On the duality of bent functions

Patrick Solé ${ }^{1}$
CNRS/LTCI, Paris, France

1. joint work with Claude Carlet, Lars E. Danielsen, Matthew Parker, Lin Sok

References

- Claude Carlet, Lars Danielsen, Matthew Parker, P. Solé, Self Dual Bent Functions, IJiCoT, vol. 1, (2010) 384-399.
- Lars Danielsen, Matthew Parker,P. Solé, The Rayleigh quotient of Bent Functions Springer Lect. Notes in Comp. Sc. 5921 (2009) 418-432.
- Thomas Feulner, Lin Sok, Patrick Solé, Alfred Wassermann, Towards the Classification of Self-dual Bent Functions in Eight Variables, Des. Codes Cryptogr. 68 (2013), no. 1-3, 395â-406.
- Lin Sok, P. Solé., On Formally Self-dual Boolean Functions in 2, 4 and 6 Variables, Proceedings of WAIFI 2012, Springer LNCS (2012).

Motivation

bent functions are important for

- difference sets in abelian groups
- spreading sequences for CDMA
- error correcting codes (Kerdock code . . .)
- symmetric cryptography (stream ciphers . . .)
enumeration and classification is impossible if the number of variables is 10 .
\Rightarrow looking for interesting subclasses
study self dual bent functions
hidden agenda : link to self dual codes?
Leitmotiv Spectrum of Hadamard matrices of Sylvester type.

Notation

A Boolean function f in n variables is any map from \mathbb{F}_{2}^{n} to \mathbb{F}_{2}. Its sign function is $F:=(-1)^{f}$, and its Walsh Hadamard transform (WHT) can be defined as

$$
\hat{F}(x):=\sum_{y \in \mathbb{F}_{2}^{n}}(-1)^{f(y)+x \cdot y}
$$

The matrix of the WHT is the Hadamard matrix H_{n} of Sylvester type, which we now define by tensor products of 2 by 2 matrices. For one variable we get

$$
H_{1}:=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Let $H_{n}:=H^{\otimes n}$ be the n-fold tensor product of H with itself and $\mathcal{H}_{n}:=H^{\otimes n} / 2^{n / 2}$, its normalized version.
Recall the Hadamard property

$$
H_{n} H_{n}^{T}=2^{n} I_{2^{n}} .
$$

Bent functions and their duals

A Boolean function in n variables is said to be bent if and only if $\mathcal{H}_{n} F$ is the sign function of some other Boolean function. That function is then called the dual of f and denoted by \tilde{f}.
The sign function of \tilde{f} is henceforth denoted by \tilde{F}.
If, furthermore, $f=\tilde{f}$, then f is self dual bent .
This means that its sign function is an eigenvector of \mathcal{H}_{n} attached to the eigenvalue 1 .
Similarly, if $f=\tilde{f}+1$ then f is anti self dual bent .
This means that its sign function is an eigenvector of \mathcal{H}_{n} attached to the eigenvalue -1 .

Characterization

Define the Rayleigh quotient S_{f} of a Boolean function f in n variables by the character sum

$$
S_{f}:=\sum_{x, y \in \mathbb{F}_{2}^{n}}(-1)^{f(x)+f(y)+x \cdot y}=\sum_{x \in \mathbb{F}_{2}^{n}} F(x) \hat{F}(x)
$$

Theorem

Let n denote an even integer and f be a Boolean function in n variables. The modulus of the character sum S_{f} is at most $2^{3 n / 2}$ with equality if and only if f is self dual bent or anti self dual bent.

The elementary proof uses Cauchy Schwarz+ Parseval property

Rayleigh quotient for numerical analysts

If S is a real symmetric n by n matrix and $x \in \mathbb{R}^{n}$, the Rayleigh quotient $R(S, x)$ is defined as

$$
R(S, x):=\frac{\langle S x, x\rangle}{\langle x, x\rangle}
$$

Well known property in literature of eigenvalue computation :

Theorem

$R(S, x)$ meets its extrema for x eigenvectors attached to the extremal eigenvalues of S.

