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Outline

Boolean and p-ary vectorial bent functions and their relative
difference sets.
Extendability.

p = 2: Vectorial bent functions and their relative difference
sets.

v

v

v

v

Interpretation in terms of KNUTH cube.
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Bent Functions

f 72y — Zsy is bent if one of the following holds:
» x — f(x + a) — f(x) is balanced for all a # 0.

> | Z 1)f()+(2x) | = 27/2 for all a, where ( | ) is standard

mner product.
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Bent Functions

f 72y — Zsy is bent if one of the following holds:
» x — f(x + a) — f(x) is balanced for all a # 0.
> | Z 1))@ | = 27/2 for all a, where ( , ) is standard
mner product.
» D ={x€e€Zy : f(x)=1}isa

(2m, 2"t + 2(n=2)/2 on-2 4 2(”_2)/2) difference set (support
of f).
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Bent Functions

f 72y — Zsy is bent if one of the following holds:
» x — f(x + a) — f(x) is balanced for all a # 0.

> | Z 1)f()+(2x) | = 27/2 for all a, where ( | ) is standard

mner product.
» D ={x€e€Zy : f(x)=1}isa
(2m, 2"t + 2(n=2)/2 on-2 4 2(”_2)/2) difference set (support
of f).
> Gri={(x,f(x)) : x € Zy} CZS s a relative
(27,2,2n 2n~1) difference set (graph of the function f).
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An example

X1X2 + X3Xg.

f(Xla X2, X3, X4)

The support:

The graph Gf:
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(Relative) Difference Sets with Parameters (m, n, k, \).

» group [ of order m- n
» subgroup A of order n
> subset D C I of order k
k solutions if b =10
» x —y = b has ¢ 0 solutions if b € A\ {0}

A solutions if b ¢ A
with x,y € D.
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(Relative) Difference Sets with Parameters (m, n, k, \).

v

group I of order m- n

v

subgroup A of order n

subset D C I of order k
k solutions if b =0

x —y = bhas ¢ 0 solutions if b € A\ {0}
A solutions if b ¢ A

v

v

with x,y € D.

Remark

1. Difference set relative to .
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(Relative) Difference Sets with Parameters (m, n, k, \).

v

group I of order m- n

v

subgroup A of order n

subset D C I of order k
k solutions if b =0

x —y = bhas ¢ 0 solutions if b € A\ {0}
A solutions if b ¢ A

v

v

with x,y € D.

Remark

1. Difference set relative to .
2. If n=1: (m, k,\) difference set.
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(Relative) Difference Sets with Parameters (m, n, k, \).

v

group I of order m- n

v

subgroup A of order n

subset D C I of order k
k solutions if b =0

x —y = bhas ¢ 0 solutions if b € A\ {0}
A solutions if b ¢ A

v

v

with x,y € D.

Remark

1. Difference set relative to .
2. If n=1: (m, k,\) difference set.
3. D is a transversal of \ if k = m.

538



Examples

The following are equivalent:
» {7y — Zoy is bent
» Dy is (27,271 4 2(n=2)/2 2n=2 4 2(n=2)/2) difference set in
7S, n=4: (16,6,2) or (16,10,6).
» Gris (27,2,2",271) difference set relative to
{(0,y) : y€Zy}. n=4:(16,2,16,8)
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Examples

The following are equivalent:
» {7y — Zoy is bent
» Dy is (27,271 4 2(n=2)/2 2n=2 4 2(n=2)/2) difference set in
7S, n=4: (16,6,2) or (16,10,6).
» Gris (27,2,2",271) difference set relative to
{(0,y) : y€Zy}. n=4:(16,2,16,8)
Example
1. {0,1,3} is a (7,3,1) difference set in Z7.
2. {1,2,4,8} is a (5,3,4,1) difference set in Zs relative to 5Z;s.
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Comment on Equivalence

Remark

» Equivalent bent functions give rise to equivalent RDS Gy.

» Equivalent bent functions may give rise to inequivalent
difference sets D¢ !
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The General Case: p Prime

f . Z, — Zp is bent if one of the following holds:

» f(x+a) — f(x) = b has p"~! solutions for all a # 0 and all
be Z,.
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The General Case: p Prime

f . Z, — Zp is bent if one of the following holds:

» f(x+a) — f(x) = b has p"~! solutions for all a # 0 and all
be Z,.

