Relative Difference Sets and their Component Functions

Alexander Pott
Otto-von-Guericke-University Magdeburg

September 05, 2014

Outline

- Boolean and p-ary vectorial bent functions and their relative difference sets.
- Extendability.
- $p=2$: Vectorial bent functions and their relative difference sets.
- Interpretation in terms of Knuth cube.

Bent Functions

$f: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}$ is bent if one of the following holds:

- $x \mapsto f(x+a)-f(x)$ is balanced for all $a \neq 0$.
- $\left|\sum_{x}(-1)^{f(x)+\langle a, x\rangle}\right|=2^{n / 2}$ for all a, where \langle,$\rangle is standard$ inner product.

Bent Functions

$f: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}$ is bent if one of the following holds:

- $x \mapsto f(x+a)-f(x)$ is balanced for all $a \neq 0$.
- $\left|\sum_{x}(-1)^{f(x)+\langle a, x\rangle}\right|=2^{n / 2}$ for all a, where \langle,$\rangle is standard$ inner product.
- $D_{f}:=\left\{x \in \mathbb{Z}_{2}^{n}: f(x)=1\right\}$ is a
$\left(2^{n}, 2^{n-1} \pm 2^{(n-2) / 2}, 2^{n-2} \pm 2^{(n-2) / 2}\right)$ difference set (support of f).

Bent Functions

$f: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}$ is bent if one of the following holds:

- $x \mapsto f(x+a)-f(x)$ is balanced for all $a \neq 0$.
- $\left|\sum_{x}(-1)^{f(x)+\langle a, x\rangle}\right|=2^{n / 2}$ for all a, where \langle,$\rangle is standard$ inner product.
- $D_{f}:=\left\{x \in \mathbb{Z}_{2}{ }^{n}: f(x)=1\right\}$ is a
$\left(2^{n}, 2^{n-1} \pm 2^{(n-2) / 2}, 2^{n-2} \pm 2^{(n-2) / 2}\right.$) difference set (support of f).
- $G_{f}:=\left\{(x, f(x)): x \in \mathbb{Z}_{2}^{n}\right\} \subseteq \mathbb{Z}_{2}^{n+1}$ is a relative $\left(2^{n}, 2,2^{n}, 2^{n-1}\right)$ difference set (graph of the function f).

An example

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{2}+x_{3} x_{4}
$$

The support:

$$
D_{f}=\left\{\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right)\right\}
$$

The graph G_{f} :
$\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 0\end{array}\right)$

(Relative) Difference Sets with Parameters (m, n, k, λ).

- group 「 of order $m \cdot n$
- subgroup \wedge of order n
- subset $D \subseteq \Gamma$ of order k
- $x-y=b$ has $\left\{\begin{array}{l}k \text { solutions if } b=0 \\ 0 \text { solutions if } b \in \Lambda \backslash\{0\} \\ \lambda \text { solutions if } b \notin \Lambda\end{array}\right.$ with $x, y \in D$.

(Relative) Difference Sets with Parameters (m, n, k, λ).

- group 「 of order $m \cdot n$
- subgroup \wedge of order n
- subset $D \subseteq \Gamma$ of order k
- $x-y=b$ has $\left\{\begin{array}{l}k \text { solutions if } b=0 \\ 0 \text { solutions if } b \in \Lambda \backslash\{0\} \\ \lambda \text { solutions if } b \notin \Lambda\end{array}\right.$ with $x, y \in D$.

Remark

1. Difference set relative to \wedge.

(Relative) Difference Sets with Parameters (m, n, k, λ).

- group 「 of order $m \cdot n$
- subgroup \wedge of order n
- subset $D \subseteq \Gamma$ of order k
- $x-y=b$ has $\left\{\begin{array}{l}k \text { solutions if } b=0 \\ 0 \text { solutions if } b \in \Lambda \backslash\{0\} \\ \lambda \text { solutions if } b \notin \Lambda\end{array}\right.$ with $x, y \in D$.

Remark

1. Difference set relative to Λ.
2. If $n=1:(m, k, \lambda)$ difference set.

(Relative) Difference Sets with Parameters (m, n, k, λ).

- group 「 of order $m \cdot n$
- subgroup \wedge of order n
- subset $D \subseteq \Gamma$ of order k
v $x-y=b$ has $\left\{\begin{array}{l}k \text { solutions if } b=0 \\ 0 \text { solutions if } b \in \Lambda \backslash\{0\} \\ \lambda \text { solutions if } b \notin \Lambda\end{array}\right.$ with $x, y \in D$.