In this talk: $S=H_{n}$ and $x=F$ and $S f=2^{n} R\left(H_{n}, F\right)$.

Sketch of proof

Let λ_{i} be the distinct (real) eigenvalues of S.
Put $\lambda=\min _{i} \lambda_{i}$ and $\Lambda=\max _{i} \lambda_{i}$
Write $x=\sum_{i} x_{i}$ an orthogonal decomposition on eigenspaces, so that

$$
\begin{aligned}
\langle x, x\rangle & =\sum_{i}\left\langle x_{i}, x_{i}\right\rangle \\
\langle x, S x\rangle & =\sum_{i} \lambda_{i}\left\langle x_{i}, x_{i}\right\rangle
\end{aligned}
$$

and

$$
\lambda\langle x, x\rangle \leq\langle x, S x\rangle \leq \Lambda\langle x, x\rangle
$$

In this talk :S $=H_{n}$ and $\lambda=-2^{n / 2}$ and $\Lambda=+2^{n / 2}$
An orthogonal decomposition of $\mathbb{R}^{2 n}$ in eigenspaces of H_{n} is

$$
\mathbb{R}^{2^{n}}=\operatorname{Ker}\left(H_{n}+2^{n / 2} I_{2^{n}}\right) \oplus \operatorname{Ker}\left(H_{n}-2^{n / 2} I_{2^{n}}\right)
$$

Odd number of variables : non bent territory

An interesting open problem is to consider the maximum of S_{f} for n odd, when the eigenvectors of H_{n} cannot be in $\{ \pm 1\}^{n}$. In that direction we have

Theorem

The maximum Rayleigh quotient of a Boolean function g in an odd number of variables n is at least $S_{g} \geq 2^{(3 n-1) / 2}$.

The proof uses the concatenation of a self dual bent function in $n-1$ variables with itself.

Duality for non bent functions

Note that, by definition, the Fourier coefficients of a non bent function are not constant in module.
For lack of bent functions in odd number of variables, we need to introduce a new notion of duality.
For any Boolean function f in n variables, with n odd, let the WHT of its its sign function be decomposed as magnitude and phase

$$
\widehat{F}=F^{m} F^{p}
$$

with $F^{m} \geq 0$, and F^{p} with values in $\{ \pm 1\}$. If $F^{m}(x)=0$, we take the convention that $F^{p}(x)=1$. mnemonic: m for magnitude and p for phase).

Asymptote of a Boolean function

Let F_{0} denote an arbitrary sign function in n variables. Define for $k \geq 1$, a sequence of sign functions in $n+2 k$ variables by

$$
F_{k}=\left(F_{k-1}, F_{k-1}^{p}, F_{k-1}^{p},-F_{k-1}\right)
$$

The attached Boolean function is f_{k} of sign function F_{k}.

Theorem

The sequence of normalized Rayleygh quotients of f_{k} is nondecreasing.

Since a bounded nondecreasing sequence of reals converge we can define the asymptote of a Boolean function f by the limit of the normalized Rayleygh quotients of f_{k} with initial condition $f_{0}=f$ for k large.

Asymptote : numerics

n	k	lower bound on asymptote
1	11	0.883883
2	0	1.0
	12	0.999756
3	12	0.687317
	10	0.883883
	10	0.883538
	10	0.882848
	10	0.507629
4	0	1.0
	10	0.999756
	10	0.999512
	6	0.871582
	6	0.840820

Constructions

Secondary constructions combine several BF of lower arity Primary Constructions comprize :

- Maiorana McFarland
- Dillon partial Spreads
- Monomial, Binomial (open problem)

Maiorana McFarland functions

A general class of bent functions is the Maiorana McFarland class, that is functions of the form

$$
x \cdot \phi(y)+g(y)
$$

with x, y dimension $n / 2$ variable vectors, ϕ a permutation of $\mathbb{F}_{2^{n / 2}}$ and g arbitrary Boolean.
A MMF function is self dual bent (resp. anti self dual bent) if and only if $g(y)=b \cdot y+\epsilon$ and $\phi(y)=L(y)+a$ where L is a linear automorphism satisfying $L \times L^{t}=I_{n / 2}, a=L(b)$, and a has even (resp. odd) Hamming weight.