\ZC ) = /2

forallac Z). (¢p = €2/P)
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The General Case: p Prime

f . Z, — Zp is bent if one of the following holds:

» f(x+a) — f(x) = b has p"~! solutions for all a # 0 and all
be Z,.

\ZC ) = /2

forallac Z). (¢p = €2/P)
> Gr = {(xF(x) © x €20} C 2 isa (%, p.p", p"Y)
difference set relative to

N={(0,y) : y € Zp}.
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Quadratic Examples

1. A € GL(n, p) symmetric, full rank, p odd:

f(x)=x" -A-x

2. A € GL(n,2) symmetric with zero diagonal (alternating), full

rank:
f(X) = Z aj jXiX;j

i<j

These are quadratic examples: x — f(x + a) — f(x) — f(a) + f(0)
is linear!
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Vectorial Bent

A mapping F : Z — Z," is vecorial bent if
F(x+a)— F(x)=0b

has p"~" solutions for all a # 0 and all b.
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Vectorial Bent

A mapping F : Z — Z," is vecorial bent if
F(x+a)— F(x)=0b
has p"~" solutions for all a # 0 and all b.

Equivalently:
» Gr i {(x,F(x)) : x€Zy}YCZy ™ isa (p", p", p", p" ™)
difference set relative to A = {(0,y) : y € Z"}.
» All component functions x — (b, F(x)) with a # 0 are bent.
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Vectorial Bent

A mapping F : Z — Z," is vecorial bent if
F(x+a)— F(x)=0b
has p"~" solutions for all a # 0 and all b.

Equivalently:
» Gr i {(x,F(x)) : x€Zy}YCZy ™ isa (p", p", p", p" ™)
difference set relative to A = {(0,y) : y € Z"}.
» All component functions x — (b, F(x)) with a # 0 are bent.

Vectorial bent functions are vector spaces of bent functions!
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Planar Functions: n = m

A vectorial bent function f: Z ] — 7" is called planar:

{(x,F(x)) : xe€ Zp”}

is a relative

(p", p", p", 1) — difference set in Zp2”.
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Planar Functions: n=m
A vectorial bent function f: Z ] — 7" is called planar:

{(x,F(x)) : xe€ Zp”}

is a relative

(p", p", p", 1) — difference set in Zp2”.

Remark

1. p must be odd.
Projective planes.

If F quadratic: Semifield planes.

B wnN

Only one non-quadratic example known in F3» COULTER,
MATTHEWS (1997): xG3*+1/2 with gcd(a, n) = 1, a odd.
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Examples and Bounds

F: Zp” — me vectorial bent

Theorem (NYBERG 1991)

If p=2 and n even and m < g hence no planar functions.
Example

1. n=2m:
F(x,y)=x-m(y)+o(y)

for permutation 7 and any mapping o on F,», where
X,y € Fpm.

2. podd, n = m: Any semifield, for instance F(x) = x°.
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Motivation

v

Geometers are interested in projective plane constructions.

v

Connecting the geometers point of view with the “bent
functions” point of view.

v

Understand, how planar functions can be build from bent
functions.

v

p = 2: There are semifields, but no planar functions.
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Projecting Vectorial Bent Functions

Observation
F:Zg — 7, is bent, then projection in the output yields
vectorial bent functions F' : 7.7 — 7" *.

Question

Are there bent functions 7)) — 7.," which are not “projection” of
a bent function 2.} — 7" ? non-extandable
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Projecting Vectorial Bent Functions

Observation
F:Zg — 7, is bent, then projection in the output yields
vectorial bent functions F' : 7)) — 7" *.

Question
Are there bent functions 7)) — 7.," which are not “projection” of
a bent function 2.} — 7" ? non-extandable

| know no example if m = 1:

Classical constructions (Maiorana-McFarland, partial spreads,
o-polynomials) are vectorial, hence non-extandable should hold at
most for non-classical bent functions.
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OzBUDAK, P. (2014)

Theorem
There are vectorial bent functions not extendable by quadratic
bent functions, for instance

trace(x?)
F(x) = | trace(wx?)
trace(wx?)

with x € F34 as a mapping 73 — 7.5, w primitive in Fa.
The proof uses classification of 3* — 3% bent functions.