Remark

1. Difference set relative to \wedge.
2. If $n=1:(m, k, \lambda)$ difference set.
3. D is a transversal of Λ if $k=m$.

Examples

The following are equivalent:

- $f: \mathbb{Z}_{2}{ }^{n} \rightarrow \mathbb{Z}_{2}$ is bent
- D_{f} is $\left(2^{n}, 2^{n-1} \pm 2^{(n-2) / 2}, 2^{n-2} \pm 2^{(n-2) / 2}\right)$ difference set in $\mathbb{Z}_{2}{ }^{n} . \quad n=4:(16,6,2)$ or $(16,10,6)$.
- G_{f} is $\left(2^{n}, 2,2^{n}, 2^{n-1}\right)$ difference set relative to $\left\{(0, y): y \in \mathbb{Z}_{2}\right\} . \quad n=4:(16,2,16,8)$

Examples

The following are equivalent:

- $f: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}$ is bent
- D_{f} is $\left(2^{n}, 2^{n-1} \pm 2^{(n-2) / 2}, 2^{n-2} \pm 2^{(n-2) / 2}\right)$ difference set in $\mathbb{Z}_{2}{ }^{n} . \quad n=4:(16,6,2)$ or $(16,10,6)$.
- G_{f} is $\left(2^{n}, 2,2^{n}, 2^{n-1}\right)$ difference set relative to $\left\{(0, y): y \in \mathbb{Z}_{2}\right\} . \quad n=4:(16,2,16,8)$

Example

1. $\{0,1,3\}$ is a $(7,3,1)$ difference set in \mathbb{Z}_{7}.
2. $\{1,2,4,8\}$ is a $(5,3,4,1)$ difference set in \mathbb{Z}_{15} relative to $5 \mathbb{Z}_{15}$.

Comment on Equivalence

Remark

- Equivalent bent functions give rise to equivalent $R D S G_{f}$.
- Equivalent bent functions may give rise to inequivalent difference sets D_{f} !

The General Case: p Prime

$f: \mathbb{Z}_{p}{ }^{n} \rightarrow \mathbb{Z}_{p}$ is bent if one of the following holds:

- $f(x+a)-f(x)=b$ has p^{n-1} solutions for all $a \neq 0$ and all $b \in \mathbb{Z}_{p}$.

The General Case: p Prime

$f: \mathbb{Z}_{p}^{n} \rightarrow \mathbb{Z}_{p}$ is bent if one of the following holds:

- $f(x+a)-f(x)=b$ has p^{n-1} solutions for all $a \neq 0$ and all $b \in \mathbb{Z}_{p}$.

$$
\left|\sum_{x} \zeta_{p}^{f(x)+\langle a, x\rangle}\right|=p^{n / 2}
$$

$$
\text { for all } a \in \mathbb{Z}_{p}^{n} . \quad\left(\zeta_{p}=e^{2 \pi \mathrm{i} / p}\right)
$$

The General Case: p Prime

$f: \mathbb{Z}_{p}{ }^{n} \rightarrow \mathbb{Z}_{p}$ is bent if one of the following holds:

- $f(x+a)-f(x)=b$ has p^{n-1} solutions for all $a \neq 0$ and all $b \in \mathbb{Z}_{p}$.

$$
\left|\sum_{x} \zeta_{p}^{f(x)+\langle a, x\rangle}\right|=p^{n / 2}
$$

$$
\text { for all } a \in \mathbb{Z}_{p}^{n} . \quad\left(\zeta_{p}=e^{2 \pi \mathrm{i} / p}\right)
$$

- $G_{f}:=\left\{(x, f(x)): x \in \mathbb{Z}_{p}^{n}\right\} \subseteq \mathbb{Z}_{p}^{n+1}$ is a $\left(p^{n}, p, p^{n}, p^{n-1}\right)$ difference set relative to

$$
\Lambda=\left\{(0, y): y \in \mathbb{Z}_{p}\right\}
$$

Quadratic Examples

1. $\mathbf{A} \in \mathrm{GL}(n, p)$ symmetric, full rank, p odd:

$$
f(x)=x^{T} \cdot \mathbf{A} \cdot x
$$

2. $\mathbf{A} \in \mathrm{GL}(n, 2)$ symmetric with zero diagonal (alternating), full rank:

$$
f(x)=\sum_{i<j} a_{i, j} x_{i} x_{j}
$$

These are quadratic examples: $x \mapsto f(x+a)-f(x)-f(a)+f(0)$ is linear!

Vectorial Bent

A mapping $F: \mathbb{Z}_{p}^{n} \rightarrow \mathbb{Z}_{p}^{m}$ is vecorial bent if

$$
F(x+a)-F(x)=b
$$

has p^{n-m} solutions for all $a \neq 0$ and all b.

Vectorial Bent

A mapping $F: \mathbb{Z}_{p}^{n} \rightarrow \mathbb{Z}_{p}^{m}$ is vecorial bent if

$$
F(x+a)-F(x)=b
$$

has p^{n-m} solutions for all $a \neq 0$ and all b.
Equivalently:

- $G_{f}:\left\{(x, F(x)): x \in \mathbb{Z}_{p}^{n}\right\} \subseteq \mathbb{Z}_{p}^{n+m}$ is a $\left(p^{n}, p^{m}, p^{n}, p^{n-m}\right)$ difference set relative to $\Lambda=\left\{(0, y): y \in \mathbb{Z}_{p}^{m}\right\}$.
- All component functions $x \mapsto\langle b, F(x)\rangle$ with $a \neq 0$ are bent.