Connection with self dual codes

In both cases the code of parity check matrix $\left(I_{n / 2}, L\right)$ is self dual and (a, b) one of its codewords.
Conversely, to the ordered pair (H, c) of
a parity check matrix H of a self dual code of length n and one of its codewords c can be attached such a Boolean function.

Counting issues

Remark Any self-dual code of length n gives rise to say K parity check matrices, and each such distinct parity check matrix gives rise to $2^{n / 2-1}$ self-dual bent functions, and $2^{n / 2-1}$ anti self-dual bent functions.
Thus, any self-dual code of length n gives rise to $K \times 2^{n / 2-1}$ self-dual bent functions, and the same number of anti self-dual bent functions, to within variable re-labelling. All such functions are quadratic.

Dillon Partial Spreads

Let $x, y \in \mathbb{F}_{2^{n / 2}}$. The class denoted by $\mathcal{P} \mathcal{S}_{a p}$ consists of so-called Dillon's functions of the type

$$
f(x, y)=g(x / y)
$$

with the convention that $x / y=0$ if $y=0$, and where g is balanced and $g(0)=0$.

Theorem

A Dillon function is self dual bent if and only if g satisfies $g(1)=0$, and, for all $u \neq 0$ the relation $g(u)=g(1 / u)$ holds. There are exactly $\binom{2^{n / 2-1}-1}{2^{n / 2-2}}$ such functions.

Class symmetries

A class symmetry is an operation on Boolean functions that leave the self dual bent class invariant as a whole.
Define, following Janusz, the orthogonal group of index n over \mathbb{F}_{2} as

$$
\mathcal{O}_{n}:=\left\{L \in G L(n, 2) \& L L^{t}=I_{n}\right\} .
$$

Observe that $L \in \mathcal{O}_{n}$ if and only if $\left(I_{n}, L\right)$ is the generator matrix of a self dual binary code of length $2 n$.

Theorem

Let f denote a self dual bent function in n variables.
If $L \in \mathcal{O}_{n}$ and $c \in\{0,1\}$ then $f(L x)+c$ is self dual bent.

I-bent functions

Following Riera-Parker, a function is I-bent if it has flat spectrum wrt some unitary transform U obtained by tensoring m matrices I_{2} and $n-m$ matrices \mathcal{H}_{1} in any order, for some $m \leq n$.

Theorem

Let f denote a self dual bent function in n variables, that is furthermore l-bent. Its I-bent dual is self dual bent.

Direct sum

For this subsection define the duality of a bent function to be 0 if it is self dual bent and 1 if it is anti self dual bent.
If f and g are Boolean functions in n and m variables, repectively, define the direct sum of f and g as the Boolean function on $n+m$ variables given by $f(x)+g(y)$.

Theorem

If f and g are bent functions of dualities ϵ and ν their direct sum is bent of duality $\epsilon+\nu$.

Indirect sum

If f_{1}, f_{2} and g_{1}, g_{2} are a pair of Boolean functions in n and m variables, respectively, define the indirect sum of these four functions by

$$
h(x, y):=f_{1}(x)+g_{1}(y)+\left(f_{1}(x)+f_{2}(x)\right)\left(g_{1}(y)+g_{2}(y)\right) .
$$

Some results of Carlet imply.

Theorem

If f_{1}, f_{2} (resp. g_{1}, g_{2}) are bent functions of dualities both ϵ (resp. both ν) their indirect sum is bent of duality $\epsilon+\nu$. If f_{1} is bent and $f_{2}=\tilde{f}_{1}+\epsilon$ for some $\epsilon \in\{0,1\}$, and g_{1} is self dual bent and g_{2} is anti self dual bent, then the indirect sum of the four functions is self dual bent of duality ϵ.

