.t.

#adj(u, v) = e #nonadj(u, v) = d , ∀u, v

The parameters satisfy r(r − d − 1) = e(v − r − 1).
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P.J. Cameron: “Strongly regular graphs lie on the cusp between
highly structured and unstructured. For example, there is a unique
srg with parameters (36, 10, 4, 2), but there are 32548
non-isomorphic SRG with parameters (36, 15, 6, 6). In the light of
this, it will be difficult to develop a theory of random strongly
regular graphs!”
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One more tool - Walsh-Hadamard transform

A bit confusing Walsh, Walsh-Hadamard, (normalized) Fourier
...

Anyway, Walsh-Hadamard transform is similar to WT,

Ŵf (α) =
∑
x∈Fn

2

f (x)(−1)α·x ,

thus instead of (−1)f (x) we use f (x).

We simply get direct connection to graph eigenvalues !

Easy to show that Wf (α) = −2Ŵf (α) + 2nδ(α), where
δ(0) = 1 and zero otherwise.
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WH transform - some easy observations

Walsh spectra of bent functions is Wf (α) ∈ {−2n/2,+2n/2}

Since

Wf (0) =
∑
x∈Fn

2

(−1)f (x)+α·x =
∑
x∈Fn

2

(−1)f (x) = ±2n/2

then

wt(f ) = 2n−1 − 2n/2−1 or wt(f ) = 2n−1 + 2n/2−1.

On the other hand, using WH transform the spectra of bent
functions is either

{2n−1 − 2n/2−1,−2n/2−1, 2n/2−1}
or

{2n−1 − 2n/2−1,−2n/2−1, 2n/2−1}
21/51



WH transform - some easy observations

Walsh spectra of bent functions is Wf (α) ∈ {−2n/2,+2n/2}

Since

Wf (0) =
∑
x∈Fn

2

(−1)f (x)+α·x =
∑
x∈Fn

2

(−1)f (x) = ±2n/2

then

wt(f ) = 2n−1 − 2n/2−1 or wt(f ) = 2n−1 + 2n/2−1.

On the other hand, using WH transform the spectra of bent
functions is either

{2n−1 − 2n/2−1,−2n/2−1, 2n/2−1}
or

{2n−1 − 2n/2−1,−2n/2−1, 2n/2−1}
21/51



Cayley graph - connections

Theorem (Bernasconi–Codenotti ’99)

The following are equivalent for f : Fn
2 → F2 :

(i) The eigenvalues of Γf , λi = Ŵf (b(i)), ∀i .

(ii) multiplicity(Ŵb(b(0))) = 2n−dim〈Ωf 〉, where dim〈Ωf 〉 is the
dimension of 〈Ωf 〉 as a subspace of Fn

2 over F2.

(iii) (Under Γf connected) f has a spectral coefficient equal to
−wt(f ) iff its Walsh spectrum is symmetric w.r.t 0.

(iv) The # nonzero spectral coefficients equals rk(Af ), and
2d2 ≤ rk(Af ) ≤

∑d
i=1

(n
i

)
(d2, respectively, d is the degree of

f over F2, respectively R).
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(ii) multiplicity(Ŵb(b(0))) = 2n−dim〈Ωf 〉, where dim〈Ωf 〉 is the
dimension of 〈Ωf 〉 as a subspace of Fn

2 over F2.

(iii) (Under Γf connected) f has a spectral coefficient equal to
−wt(f ) iff its Walsh spectrum is symmetric w.r.t 0.

(iv) The # nonzero spectral coefficients equals rk(Af ), and
2d2 ≤ rk(Af ) ≤

∑d
i=1

(n
i

)
(d2, respectively, d is the degree of

f over F2, respectively R).

22/51



Cayley graph - connections

Theorem (Bernasconi–Codenotti ’99)

The following are equivalent for f : Fn
2 → F2 :

(i) The eigenvalues of Γf , λi = Ŵf (b(i)), ∀i .
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Cayley graph - connections II

Theorem

Let f : Fn
2 → F2 , and let λi , 0 ≤ i ≤ 2n − 1 be the eigenvalues of

its associated graph Γf . Then λi = Ŵf (bi ), for any i .

Proof.

The eigenvectors of the Cayley graph Γf are the characters
Qw(x) = (−1)w·x of Fn

2 [CVETK72]. Moreover, the i-th eigenvalue
of Af (adjacency matrix), corresponding to the eigenvector Qbi is

λi =
∑
x∈Fn

2

(−1)bi ·x f (x) = Ŵf (bi ).

23/51



Few spectral coefficients

Cvetkovic & Doob (various years)

Γf has three distinct eigenv. 0,±λ if and only if Γf is
complete bipartite between Ωf and Fn

2\Ωf (plateaued !!).