Vectorial Bent

A mapping $F: \mathbb{Z}_{p}^{n} \rightarrow \mathbb{Z}_{p}^{m}$ is vecorial bent if

$$
F(x+a)-F(x)=b
$$

has p^{n-m} solutions for all $a \neq 0$ and all b.
Equivalently:

- $G_{f}:\left\{(x, F(x)): x \in \mathbb{Z}_{p}^{n}\right\} \subseteq \mathbb{Z}_{p}^{n+m}$ is a $\left(p^{n}, p^{m}, p^{n}, p^{n-m}\right)$ difference set relative to $\Lambda=\left\{(0, y): y \in \mathbb{Z}_{p}^{m}\right\}$.
- All component functions $x \mapsto\langle b, F(x)\rangle$ with $a \neq 0$ are bent.

Vectorial bent functions are vector spaces of bent functions!

Planar Functions: $n=m$

A vectorial bent function $F: \mathbb{Z}_{p}{ }^{n} \rightarrow \mathbb{Z}_{p}{ }^{n}$ is called planar:

$$
\left\{(x, F(x)): x \in \mathbb{Z}_{p}^{n}\right\}
$$

is a relative

$$
\left(p^{n}, p^{n}, p^{n}, 1\right) \text { - difference set in } \mathbb{Z}_{p}^{2 n} .
$$

Planar Functions: $n=m$

A vectorial bent function $F: \mathbb{Z}_{p}{ }^{n} \rightarrow \mathbb{Z}_{p}{ }^{n}$ is called planar:

$$
\left\{(x, F(x)): x \in \mathbb{Z}_{p}^{n}\right\}
$$

is a relative

$$
\left(p^{n}, p^{n}, p^{n}, 1\right) \text { - difference set in } \mathbb{Z}_{p}^{2 n} .
$$

Remark

1. p must be odd.
2. Projective planes.
3. If F quadratic: Semifield planes.
4. Only one non-quadratic example known in $\mathbb{F}_{3^{n}}$ Coulter, Matthews (1997): $x^{\left(3^{a}+1\right) / 2}$ with $\operatorname{gcd}(a, n)=1$, a odd.

Examples and Bounds

$$
F: \mathbb{Z}_{p}^{n} \rightarrow \mathbb{Z}_{p}^{m} \quad \text { vectorial bent }
$$

Theorem (Nyberg 1991)
If $p=2$ and n even and $m \leq \frac{n}{2}$, hence no planar functions.
Example

1. $n=2 m$:

$$
F(x, y)=x \cdot \pi(y)+\sigma(y)
$$

for permutation π and any mapping σ on $\mathbb{F}_{p^{m}}$, where $x, y \in \mathbb{F}_{p^{m}}$.
2. p odd, $n=m$: Any semifield, for instance $F(x)=x^{2}$.

Motivation

- Geometers are interested in projective plane constructions.
- Connecting the geometers point of view with the "bent functions" point of view.
- Understand, how planar functions can be build from bent functions.
- $p=2$: There are semifields, but no planar functions.

Projecting Vectorial Bent Functions

Observation
$F: \mathbb{Z}_{p}^{n} \rightarrow \mathbb{Z}_{p}^{m}$ is bent, then projection in the output yields vectorial bent functions $F^{\prime}: \mathbb{Z}_{p}^{n} \rightarrow \mathbb{Z}_{p}^{m-1}$.

Question
Are there bent functions $\mathbb{Z}_{p}^{n} \rightarrow \mathbb{Z}_{p}^{m}$ which are not "projection" of a bent function $\mathbb{Z}_{p}^{n} \rightarrow \mathbb{Z}_{p}{ }^{m+1}$? non-extandable

Projecting Vectorial Bent Functions

Observation
$F: \mathbb{Z}_{p}^{n} \rightarrow \mathbb{Z}_{p}^{m}$ is bent, then projection in the output yields vectorial bent functions $F^{\prime}: \mathbb{Z}_{p}^{n} \rightarrow \mathbb{Z}_{p}^{m-1}$.
Question
Are there bent functions $\mathbb{Z}_{p}^{n} \rightarrow \mathbb{Z}_{p}^{m}$ which are not "projection" of a bent function $\mathbb{Z}_{p}^{n} \rightarrow \mathbb{Z}_{p}^{m+1}$? non-extandable

I know no example if $m=1$:
Classical constructions (Maiorana-McFarland, partial spreads, o-polynomials) are vectorial, hence non-extandable should hold at most for non-classical bent functions.