Spectrum of H_{n}

Theorem

The spectrum of \mathcal{H}_{n} consists of the two eigenvalues ± 1 with the same mutiplicity 2^{n-1}.
A basis of the eigenspace attached to 1 is formed of the rows of the matrix $\left(H_{n-1}+2^{n / 2} I_{2^{n-1}}, H_{n-1}\right)$.

The first statement comes from the Hadamard property

$$
H_{n}^{2}=2^{n / 2} I_{2^{n / 2}}
$$

and the fact that $\operatorname{Tr}\left(H_{n}\right)=0$.
The second follows from that equation and from the tensor product $H_{n}=H \otimes H_{n-1}$.

Spectral approach to self dual bent functions

The next result follows immediately by the preceding Lemma.

Theorem

Let $n \geq 2$ be an even integer and Z be arbitrary in $\{ \pm 1\}^{2^{n-1}}$. Define $Y:=Z+\frac{2 H_{n-1}}{2^{n / 2}} Z$.
If Y is in $\{ \pm 1\}^{2^{n-1}}$, then the vector (Y, Z) is the sign function of a self dual bent function in n variables.
Conversely every self dual bent function can be represented in this way.

Search Algorithm for self dual bent functions

We give an algorithm to generate all self dual bent functions of degree at most k.

Algorithm $\operatorname{SDB}(n, k)$ For all Z in $R M(k, n-1)$
(1) Compute all Y as $Y:=Z+\frac{2 H_{n-1}}{2^{n / 2}} Z$.
(2) If $Y \in\{ \pm 1\}^{n-1}$ output (Y, Z), else go to next Z.

It should be noted that compared to brute force exhaustive search the computational saving is of order 2^{R}, with

$$
R=2^{n}-\sum_{j=0}^{k}\binom{n-1}{j}=2^{n-1}+\sum_{j=0}^{n-k-1}\binom{n-1}{j}
$$

And anti self dual bent functions?

The next result shows that there is a one-to-one correspondence between self-dual and anti self-dual bent functions.

Theorem

Let $n \geq 2$ be an even integer and Z be arbitrary in $\{ \pm 1\}^{2^{n-1}}$. Define $Y:=Z+\frac{2 H_{n-1}}{2^{n / 2}} Z$. If Y is in $\{ \pm 1\}^{2^{n-1}}$, then the vector $(Z,-Y)$ is the sign function of a self dual bent function in n variables.

A direct search algorithm analogue to $\operatorname{SDB}(n, k)$ can be easily formulated.

Connection with plateaued functions

Following Zheng \& Zhang a Boolean function f on n variables is plateaued of order r if the entries of $H_{n}(-1)^{f}$ are in module either zero or $2^{n-r / 2}$.

Theorem

Let $n \geq 2$ be an even integer and Z be arbitrary in $\{ \pm 1\}^{2^{n-1}}$. Define $Y:=Z+\frac{2 H_{n-1}}{2^{n / 2}} Z$. If Y is in $\{ \pm 1\}^{n-1}$, then both Y and Z are sign functions of plateaued Boolean functions of order $n-2$ in $n-1$ variables.

Numerics I

We have classified all self-dual bent functions of up to 6 variables.
TABLE: Self-Dual Bent Functions of 2 and 4 Variabl

Representative from equivalence class	Size
12	1
Total number of functions of 2 variables	1
$12+34$	12
$12+13+14+23+24+34+1$	8
Total number of functions of 4 variables	20

