Boolean Functions and Trapdoors on Block Cipher

Prof. Massimiliano Sala University of Trento

International Workshop on Boolean Functions and Their Applications Rosendal, September 2-7 1 Introduction

2 Linear Trapdoors

Trapdoors Project (2005–)

- A. Caranti
- F. Dalla Volta
- I. Simonetti
- I. Toli
- A. Rimoldi
- R. Aragona
- E. Bellini
- Especially on properties of Boolean functions
- M. Calderini

Block Cipher

Let $C = \{\phi_k | k \in \mathcal{K}\}$ be a block cipher acting on $V = V_1 \oplus \cdots \oplus V_s$, with $V_i = \mathbb{F}_2^m$ for $i = 1, \ldots, s$.

Definition

An element $\gamma \in Sym(V)$ is called a bricklayer transformation (or parallel S-box) of V if for any $v = (v_1 \oplus \cdots \oplus v_s) \in V$

$$v\gamma = v_1\gamma_1 \oplus \cdots \oplus v_s\gamma_s,$$

for some $\gamma_i \in Sym(V_i)$.

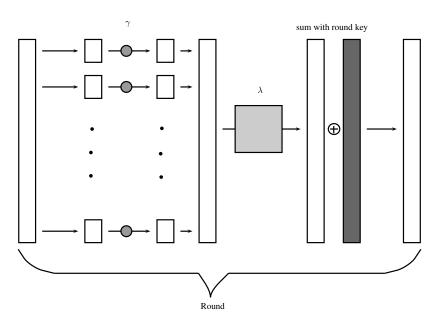
Definition

A linear map $\lambda \in GL(V)$ is called a proper mixing layer if no sum of the V_i , except $\{0\}$ and V, is λ -invariant.

Definition

A block cipher $\mathcal{C} = \{\phi_k | k \in \mathcal{K}\}$ is called translation based (TB) if

- (1) each ϕ_k is the composition of ℓ round functions $\phi_{k,h}$, for $k \in \mathcal{K}$, and $h=1,\ldots,\ell$, where in turn each round function can be written as a composition $\gamma_h \lambda_h \sigma_{\bar{k},h}$ of three permutations of V, with
 - ullet γ_h is a bricklayer transformation depending on the round
 - \bullet λ_h is a linear permutation depending on the round
 - ullet $\sigma_{ar{k},h}$ is the translation by $ar{k}$ depending on the key k and the round
- (2) for at least one round the mixing layer is proper and the map $\mathcal{K} \to V$, $k \mapsto \bar{k}$ is surjective.



Linear Trapdoors

Cryptographers construct C s.t. $\phi_k \notin AGL(V, +)$ for any key k, but there could be a hidden sum \circ s.t.:

 (V,\circ) is a vector space and $\phi_k \in \mathit{AGL}(V,\circ)$

On a single round

Let us focus on a sigle round. Then the question is:

Is there any operation \circ s.t. (V, \circ) is a vector space and

$$\gamma_h \lambda_h \sigma_{k,h} \in AGL(V, \circ)$$
?

Proposition

If $\gamma_h \lambda_h \sigma_{k,h} \in AGL(V, \circ)$ for all $k \in V$, then $\gamma_h \lambda_h \in AGL(V, \circ)$ and $T_+ = \{ translations \ with \ respect \ to \ + \} \subseteq AGL(V, \circ).$

Problems

(a) Find \circ s.t. $T_+ \subseteq AGL(V, \circ)$.

(b) When γ, λ or $\gamma \lambda \in AGL(V, \circ)$?

'Problem (a)

In [1], Caranti *et al.* characterized the abelian regular subgroups of AGL(V, +) in terms of algebras. Let T_{\circ} be the translation group with respect to \circ , we have:

Theorem

There is a one-to-one correspondence between

$$T_{\circ} \subseteq AGL(V,+)$$

\$

elementary abelian regular subgroups of AGL(V, +)

 \uparrow

commutative, associative \mathbb{F}_2 -algebra structures $(V,+,\cdot)$, with $x\cdot x=0$ for all $x\in V$ and such that the resulting ring is radical $(x+y+x\cdot y=x\circ y)$.

Theorem

Let
$$V = \mathbb{F}_2^n$$
. For $n \leq 6$

$$T_{\circ} \subseteq AGL(V,+) \Leftrightarrow T_{+} \subseteq AGL(V,\circ)$$

For $n \ge 7$

$$\exists T_{\circ} \subseteq AGL(V,+) \text{ s.t. } T_{+} \nsubseteq AGL(V,\circ)$$

M. Sala (UniTN)

How many $T_{\circ} \subseteq AGL(V, +)$

- n = 2 only T_+
- n = 3 there are 8 groups, of which 1 is T_+ and the others 7 are conjugated.
- n = 4 there are 106 groups, of which 1 is T_+ and the others 105 are conjugated.
- n = 5 there are 1954 groups, of which 1 is T_+ and the others form 2 classes of cardinality 1085 and 868.
- there are complex formulae for $n \ge 6$.