Özbudak, P. (2014)

Theorem
There are vectorial bent functions not extendable by quadratic bent functions, for instance

$$
F(x)=\left(\begin{array}{c}
\operatorname{trace}\left(x^{2}\right) \\
\operatorname{trace}\left(\omega x^{10}\right) \\
\operatorname{trace}\left(\omega x^{4}\right)
\end{array}\right)
$$

with $x \in \mathbb{F}_{3^{4}}$ as a mapping $\mathbb{Z}_{3}^{4} \rightarrow \mathbb{Z}_{3}^{3}$, ω primitive in $\mathbb{F}_{3^{4}}$.
The proof uses classification of $3^{4}-3^{4}$ bent functions.
Remark
Extendability by a non-quadratic function would be a big surprise.

Number of Quadratic Bent Functions

Theorem

- q even, $m=n / 2: q^{m(m-1)} \prod_{k=1}^{m}\left(q^{2 k-1}-1\right)$ alternating matrices
- q odd, $m=(n+1) / 2$, n odd: $q^{m(m-1)} \prod_{k=1}^{m}\left(q^{2 k-1}-1\right)$ symmetric matrices
- q odd, $m=n / 2, n$ even: $q^{m(m+1)} \prod_{k=1}^{m}\left(q^{2 k-1}-1\right)$ symmetric matrices
of full rank and size $n \times n$.

Number of Quadratic Bent Functions

Theorem

- q even, $m=n / 2: q^{m(m-1)} \prod_{k=1}^{m}\left(q^{2 k-1}-1\right)$ alternating matrices
- q odd, $m=(n+1) / 2$, n odd: $q^{m(m-1)} \prod_{k=1}^{m}\left(q^{2 k-1}-1\right)$ symmetric matrices
- q odd, $m=n / 2, n$ even: $q^{m(m+1)} \prod_{k=1}^{m}\left(q^{2 k-1}-1\right)$ symmetric matrices
of full rank and size $n \times n$.
Remark
The number of quadratic bent functions are known!

P., Schmidt, Zhou (2014)

Theorem
q even, $m=n / 2, v=q^{m(m-1)} \prod_{k=1}^{m}\left(q^{2 k-1}-1\right),\left[\begin{array}{c}m \\ i\end{array}\right]$ number of i-dimensional subspaces in $\mathbb{F}_{q^{2}}^{m}$. Then there are

$$
\frac{v}{q^{m}} \sum_{i=0}^{m}(-1)^{i} q^{i(i-1)}\left[\begin{array}{c}
m \\
i
\end{array}\right] \prod_{k=1}^{m-i}\left(q^{2 k-1}-1\right)^{2}
$$

quadratic bent functions $\mathbb{Z}_{2}{ }^{n} \rightarrow \mathbb{Z}_{2}^{2}$.

Proof and Problems

- Alternating forms graph: Two alternating matrices \mathbf{A} and \mathbf{B} are adjacent if $\mathbf{A}-\mathbf{B}$ has full rank.
- Strongly regular graph.
- Number of triangles.

Remark

1. Larger cliques correspond to $R D S \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}{ }^{2}$.
2. Number of bent-negabent functions are known.

p Even and Odd: Differences

$F: \mathbb{Z}_{p}^{n} \rightarrow \mathbb{Z}_{p}^{m}$ vectorial bent:

$p=2$	p odd
n even	any n
$m \leq n / 2$	any $m \leq n$

p Even and Odd: Differences

$F: \mathbb{Z}_{p}^{n} \rightarrow \mathbb{Z}_{p}^{m}$ vectorial bent:

$$
\begin{array}{c|c}
p=2 & p \text { odd } \\
\hline n \text { even } & \text { any } n \\
m \leq n / 2 & \text { any } m \leq n
\end{array}
$$

However: There are $\left(2^{n}, 2^{n}, 2^{n}, 1\right)$ difference sets in $\Gamma=\mathbb{Z}_{4}{ }^{n}$ relative to $\Lambda=2 \Gamma \cong \mathbb{Z}_{2}{ }^{n}$, hence also in

$$
\mathbb{Z}_{4} \times \mathbb{Z}_{2} \times \ldots \times \mathbb{Z}_{2}
$$

with n odd using projection.
Example
The set

$$
\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{3}{3}\right\}
$$

is a $(4,4,4,1)$ difference set in \mathbb{Z}_{4}^{2} relative to $2 \mathbb{Z}_{4}^{2}$

Relative Difference Sets and Symmetric Matrices: p Odd

A vector space V, $\operatorname{dim} V=m$, of regular symmetric matrices in $\mathbb{F}_{p}^{(n, n)}$ gives rise to a relative difference set with parameters

$$
\left(p^{n}, p^{m}, p^{n}, p^{n-m}\right)
$$

in

$$
\Gamma=\mathbb{Z}_{p}^{n} \times \mathbb{Z}_{p}^{m} \text { relative to } \Lambda=\{0\} \times \mathbb{Z}_{p}^{m} .
$$

The Construction

- Choose basis $\mathbf{A}_{1}, \ldots \mathbf{A}_{m}$ of V.
- Construct the quadratic bent functions $f_{i}(x)=x^{T} \mathbf{A}_{i} x$.

$$
F(x)=\left(\begin{array}{c}
f_{1}(x) \\
\vdots \\
f_{m}(x)
\end{array}\right)
$$

- RDS is graph $G_{F}=\left\{(x, F(x)): x \in \mathbb{Z}_{p}^{n}\right\}$ of F.