Γf has three distinct eigenv. λ0 = |Ωf | > λ1 = 0 > λ2 6= −λ0

if and only if Γ̄f is the direct sum of − r

λ2
+ 1 complete graphs

of order −λ2. (skewed case)

If Γf has three distinct (nonzero) eigenvalues (bent case):
λ0 = |Ωf | = wt(f ), λ2 = −λ1 =

√
|Ωf | − e, of multiplicities

m0 = 1,m1 =

√
|Ωf |−e (2n−1)−|Ωf |

2
√
|Ωf |−e

, m2 =

√
|Ωf |−e (2n−1)+|Ωf |

2
√
|Ωf |−e

.
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.

24/51



Few spectral coefficients

Cvetkovic & Doob (various years)

Γf has three distinct eigenv. 0,±λ if and only if Γf is
complete bipartite between Ωf and Fn

2\Ωf (plateaued !!).
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Bernasconi and Codenotti started an investigation in ’99 by
displaying the Cayley graphs associated to each equivalence
class representative of Boolean functions in 4 variables;
obviously, there are 224

= 65, 536 different Boolean functions
in 4 variables, and the number of equivalence classes in four
variables under affine transformations is only 8 (eight).

We display the truth table and the WH spectrum of a
representative of each class in Table 2.
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4-variable equivalence classes

Table : Truth table and WH spectrum of equivalence class representatives
for Boolean functions in 4 variables under affine transformations

No. Boolean Representative WH Spectrum
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 0 -2 0 -2 0 2 0 -2 0 2 0 2 0 -2 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 -1 -1 -1 -3 1 1 1 -3 1 1 1 3 -1 -1 -1
5 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 4 0 0 0 -4 0 0 0 -4 0 0 0 4 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 4 -2 -2 0 -2 0 0 2 -4 2 2 0 2 0 0 -2
7 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 5 -3 -3 1 -3 1 1 1 -3 1 1 1 1 1 1 -3
8 0 0 0 0 0 0 1 1 0 1 0 1 1 0 0 1 6 -2 -2 2 -2 -2 2 -2 -2 2 -2 -2 -2 2 2 2

Question : How many nonisomorphic Cayley graphs there are over
F4

2 ?

Got the answer a few months ago but I forgot it :)
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First equivalence class

Figure : Cayley graph associated to the first representative of Table 2

The Cayley graph associated to the representative of the first
equivalence class has only one eigenvalue, and is a totally
disconnected graph
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Second equivalence class

Figure : Cayley graph associated to the second representative of Table 2

The Cayley graph associated to the representative of the
second equivalence class has two distinct spectral coefficients
and its associated graph is a pairing, that is, a set of edges
without common vertices.
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Third equivalence class

Figure : Cayley graph associated to the third representative of Table 2

The Cayley graph associated to the representative of the third
equivalence class has four connected components and three
distinct eigenvalues, one equal to 0 and two symmetric with
respect to 0. That implies that each connected component is
a complete bipartite graph.
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Fourth equivalence class

Figure : Cayley graph associated to the fourth representative of Table 2

The Cayley graph associated to the representative of the
fourth equivalence class has two connected components, each
corresponding to a three-dimensional cube.

30/51



Fifth equivalence class

Figure : Cayley graph associated to the fifth representative of Table 2

The Cayley graph associated to the representative of the fifth
equivalence class has two connected components and three
distinct eigenvalues as for the third equivalence class, and so,
each connected component is a complete bipartite graph.

Should correspond to semi-bent functions with WH spectra
{0, 2n/2+1,−2n/2+1} !

Interesting - since 4 suitable semi-bent functions on Fn
2 give a

bent function on Fn+2
2 ... Need a smart extrapolation of

graphs to get SRG Cayley graph.
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Sixth equivalence class

Figure : Cayley graph associated to the sixth representative of Table 2

The Cayley graph associated to the representative of the sixth
equivalence class is a connected graph, with five distinct
eigenvalues.
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Seventh equivalence class

Figure : Cayley graph associated to the seventh representative of Table 2

The Cayley graph associated to the representative of the
seventh equivalence class has only three distinct eigenvalues
and, therefore, is strongly regular.
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Eighth equivalence class

Figure : Cayley graph associated to the eighth representative of Table 2

The Cayley graph associated to the representative (which is a bent
function) of the eighth equivalence class is strongly regular, with
parameters e = d = 2.
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Bent Cayley graph characterization

Theorem (Bernasconi-Codenotti ’99 &
Bernasconi-Codenotti-VanderKam ’01)

A Boolean function f : Fn
2 → F2 (n even) is bent iff Γf is a srg

with e = d .

Moreover, A2 =
(
2n−1 ± 2n/2−1 − e

)
I + eJ.

Question: How can/do we use it to find bent (or nonbent)
f ’s?
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bipartite ←→ no odd length cycles ←→ sym. spectrum

Theorem (Bernasconi & Codenotti, ’00)

Assume f (0) = 0 & Γf connected. Then Γf is bipartite if and only
if Fn

2 − Ωf contains a subspace of dimension n − 1.