Remark
Extendability by a non-quadratic function would be a big surprise.

15/ 38



Number of Quadratic Bent Functions

Theorem
> g even, m=n/2: ¢q"M T (¢°* — 1) alternating
matrices
> g odd, m= (n+1)/2, n odd: g™V (g* 1 —1)
symmetric matrices
> g odd, m=n/2, neven: "M (g%t —1)
symmetric matrices

of full rank and size n x n.
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Number of Quadratic Bent Functions

Theorem
_ . om(m=1) 7m 2k—1 _ ;
> g even, m=n/2: q [T q(q 1) alternating
matrices

> g odd, m = (n+1)/2, n odd: g™V [[1Ly (¢ — 1)
symmetric matrices

> g odd, m=n/2, n even: "D (¢?F 1 — 1)
symmetric matrices

of full rank and size n x n.

Remark
The number of quadratic bent functions are known!
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P., ScuMIDT, ZHOU (2014)

Theorem
g even, m=n/2, v =qgmm U (¢> 1 —1), [rln] number of

i-dimensional subspaces in F q’? . Then there are

m

Lmzm: //:1[}H2k1

quadratic bent functions 7' — 7.2.
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Proof and Problems

» Alternating forms graph: Two alternating matrices A and B
are adjacent if A — B has full rank.

» Strongly regular graph.
» Number of triangles.

Remark

1. Larger cliques correspond to RDS 7" — Z2>2.

2. Number of bent-negabent functions are known.
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p Even and Odd: Differences

F: Zp” — ZP’" vectorial bent:

p=2 ‘ p odd
n even any n
m<n/2|any m<n
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p Even and Odd: Differences

F: Zp” — Zp’" vectorial bent:

p=2 ‘ p odd
n even any n
m<n/2|any m<n

However: There are (27,27 2" 1) difference sets in ' = Z,
relative to A = 2[ = 77, hence also in

Z4XZ2X...XZ2

with n odd using projection.

(o) ()-(2)- G

is a (4,4,4,1) difference set in Z; relative to 27,

Example

19 /38



Relative Difference Sets and Symmetric Matrices: p Odd

A vector space V, dim V = m, of regular symmetric matrices in
FE,"’") gives rise to a relative difference set with parameters

(", p", p" p" ™).

I=7Z, x1Z," relative to A = {0} x Z,".

20 / 38



The Construction

» Choose basis A{,...A,, of V.
» Construct the quadratic bent functions f;(x) = x T A;x.
| 2
fu(x)
Fx)=1
fm(X)
» RDS is graph Gr = {(x, F(x)) : x € Z.'} of F.

21/ 38



Relative Difference Sets and Symmetric Matrices: p = 2

Theorem
A vector space V, dim V. = m, of regular symmetric matrices in
an’") gives rise to a relative difference set with parameters

(27, 2m 2n 2n=m),

The group is
r — Z4k % Z2n+m—2k

relative to
A =27} x 7.,"*

where m — k is the dimension of subspace of alternating matrices
inV.
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The Construction: p=2, m=1

(=74 XZoX...xX 17>
can be realized as {(x,y) : x € Z;',y € Zy} with
(6y)+ (Y) = (x+ Xy +y' + B(x, X))

for some non-alternating bilinear form B.
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The Construction: p=2, m=1

(=74 XZoX...xX 17>

can be realized as {(x,y) : x € Z;',y € Zy} with
(6y)+ (X y) = (x+ Xy +y + B(x,x))
for some non-alternating bilinear form B. A transversal of
A =2 which has order 2

is a function
f . Z2n % Z2

and can be also interpreted as

fFz ™t = Uy,

23 /38



The Construction: p=2, m=1

Theorem

Gr ={(x,f(x)) : x € Z3'}.

is a relative difference set with parameters (2",2,2" 2"=1) in T if
and only if
f(x + a)+ f(x) + B(x, a)

is balanced for all a # 0.
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The Construction: p=2, m=1

Theorem

Gr ={(x,f(x)) : x € Z3'}.

is a relative difference set with parameters (2",2,2" 2"=1) in T if
and only if
f(x+ a)+ f(x) + B(x, a)

is balanced for all a # 0.