Relative Difference Sets and Symmetric Matrices: $p=2$

Theorem
A vector space $V, \operatorname{dim} V=m$, of regular symmetric matrices in $\mathbb{F}_{2}^{(n, n)}$ gives rise to a relative difference set with parameters

$$
\left(2^{n}, 2^{m}, 2^{n}, 2^{n-m}\right)
$$

The group is

$$
\Gamma=\mathbb{Z}_{4}^{k} \times \mathbb{Z}_{2}^{n+m-2 k}
$$

relative to

$$
\Lambda=2 \mathbb{Z}_{4}^{k} \times \mathbb{Z}_{2}^{m-k}
$$

where $m-k$ is the dimension of subspace of alternating matrices in V.

The Construction: $p=2, m=1$

$$
\Gamma=\mathbb{Z}_{4} \times \mathbb{Z}_{2} \times \ldots \times \mathbb{Z}_{2}
$$

can be realized as $\left\{(x, y): x \in \mathbb{Z}_{2}^{n}, y \in \mathbb{Z}_{2}\right\}$ with

$$
(x, y)+\left(x^{\prime}, y^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}+B\left(x, x^{\prime}\right)\right)
$$

for some non-alternating bilinear form B.

The Construction: $p=2, m=1$

$$
\Gamma=\mathbb{Z}_{4} \times \mathbb{Z}_{2} \times \ldots \times \mathbb{Z}_{2}
$$

can be realized as $\left\{(x, y): x \in \mathbb{Z}_{2}^{n}, y \in \mathbb{Z}_{2}\right\}$ with

$$
(x, y)+\left(x^{\prime}, y^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}+B\left(x, x^{\prime}\right)\right)
$$

for some non-alternating bilinear form B. A transversal of

$$
\Lambda:=2 \Gamma \quad \text { which has order } 2
$$

is a function

$$
f: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}
$$

and can be also interpreted as

$$
\widetilde{f}: \mathbb{Z}_{2}^{n-1} \rightarrow \mathbb{Z}_{4}
$$

The Construction: $p=2, m=1$

Theorem

$$
G_{f}=\left\{(x, f(x)): x \in \mathbb{Z}_{2}^{n}\right\}
$$

is a relative difference set with parameters $\left(2^{n}, 2,2^{n}, 2^{n-1}\right)$ in Γ if and only if

$$
f(x+a)+f(x)+B(x, a)
$$

is balanced for all $a \neq 0$.

The Construction: $p=2, m=1$

Theorem

$$
G_{f}=\left\{(x, f(x)): x \in \mathbb{Z}_{2}^{n}\right\}
$$

is a relative difference set with parameters $\left(2^{n}, 2,2^{n}, 2^{n-1}\right)$ in Γ if and only if

$$
f(x+a)+f(x)+B(x, a)
$$

is balanced for all $a \neq 0$.

Such an f gives rise to a \mathbb{Z}_{4}-bent function \widetilde{f}. If B were alternating, f gives rise to a bent function.

An Example

If \mathbf{A} is symmetric and non-alternating, the diagonal gives rise to B and the non-diagonal gives rise to a quadratic function f :

Example

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

gives rise to

$$
f\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=x_{1} x_{3}
$$

and

$$
B\left(\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right),\left(\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right)\right)=x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}
$$

The General Case

Theorem

- $f_{i}: \mathbb{Z}_{2}{ }^{n} \rightarrow \mathbb{Z}_{2}, i=1, \ldots, m$, not necessarily quadratic!
- $B_{i}, i=1, \ldots, m$ symmetric bilinear forms.

Assume that

$$
F(x):=\sum_{i} \lambda_{i} f_{i}(x)
$$

satisfies

$$
F(x+a)+F(x)+\sum_{i} \lambda_{i} B_{i}(x, a) \quad \text { is balanced }
$$

for all $\lambda_{1}, \ldots, \lambda_{m}$, then there is a difference set with parameters $\left(2^{n}, 2^{m}, 2^{n}, 2^{n-m}\right)$ in $\Gamma=\mathbb{Z}_{4}^{s} \times \mathbb{Z}_{2}^{t}$ relative to \mathbb{Z}_{2}^{m} (containing 2Γ). Conversely, such a relative difference set gives rise to functions f_{i} and B_{i}.