Theorem (P.S. ’07)

If f is bent, then Γf is not bipartite. In fact, if Γf is triangle-free
(no paths of the form xyzx , where the vertices x , y , z are distinct),
then f is not bent.

Converse not true:

f (x) = x1x2x3 ⊕ x2x3x4 ⊕ x3x4x5 ⊕ x4x5x6 ⊕ x5x6x1 ⊕ x6x1x2

Γf has plenty of triangles, but f is not bent.
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Nagy graphs and homogeneous bent functions
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Some results on homogeneous bent B.f.

On F6
2, there are 220 homogeneous B.f. of degree 3 (meaning

all terms in ANF of degree 3)

Among these, there are 30 homogeneous bent B.f. with a
representative:

x1x2x3 ⊕ x1x2x4 ⊕ x1x2x5 ⊕ x1x2x6 ⊕ x1x3x4 ⊕ x1x3x5 ⊕
x1x4x6 ⊕ x1x5x6 ⊕ x2x3x4 ⊕ x2x3x6 ⊕ x2x4x5 ⊕ x2x5x6 ⊕
x3x4x5 ⊕ x3x4x6 ⊕ x3x5x6 ⊕ x4x5x6

which is equivalent to

Rothaus: x1x2x3 ⊕ x1x4 ⊕ x2x5 ⊕ x3x6

Qu-Seberry-Pieprzyk (2000): There are > 30n
(6n

6

)
homogeneous bent B.f. on F6n

2 .
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Nonexistence results

Theorem (Xia-Seberry-Pieprzyk-Charnes (2004))

Maximum degree n is never attained by homogeneous bent
functions on F2n

2 .

Theorem (Meng-Zhang-Yang-Cui (2007))

For any k , there is N (least integer satisfying
2N−1 >

∑k+1
i=0

(N+1
i

)
) such that there are no homogeneous bent

B.f. of degree ≥ n − k on F2n
2 , n ≥ N.

Let k = 0. Then N = 4 is the least integer with
2N−1 >

(N+1
0

)
+
(N+1

1

)
. Xia et al.’s result follows immediately.
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Existence conjectures

Conjecture (Meng-Zhang-Yang-Cui (2007))

For any k > 1, there exists N s.t. for any n > N, there exist
homogeneous bent functions of degree k on F2n

2 .

Perhaps we can answer the following “easier” question:

Research Question (P.S. 2007)

For any k , find a homogeneous bent function of degree k, in some
dimension.
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Further Restrictions: invariance under a group of
transformations

The bent functions found by Qu et al.’s arise as invariants under
the action of the symmetric group on four letters; using invariant
theory they construct cubic homogeneous bent functions in 8, 10,
and 12 variables.

Definition (Nagy Graph)

Let Γ(n,k) be the graph whose vertices correspond to the
(n
k

)
unordered subsets of size k of a set {1, . . . , n}. Two vertices of
Γ(n,k) are joined by an edge whenever the corresponding k-sets
intersect in a subset of size one.
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Nagy graph Γ(6,3)

$É,2,6É

$É,3,4É

$É,3,5É

$É,3,6É

$É,3,4É $É,5,6É

$É,4,6É

$É,4,5É

$É,2,3É $É,2,4É

$É,2,5É

$É,5,6É

$É,4,6É

$É,4,5É

$É,3,6É

$É,3,5É

$É,4,5É

$É,4,6É

$É,5,6É

$É,5,6É
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Cliques in the Nagy graph Γ(6,3)

A clique in an undirected graph is a complete subgraph
(subset of vertices s.t. any two vertices are connected)

Maximal clique: not strictly contained in a bigger one;

Maximum clique: largest complete subgraph;

Clique number: the order of the maximum clique in a graph;
denoted by ω(G ).

Finding whether there is a clique of a given size in a graph
(the clique problem) is NP-complete.
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Maximum vs. maximal clique example
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Cliques and Homogeneous Bent Functions

Theorem (Charnes-Rötteler-Beth (2002))

The thirty homogeneous bent functions in six variables listed by
Qu et al. are in one to one correspondence with the complements
of the 30 (maximum) cliques of Γ(6,3).
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Proposed questions!

It is unknown whether there are quartic/quintic/etc.
homogeneous bent functions.

I propose to look at the complements of the maximal cliques
of the Nagy graph Γ(10,4), Γ(12,4). Do the same for
Γ(12,5), Γ(14,5).

Can one find efficiently a (all) clique(s) in Γ(2n,k), k < n?

Not a trivial matter, I suspect: for instance, Γ(10,4) has 210
vertices; Γ(12,5) has 792 vertices;

Modify Nagy graphs by constructing edges between tuples
overlapping in two (or more indices) and investigate these
issues.
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