Such an f gives rise to a Zg4-bent function f. If B were alternating,
f gives rise to a bent function.
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An Example

If A is symmetric and non-alternating, the diagonal gives rise to B
and the non-diagonal gives rise to a quadratic function f:

Example
1 0 1
A=|0 10
100
gives rise to
X1
filx]| =xx3
X3
and

X1 x]
/ / /
B(|x2 ], | X |)=xix1 +xx

/
X3

25 / 38



The General Case

Theorem
> fi: Ly — Zo, i =1,..., m, not necessarily quadratic!
> B;, i=1,...,m symmetric bilinear forms.

Assume that
= 2_Nifi(x)
i
satisfies
F(x+a)+ F(x Z)\B x,a) Is balanced
for all \1, ..., \m, then there is a difference set with parameters
(2n,2m. 2n 2=y in [ = 77 x L5 relative to Z," (containing 2T ).
Conversely, such a relative difference set gives rise to functions f;

and B;.
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Main Observations

» Difference sets in Z; x Z4 are the same objects as vector
spaces of bent and Z, bent functions.

» No canonical way to represent [ = 7, relative to A = 2I".
One has to use bilinear forms B;.

» Possible realization of Z,” = {(x,y) : x,y € Fan} such that

)+ (LY) =Xy + Y+ xX).

27 / 38



Two special cases

Problem: Representation depends on B;.
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Two special cases

Problem: Representation depends on B;.

» m=1: f :Fy — 5 such that
f(x + a) + f(x) + trace(ax)

is balanced for all a # 0.
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Two special cases

Problem: Representation depends on B;.

» m=1: f :Fy — 5 such that
f(x + a) + f(x) + trace(ax)

is balanced for all a # 0.
» m=n: F:Fon — Fyn such that

F(x+a)+ F(x)+a-x

is a permutation for all a # 0. planar. Zuou (2013)
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der Ordnung 22042, 4;,

= 2% und maa{4, ez,
, eap(H)
a2 i g

eing Untep.
: )} = ofa)
enzmenge in relat:

v
< B; > mit o(8;)

; =2 nd'hy = maggy
Wir setzen el

: ol A
B Q<o
i

t}

pr

Ifir2<k<t, 0<i <3}
stem (verschi
( iedener) Nebenklassenreprisentanten von &
= AN

4 =4m+7und 0 < 7 < 3 bestimmt sind

€ Gruppe der Ordnung %42, die cine Unter-
#fl = 22 und 4 < eap(H) = ofa) < 2°,
ige :zkluche Untergruppe der Ordnung 4
284, 9%)Differenzmenge in G relativ zu

Bevweis. Wi definieren cine Aquivalenzrelatio
y~x = Kernxln=Ke

i ] dic Aquivalenzklassen mit Xi
e [k‘l;‘,i‘;‘,’,‘,.'w;l e Beweis von Satz 4.2 schen wir
1,2, ...,n Elemente hee H\ Ky y 2 € G‘\H gibt,
82y i ni U definerten 2% X 2% Matrizen M; -
' 9/ Ky| = oxul)/4) die Bedingungen (2) und (3) aus
fts 4.9 und auferdem folgende Bedingung erfillen ;
(1% Falls x € (K20 ") \ [xol, wobei xo det triviale Char
%o iut die Summe der Werte von x iiber jede Spalte vor M, gleic
benfalls wic im Beveis von Satz 4.2 fiberzeugt man sich davon,

n 291
r={) U mi(KUBK)
1i5=0
die gesuchte relative Differenzmenge ist.

Schlieflich bendtigen wir wie in Abschnitt 4.1 noch eine rekursive Ke
tion. i
Satz 4.16 Sei G =< a > XB eine abelsche Gruppe der Ordnung
“wobei B eine Untergruppe H der Ordnung 2° enthalte mit 4 < eap|
ofa) < 2%, und sei N' =< @ > eine Untergruppe der Ordnung 4
H, dic in cinem zylischen direkten Faktor von H enthalten ist. Falls e
(21, 2,21 22°-2) Differensmenge in < a* > x B relativ zu N =<
esistiert, so gibt es auch eine (22°¥1,2,922+1 920)_Differenzmenge in G rela
2u N, .
Beweis. Sei Ry cine (2227),2,2%~1 922-2) Differenzmenge in < o
relativ zu N. Wir schreiben o(a) = 2¢ und setzen A
Ry ={a¥y:0<i<2"? yec Bunday € R}
'y ¢ o
Sei H = ® < ;> mit o) = 2% und f = B . Ferner sei b, =
=12t} Fir 0 <i; < 2% — 1, j = 1,2, ..,t und (32, 2) ="