Main Observations

- Difference sets in $\mathbb{Z}_{4}^{s} \times \mathbb{Z}_{2}^{t}$ are the same objects as vector spaces of bent and \mathbb{Z}_{4} bent functions.
- No canonical way to represent $\Gamma=\mathbb{Z}_{4}{ }^{n}$ relative to $\Lambda=2 \Gamma$. One has to use bilinear forms B_{i}.
- Possible realization of $\mathbb{Z}_{4}^{n}=\left\{(x, y): x, y \in \mathbb{F}_{2^{n}}\right\}$ such that

$$
(x, y)+\left(x^{\prime}, y^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}+x \cdot x^{\prime}\right)
$$

Two special cases

Problem: Representation depends on B_{i}.

Two special cases

Problem: Representation depends on B_{i}.

- $m=1: f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$ such that

$$
f(x+a)+f(x)+\operatorname{trace}(a x)
$$

is balanced for all $a \neq 0$.

Two special cases

Problem: Representation depends on B_{i}.

- $m=1: f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$ such that

$$
f(x+a)+f(x)+\operatorname{trace}(a x)
$$

is balanced for all $a \neq 0$.

- $m=n: F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ such that

$$
F(x+a)+F(x)+a \cdot x
$$

is a permutation for all $a \neq 0$. planar. ZHOU (2013)

Satz 4.14 Sei G eine abelsche Gruppe der Ordnung $2^{2 a+2}$, die eine Untergruppe $E=\langle\alpha\rangle \times H$ enthalte mit $|H|=2^{\alpha}$ und max $\{4, \exp (H)\}=o(\alpha)=$ $2^{2} \leq 2^{2+2} \cdot$ Dann giot es eine $\left(2^{2 a+1}, 2,2^{2 a+1}, 2^{2 a}\right)$-Differenzmenge in G relativ
$\left.z u \alpha^{2^{2-1}}\right\rangle$.
Beweis. Schreibe $H=\bigotimes_{j=1}^{t}<\beta_{j}>$ mit $o\left(\beta_{j}\right)=2^{b_{j}}$ und $b_{1}=\max \left\{b_{j}: j=\right.$ $1,2, \ldots, t\}$ (beachte $b_{1}=1$ oder e). Wir setzen

$$
D_{i_{1}, i_{2}, \ldots, i_{t}}=\bigotimes_{j=1}^{t}<\beta_{j} \alpha^{i, 2^{2-b_{j}}}>\cup \alpha^{2 C-2} \bigotimes_{j=1}^{t}<\beta_{j} \alpha^{i, 2^{2--b_{j}}}>
$$

und wählen $g_{i_{1}, i_{2}, \ldots, i_{t}} \in G$ mit
(a) falls $b_{1}=1$ (und damit $e=2$), so ist

$$
\left\{g_{i_{1}, i_{2}, \ldots, i_{i}}: i_{k}=0,1, \ldots, 2^{b_{k}}-1 \text { für } 1 \leq k \leq t\right\}
$$

ein vollständiges System (verschiedener) Nebenklassenrepräsentanten von E in G und
(b) falls $b_{1}=e \geq 2$, so ist

$$
\left\{g_{i_{1}, i_{2}, \ldots, i_{k}}: 0 \leq i_{k} \leq 2^{b_{k}}-1 \text { für } 2 \leq k \leq t, 0 \leq i_{1} \leq 3\right\}
$$

ein vollständiges System (verschiedener) Nebenklassenrepräsentanten von B in G und

$$
g_{i_{1}, i_{2}, \ldots, i_{2}}=\alpha^{m} g_{n, i_{2}, \ldots, i_{t}}
$$

$$
g_{i_{1}, i_{2}, \ldots, i_{2}}=\alpha^{m} g_{n, i_{2}, \ldots, i_{t}},
$$

Wobei m und n durch $i_{1}=4 m+n$ und $0 \leq n \leq 3$ bestimmt sind.
Dann ist

$$
R=\bigcup_{i_{1}=0}^{2 b_{1}-1} \bigcup_{i_{2}=0}^{1 b_{2}-1} \cdots \bigcup_{i_{z}=0}^{2 t_{t}-1} D_{i_{1}, i_{2}, \ldots, i_{t}} g_{i_{1}, i_{2}, \ldots, i_{k}}
$$

die gesuchte relative Differenzmenge, was man wie im Beweis von Satz 4.1 nachrechnet

$$
\square
$$

Es folgt eine weitere Variation der K-Matrix-Methode.
Satz 4.15 Sei G eine abelsche Gruppe der Ordnung $2^{2 a+2}$, die eine Untergruppe $\langle\alpha>\times E$ enthalte mit $| H \mid=2^{\alpha+2}$ und $4 \leq \exp (H)=o(\alpha) \leq 2^{a}$, und sei $N^{\prime}=<\beta>$ eine beliebige zyklische Untergruppe der Ordnung 4 $N=\left\langle\beta^{2}\right\rangle$.