Let $f: V \to V$, we denote by $\hat{f}_a: x \mapsto f(x) + f(x+a)$

Definition

f is called weakly δ -uniform if for every $a \in V \setminus \{0\}$

$$|\mathrm{Im}(\hat{f}_a)| > \frac{2^{m-1}}{\delta}$$

Definition

f is called strongly r-anti-invariant if for any two subspace U and W s.t. f(U) = W, we have $\dim(U) = \dim(W) < m - r$ or U = W = V.

M. Sala (UniTN) Trapdoors on Block Chiper 13 / 19

Definition

f is called anti-crooked (AC) if for every $a \in V \setminus \{0\}$ Im (\hat{f}_a) is not an affine subspace of V.

Theorem

Let f be a power function (i.e. x^d). If f is weakly-APN and not APN then f is AC.

Corollary

 x^{-1} in even dimension is AC.

Lemma

Let f be a power function. If there exists $a \neq 0$ s.t. $\operatorname{Im}(\hat{f}_a)$ is not an affine subspace of V, then $\operatorname{Im}(\hat{f}_{a'})$ is not an affine subspace of V for all $a' \in V \setminus \{0\}$.

Recalling that f is called crooked if f is APN and $\operatorname{Im}(\hat{f}_a)$ is an hyperplane for all $a \in V \setminus \{0\}$.

Corollary

Let f be an APN power function not crooked, then f is AC.

[3] gives sufficient conditions on γ and λ in order to have $\gamma\lambda$ non linear

Theorem

Let C be a TB and there exists at least 1 round with S-box $\gamma = (\gamma_1, \dots, \gamma_s)$ and mixing layer λ s.t.:

- γ_i weakly-APN, strongly 1-Al and AC for all $i=1,\ldots,s$
- \bullet λ proper

 $\gamma \lambda \notin AGL(V, \circ)$ for any \circ

Some differential properties of $AGL(V, \circ)$

Let

$$\delta(f) = \max_{a \neq 0, b \in V} |\hat{f}_a^{-1}(b)|.$$

Theorem

$$T_+ \subseteq AGL(V, \circ) \Rightarrow \textit{ for any } f \in AGL(V, \circ)$$

$$\delta(f)\geq 2^{\frac{n}{2}}.$$

Theorem

For n = 3, 4, 5, if $T_+ \subseteq AGL(V, \circ)$ then $\delta(f) \ge 2^{n-1}$ for any $f \in AGL(V, \circ)$.

M. Sala (UniTN)

Remark

$$n=6$$
: $\delta(f)$?

For n = 7: there exists f s.t. $\delta(f) = 2^{n-2}$.

Remark

Let $V = (\mathbb{F}_2^m)^s$ and γ_i be APN, then $\delta(\gamma) = 2^{m(s-1)+1}$.

E.g. s = 2 and m = 5 we have that if all the γ_i are APN then

$$\delta(\gamma)=2^6>2^5.$$

Conclusions

- (1) If γ is not in our class (i.e. weakly-APN, strongly AI, and AC) maybe there exists a hidden sum \circ s.t. for any round and key-schedule $\mathcal C$ is linear.
- (2) Even if γ is in our class maybe there exists a hidden sum \circ s.t. ϕ_k is linear depending on the key-schedule.
- (3) Only APN's will not be enough!

- A. Caranti, F. Dalla Volta, M. Sala, "Abelian regular subgroups of the affine group and radical rings", Publicationes Mathematicae Debrecen, 2006, vol. 69, no. 3, p. 297-308.
- A. Caranti, F. Dalla Volta, M. Sala, "On some block ciphers and imprimitive groups", Appl. Algebra Engrg. Comm. Comput., 2009, vol. 20, no. 5, p. 339-350.
- A. Caranti, F. Dalla Volta, M. Sala, "An application of the O'Nan-Scott theorem to the group generated by the round function of an AES-like cipher", Design, Codes and Cryptography, 2009, vol. 52, no. 3, p. 293-301.
- R. Aragona, A. Caranti, F. Dalla Volta, M. Sala, "On the group generated by the round encryptions of translation based ciphers over arbitrary finite fields", Finite Fields and Their Applications, 2014, vol. 25, p. 293-305.
 - R. Aragona, M. Calderini, D. Maccauro, M. Sala, "On some differential properties of Boolean functions", 2014, http://arxiv.org/abs/1403.7922