A

D= (Q < a2 >) u (ﬂfh-’ 69 < it
¥ L

51
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KANTOR's result

Quadratic planar functions describe commutative semifields. and
vice versa. Many examples due to KANTOR (2003):
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KANTOR's result

Quaderatic planar functions describe commutative semifields. and
vice versa. Many examples due to KANTOR (2003):

Theorem

K =Ko DKy D DK, of characteristic 2 with [K : K,| odd.
Let tr; be the relative trace from K to K;. Then, for all nonzero
(1,...,Ch € K, the mapping F : K — K given by

n 2
F(x) = (thr,-((,-x))

is planar. Examples are inequivalent.
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Power mappings F(x) = a - x4

F(x+a) — F(x)+a-x permutation.
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Power mappings F(x) = a - x4

F(x+a) — F(x)+a-x permutation.

Known power mappings ax? which are planar:

d ‘ condition ‘
2k no folklore
2k 11 n=2k | SCHMIDT, ZHOU

4k(45 +1) | n=6k | SCHERR, ZIEVE
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Power mappings F(x) = a - x4

F(x+a) — F(x)+a-x permutation.

Known power mappings ax? which are planar:

d ‘ condition ‘
2k no folklore
2k 11 n=2k | SCHMIDT, ZHOU

4k(45 +1) | n=6k | SCHERR, ZIEVE

Theorem (MULLER, ZIEVE (2013))

Let d be a positive integer such that d* < 2™ and let ¢ € Fom be
nonzero. Then the function x — ax? is planar on Fom if and only
if d is a power of 2.
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Some Questions

Question

1. Is it possible to find F : 73 — Zz which is non-quadratic but
planar?

2. Can we extend the KANTOR result to APN or AB functions?
3. Can we extend the KANTOR result to p odd?
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KNuUTH Operation

A semifield is an n-dimensional vector space of invertible n x n
matrices. If

k
(a’(J)) € GL(H,ZP), k= 17 -~
is basis, then the 5 sets defined by the matrices

EONCANEONENETY

also generate vector spaces of invertible matrices.

33/ 38



The Symmetric Case: p Odd

If (a(k-)),-J are symmetric, they describe quadratic forms

i

fi : Zp” — Zp. The mapping
F(x) = : is planar:

It satisfies for p odd:
F(x 4+ a) — F(x) — F(a) + F(0)

are (linear) permutations for all a # 0. F gives another vector
space of invertible matrices which are not symmetric. Transposing
them gives a third vector space.
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KNUTH and Planar Functions: p Odd

If F is quadratic and planar, then the component functions are
quadratic and define symmetric matrices (symplectic spread).

Transposing the linear mappings
x = F(x+a) — F(x) — F(a) + F(0)

can be described in terms of F.

The three semifields in the KNUTH orbit of a commutative
semifield (symplectic spread) have a unified description.
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The Symmetric Case: p Even

If (a,(l;));J are symmetric, then

ia:(,li)xf
F(X+3)—F(X)+ :
Do a/(',r:')xi

are (linear) permutations for all a # 0, where the components of F
are given by the quadratic forms defined by the (355));7j.

F gives another vector space of invertible matrices which are not
symmetric. Transposing them gives a third vector space.
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KNuUTH and Planar Functions: p Even

If F is quadratic and planar and p = 2, then the component
functions are quadratic and define, together with the bilinear
forms, symmetric matrices of full rank.

Transposing the linear mappings corresponding to F can be
described in terms of F.

The three semifields in the KNUTH orbit of a commutative
semifield have a unified description very similar to the p odd case.
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Conclusion

> Relative difference sets in elementary-abelian groups are
equivalent to vector spaces of bent functions.

» Notion of non-extendable bent functions.

» Difference sets in [ = Z; x Z4 relative to 2I are equivalent
to Z4 bent functions, depending on the representation of .

» Explanation of KNUTH cube in terms of planar functions.
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