Beweis. Wir definieren eine Aquivalenzrelation auf G^{*} durch

$$
\left.\chi \sim \chi^{\prime} \Longleftrightarrow \operatorname{Kern\chi }\right|_{H}=\left.\operatorname{Kern} \chi^{\prime}\right|_{H}
$$

Seien $\left[\chi_{1}\right],\left[\chi_{2}\right], \ldots,\left[\chi_{n}\right]$ die Äquivalenzklassen mit $\chi_{i} \not \& N^{\perp}$. Wir schreiben $K_{t}=\left.K_{\text {ern }} \chi_{t}\right|_{H}$. Wie im Beweis von Satz 4.2 sehen wir, daß es für $t=$ $1,2, \ldots, n$ Elemente $h_{t} \in H \backslash K_{t}, y_{t}, z_{t} \in G \backslash H$ gibt, so daß die durch $m_{i j}^{(t)}=y_{t} z_{h}^{j} h_{t}^{i-(4 i+1) j}$ definierten $2^{s_{t}} \times 2^{s_{t}}$-Matrizen $M_{t}=\left(m_{i j}^{(t)}\right)$ (dabei ist $2^{\prime t}=2^{a} /\left|K_{t}\right|=o\left(\left.\chi_{t}\right|_{H}\right) / 4$) die Bedingungen (2) und (3) aus dem Beweis von Satz 4.2 und außerdem folgende Bedingung erfüllen:
(1') Falls $\chi \in\left(K_{t}^{\perp} \cap N^{\prime \perp}\right) \backslash\left\{\chi_{0}\right\}$, wobei χ_{0} der triviale Charakter von G ist, so ist die Summe der Werte von χ über jede Spalte von M_{t} gleich 0 . Ebenfalls wie im Beweis von Satz 4.2 überzeugt man sich davon, daß

$$
R=\bigcup_{t=1}^{n} \bigcup_{i, j=0}^{2^{t} t-1} m_{i j}^{(t)}\left(K_{t} \cup \beta K_{t}\right)
$$

die gesuchte relative Differenzmenge ist.
Schließlich benötigen wir wie in Abschnitt 4.1 noch eine rekursive Konstruktion.
Satz 4.16 Sei $G=<\alpha>\times B$ eine abelsche Gruppe der Ordnung $2^{2 a+2}$, wobei B eine Untergruppe H der Ordnung 2^{a} enthalte mit $4 \leq \exp (H)<$ $o(\alpha) \leq 2^{a+2}$, und sei $N^{\prime}=\langle\beta>$ eine Untergruppe der Ordnung 4 von H, die in einem zyklischen direkten Faktor von H enthalten ist. Falls eine $\left(2^{2 a-1}, 2,2^{2 a-1}, 2^{2 a-2}\right)$-Differenzmenge in $\left\langle\alpha^{4}\right\rangle \times B$ relativ $z u N=\left\langle\beta^{2}\right\rangle$ existiert, so gibt es auch eine $\left(2^{2 a+1}, 2,2^{2 a+1}, 2^{2 a}\right)$-Differenzmenge in G relativ $z u$ N.
Beweis. Sei R_{0} eine $\left(2^{2 a-1}, 2,2^{2 a-1}, 2^{2 a-2}\right)$-Differenzmenge in $\left\langle\alpha^{4}\right\rangle \times B$ relativ zu N. Wir schreiben $o(\alpha)=2^{e}$ und setzen

$$
R_{1}=\left\{\alpha^{2 i} \gamma: 0 \leq i<2^{e-2}, \gamma \in B \text { und } \alpha^{4 i} \gamma \in R_{0}\right\} .
$$

Sei $H=\bigotimes_{j=1}^{t}<\beta_{j}>$ mit $o\left(\beta_{j}\right)=2^{b_{j}}$ und $\beta=\beta_{1}^{2^{b_{1}-2}}$. Ferner sei $b_{s}=\max \left\{b_{j}\right.$: $j=1,2, \ldots, t\}$. Für $0 \leq i_{j} \leq 2^{b_{j}}-1, j=1,2, \ldots, t$ und $\left(i_{1}, 2\right)=1$ setzen wir

$$
D_{i_{1}, i_{2}, \ldots, i_{t}}=\left(\bigotimes_{j=1}^{t}<\beta_{j} \alpha^{i j^{k-b_{j}}}>\right) \cup\left(\beta_{1}^{2^{s_{1}-2}} \bigotimes_{j=1}^{t}<\beta_{j} \alpha^{i^{j} 2^{\varepsilon-b_{j}}}>\right)
$$

Kantor's result

Quadratic planar functions describe commutative semifields. and vice versa. Many examples due to Kantor (2003):

Kantor's result

Quadratic planar functions describe commutative semifields. and vice versa. Many examples due to Kantor (2003):

Theorem
$\mathbb{K}=\mathbb{K}_{0} \supset \mathbb{K}_{1} \supset \cdots \supset \mathbb{K}_{n}$ of characteristic 2 with $\left[\mathbb{K}: \mathbb{K}_{n}\right]$ odd. Let tr_{i} be the relative trace from \mathbb{K} to \mathbb{K}_{i}. Then, for all nonzero $\zeta_{1}, \ldots, \zeta_{n} \in \mathbb{K}$, the mapping $F: \mathbb{K} \rightarrow \mathbb{K}$ given by

$$
F(x)=\left(x \sum_{i=1}^{n} \operatorname{tr}_{i}\left(\zeta_{i} x\right)\right)^{2}
$$

is planar. Examples are inequivalent.