Numerics II

Table : Self-Dual Bent Functions of 6 Variables

Representative from equivalence class	Size
$12+34+56$	480
$12+34+35+36+45+46+56+3$	240
$12+13+14+15+16+23+24+25+26$	32
$+34+35+36+45+46+56+1+2$	11,520
$134+234+156+256+12+35+46+56$	5760
$126+136+125+135+246+346+245$	
$+345+12+15+26+34+36+45+56$	23,040
$126+136+145+135+246+236+245$	
$+345+12+15+25+34+36+46+56$	1440
$456+356+145+246+135+236+124$	
$+123+15+26+34+35+36+45+46+3$	
$123+124+134+126+125+136+135$	384
$+234+236+235+146+145+156+246+245+346+345$	
$+256+356+456+14+25+36+45+46+56+1+2+3$	384
Total number of functions of 6 variables	42,896

Numerics III

We have classified all quadratic self-dual bent functions of 8 variables. Table 3 gives a representative from each equivalence class, and the number of functions in each class.

Table : Quadratic Self-Dual Bent Functions of 8 Variables

Representative from equivalence class	Size
$12+34+56+78$	30,720
$12+34+56+57+58+67+68+78+5$	15,360
$13+14+15+26+27+28+34+35+45+67+68+78+1+2$	2048
Number of quadratic functions of 8 variables	48,128

Motivation for NON self dual bent functions

After this study the following questions are natural

- Study the Rayleigh quotient of an unrestricted bent function : may NOT be self dual or anti self dual
- Give an algorithm to construct all bent functions of given Rayleigh quotient
- Rayleigh quotient of some classical primary constructions
- Rayleigh quotient of some classical secondary constructions

Define normalized Rayleigh quotient as

$$
N_{f}:=\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{f(x)+\tilde{f}(x)}=2^{-n / 2} S_{f} .
$$

Decomposing the sign function

the orthogonal decomposition in eigenspaces of H_{n} yields the following decomposition for the sign function F of a Boolean function, $F=F^{+}+F^{-}$, with $F^{ \pm} \in \operatorname{Ker}\left(H_{n} \pm 2^{n / 2} I_{2^{n}}\right)$, and $\langle F, F\rangle=\left\langle F^{+}, F^{+}\right\rangle+\left\langle F^{-}, F^{-}\right\rangle$,
with normalized rayleigh quotient

$$
N_{f}=\left\langle F^{+}, F^{+}\right\rangle-\left\langle F^{-}, F^{-}\right\rangle
$$

If f is bent then the sign function, \tilde{F}, of its dual exists, and

$$
\tilde{F}=F^{+}-F^{-} .
$$

Thus $F \pm \tilde{F}=2 F^{ \pm}$has entries in $\{0, \pm 2\}$, so both F^{+}and F^{-} have entries in $\{0, \pm 1\}$.

Decomposing their support

Denote by S_{+}(resp. S_{-}) the set of $x \in \mathbb{F}_{2}^{n}$ such that $F_{x}^{+}=0$ (resp. $F_{x}^{-}=0$).
Because $F=F^{+}+F^{-}$has entries in $\{ \pm 1\}$, it follows that the sets S_{+}and S_{-}partition \mathbb{F}_{2}^{n}.
Conversely, given a pair of eigenvectors of \mathcal{H}_{n}, F^{+}and F^{-}, with entries in $\{0, \pm 1\}$, and with corresponding sets S_{+}and S_{-}, such that $S_{+} \cup S_{-}=\mathbb{F}_{2}^{n}$, then the sum of F^{+}and F^{-}is the sign function of a bent function.

Characterizing the Rayleigh quotient

By observing that $\hat{F}=2^{n / 2}\left(F^{+}-F^{-}\right)$, and that $S_{f}=\langle F, \hat{F}\rangle$, we obtain

$$
N_{f}=\left\langle F^{+}, F^{+}\right\rangle-\left\langle F^{-}, F^{-}\right\rangle,
$$

or combinatorially

$$
N_{f}=\left|S_{-}\right|-\left|S_{+}\right|=2^{n}-2\left|S_{+}\right|=2\left|S_{-}\right|-2^{n} .
$$

Moreover, $\left|S_{+}\right|=d_{H}(f, \tilde{f})$, where $d_{H}($,$) denotes the Hamming$ distance.