Power mappings $F(x)=\alpha \cdot x^{d}$

$$
F(x+a)-F(x)+a \cdot x \quad \text { permutation. }
$$

Power mappings $F(x)=\alpha \cdot x^{d}$

$$
F(x+a)-F(x)+a \cdot x \text { permutation. }
$$

Known power mappings αx^{d} which are planar:

d	condition	
2^{k}	no	folklore
$2^{k}+1$	$n=2 k$	SCHMIDT, ZHOU
$4^{k}\left(4^{k}+1\right)$	$n=6 k$	SCHERR, ZIEVE

Power mappings $F(x)=\alpha \cdot x^{d}$

$$
F(x+a)-F(x)+a \cdot x \text { permutation. }
$$

Known power mappings αx^{d} which are planar:

d	condition	
2^{k}	no	folklore
$2^{k}+1$	$n=2 k$	SCHMIDT, ZHOU
$4^{k}\left(4^{k}+1\right)$	$n=6 k$	SCHERR, ZIEVE

Theorem (MüLler, Zieve (2013))
Let d be a positive integer such that $d^{4} \leq 2^{m}$ and let $c \in \mathbb{F}_{2^{m}}$ be nonzero. Then the function $x \mapsto \alpha x^{d}$ is planar on $\mathbb{F}_{2^{m}}$ if and only if d is a power of 2 .

Some Questions

Question

1. Is it possible to find $F: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}^{n}$ which is non-quadratic but planar?
2. Can we extend the Kantor result to $A P N$ or $A B$ functions?
3. Can we extend the Kantor result to p odd?

Knuth Operation

A semifield is an n-dimensional vector space of invertible $n \times n$ matrices. If

$$
\left(a_{i, j}^{(k)}\right) \in \mathrm{GL}\left(n, \mathbb{Z}_{p}\right), k=1, \ldots, n
$$

is basis, then the 5 sets defined by the matrices

$$
\left(a_{j, i}^{(k)}\right),\left(a_{i, k}^{(j)}\right),\left(a_{k, i}^{(j)}\right),\left(a_{k, j}^{(i)}\right),\left(a_{j, k}^{(i)}\right)
$$

also generate vector spaces of invertible matrices.

The Symmetric Case: p Odd

If $\left(a_{i, j}^{(k)}\right)_{i, j}$ are symmetric, they describe quadratic forms
$f_{k}: \mathbb{Z}_{p}^{n} \rightarrow \mathbb{Z}_{p}$. The mapping

$$
F(x)=\left(\begin{array}{c}
f_{1}(x) \\
\vdots \\
f_{n}(x)
\end{array}\right) \quad \text { is planar: }
$$

It satisfies for p odd:

$$
F(x+a)-F(x)-F(a)+F(0)
$$

are (linear) permutations for all $a \neq 0 . F$ gives another vector space of invertible matrices which are not symmetric. Transposing them gives a third vector space.

Knuth and Planar Functions: p Odd

If F is quadratic and planar, then the component functions are quadratic and define symmetric matrices (symplectic spread).

Transposing the linear mappings

$$
x \mapsto F(x+a)-F(x)-F(a)+F(0)
$$

can be described in terms of F.

The three semifields in the KnUTH orbit of a commutative semifield (symplectic spread) have a unified description.

The Symmetric Case: p Even

If $\left(a_{i, j}^{(k)}\right)_{i, j}$ are symmetric, then

$$
F(x+a)-F(x)+\left(\begin{array}{c}
\sum_{i} a_{i, i}^{(1)} x_{i} \\
\vdots \\
\sum_{i} a_{i, i}^{(n)} x_{i}
\end{array}\right)
$$

are (linear) permutations for all $a \neq 0$, where the components of F are given by the quadratic forms defined by the $\left(a_{i, j}^{(k)}\right)_{i, j}$.
F gives another vector space of invertible matrices which are not symmetric. Transposing them gives a third vector space.

Knuth and Planar Functions: p Even

If F is quadratic and planar and $p=2$, then the component functions are quadratic and define, together with the bilinear forms, symmetric matrices of full rank.

Transposing the linear mappings corresponding to F can be described in terms of F.

The three semifields in the KnUTH orbit of a commutative semifield have a unified description very similar to the p odd case.

Conclusion

- Relative difference sets in elementary-abelian groups are equivalent to vector spaces of bent functions.
- Notion of non-extendable bent functions.
- Difference sets in $\Gamma=\mathbb{Z}_{4}^{s} \times \mathbb{Z}_{2}^{t}$ relative to 2Γ are equivalent to \mathbb{Z}_{4} bent functions, depending on the representation of Γ.
- Explanation of Knuth cube in terms of planar functions.