Constructing F^{+}with given support

Let Z have entries in $\{0, \pm 1\}$, with $Z_{x}=0$ iff $x \in S_{+}^{Z}$.
Define $Y:=Z+\frac{2 H_{n-1}}{2^{n / 2}} Z$. If Y has entries in $\{0, \pm 1\}$, with $Y_{x}=0$ iff $x \in S_{+}^{Y}$, then the vector $F^{+}=(Y, Z)$ is in the eigenspace of \mathcal{H}_{n} attached to 1 with zero set S_{+}.
Same proof as in self dual bent case.

Constructing F^{-}with given support

Let Z have entries in $\{0, \pm 1\}$, with $Z_{x}=0$ iff $x \in S_{-}^{Z}$. Define $Y:=Z-\frac{2 H_{n-1}}{2^{n / 2}} Z$. If Y has entries in $\{0, \pm 1\}$, with $Y_{x}=0$ iff $x \in S_{-}^{Y}$, then the vector $F^{-}=(Y, Z)$ is in the eigenspace of \mathcal{H}_{n} attached to -1 with zero set S_{-}.
Same proof as in anti self dual bent case.

Adding up : bent functions with given Rayleigh quotient

we give an algorithm to generate all bent functions with given zero set S_{+}, and therefore, with Rayleigh quotient $2^{n}-2\left|S_{+}\right|$.

Algorithm $B W S\left(n, S_{+}\right)$
(1) Pick Z with entries in $\{0, \pm 1\}$, and $Z_{x}=0$ iff $x \in S_{+}^{Z}$
(2) Compute all candidate Y as $Y:=Z+\frac{2 H_{n-1}}{2^{n / 2}} Z$.
(3) If Y has entries in $\{0, \pm 1\}$ and $Y_{x}=0$ iff $x \in S_{+}^{Y}$ let $F^{+}:=(Y, Z)$, else go to next Z.
(9) Pick Z with entries in $\{0, \pm 1\}$, and $Z_{x}=0$ iff $x \notin S_{+}^{Z}$
(5) Compute all candidate Y as $Y:=Z-\frac{2 H_{n-1}}{2^{n / 2}} Z$.
(0) If Y has entries in $\{0, \pm 1\}$ and $Y_{x}=0$ iff $x \notin S_{+}^{Y}$ let $F^{-}:=(Y, Z)$, else go to next Z.
(1) Output $F=F^{+}+F^{-}$for all F^{+}found in step 3 and all F^{-} found in step 6.
Compared to brute force exhaustive search of complexity $2^{2^{n}}$ this alonrithm is of comnlexity 2^{R} with $R<2^{n-1}$

Elementary properties

The normalized Rayleigh quotient N_{f} of a bent Boolean function f is an even integer (negative or positive).
Let f be a bent function in n variables. If f is neither self dual nor anti self dual then $\left|N_{f}\right| \leq 2^{n}-4$.

Symmetries

Recall the " orthogonal group" of index n over \mathbb{F}_{2} as

$$
\mathcal{O}_{n}:=\left\{L \in G L(n, 2) \& L L^{t}=I_{n}\right\}
$$

Let f denote a bent function in n variables.
If $L \in \mathcal{O}_{n}$ and $c \in\{0,1\}$ then $g(x):=f(L x)+c$ is also bent, and $N_{g}=N_{f}$.
The next result shows that the distribution of the NRF is symmetric about the origin.
Define g by $g(x):=f(x+d)+d \cdot x$.
If $d \in \mathbb{F}_{2}^{n}$ then g is also bent, and $N_{g}=(-1)^{d \cdot d} N_{f}$.

MMF

Theorem

A Maiorana McFarland function $f=x \cdot \phi(y)+g(y)$ with $\phi(x)=L(x)+a, L \in G L(n / 2,2)$ and unitary $\left(L^{T}=L^{-1}\right)$, and $a \in \mathbb{F}_{2}^{n / 2}$, has normalized Rayleigh quotient

$$
N_{f}=(-1)^{a \cdot a} \times\left(\sum_{x}(-1)^{g(x)+a \cdot L(x)}\right)^{2} .
$$

The main interest is to exhibit bent functions with zero Rayleigh quotient.

Theorem

If $g(x)+a \cdot L(x)$ is constant, then f is self dual (resp. anti self dual) if a has even (resp. odd) weight, i.e. $N_{f}=1$ (resp. $\left.N_{f}=-1\right)$, and, if $g(x)+a \cdot L(x)$ is balanced then $N_{f}=0$.

Dillon

Let $x, y \in \mathbb{F}_{2^{n / 2}}$. The class denoted by $\mathcal{P} \mathcal{S}_{a p}$ consists of so-called Dillon's function of the type

$$
f(x, y)=g(x / y)
$$

with the convention that $x / y=0$ if $y=0$, and where g is a balanced Boolean function and $g(0)=0$.
We introduce the character sum

$$
K_{g}:=\sum_{u}(-1)^{g(u)+g(1 / u)}
$$

In particular, if $g=\operatorname{Tr}$ then K_{g} is a Kloosterman sum.

Theorem

Let f be a bent function constructed from a Dillon g as above. Its Rayleigh quotient is

$$
N_{f}=2^{n / 2}+\left(2^{n / 2}-1\right) K_{g}
$$

Indirect sum constructions

There are many possibilities.

Theorem

If a, b and c, d are two pairs of dual bent functions, i.e. such that $b=\tilde{a}$ and $d=\tilde{c}$, then f and $g=b+c+(a+b)(c+d)$ are also dual bent functions, i.e. $g=\tilde{f}$. Furthermore the Rayleigh quotient of both f and g is

$$
N_{f}=N_{a} N_{c}
$$

Theorem

If a, b and c, d are two pairs of bent functions satisfying $b=\tilde{a}+\epsilon, d=\tilde{c}+\mu$, for $\epsilon, \mu \in\{0,1\}$, then $f=a+d+(a+b)(c+d)$ and $g=b+c+(a+b)(c+d)$ are both bent. Furthermore the Rayleigh quotient of both is

$$
N_{f}=N_{a} N_{c} .
$$

Numerics in 4 variables

Table : Number of Bent Functions of Four Variables with given Rayleigh Quotient

N_{f}	Functions
± 16	40
± 8	192
± 4	384
0	280
Total	896

Numerics in 6 variables

Table : Number of Bent Functions of Six Variables with given Rayleigh Quotient

N_{f}	Functions
± 64	85,792
± 48	814,080
± 40	$5,225,472$
± 36	$10,813,440$
± 32	$33,686,400$
± 28	$61,931,520$
± 24	$159,169,536$
± 20	$327,155,712$
± 16	$548,066,304$
± 12	$865,075,200$
± 8	$1,194,362,880$
± 4	$1,434,058,752$
0	$784,985,440$

Classification of the cubic self-dual bent functions for $n=8$

Strategy :

- Reduce the problem to a Diophantine Linear System
- Apply symmetry breaking, i.e. fix some variables \Rightarrow Many systems to solve
- Sieve the set of solutions for non-equivalent representatives

Problem reduction to a Diophantine Linear System

- $H_{n}=H^{\oplus n} n$-fold tensor product of $H=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$ with itself.
- Replace $2^{n / 2} X=H_{n} X$ by

$$
2^{n / 2}\binom{Y}{Z}=\left(\begin{array}{cc}
H_{n-1} & H_{n-1} \\
H_{n-1} & -H_{n-1}
\end{array}\right) \cdot\binom{Y}{Z}
$$

- Solve

$$
\left(2^{n / 2-1} I \mid-2^{n / 2-1} /-H_{n-1}\right) \cdot\binom{Y}{Z}=0
$$

where $Y, Z \in\{ \pm 1\}^{2^{n-1}}$

Restriction to cubic functions

- The set of code words of a Reed-Muller code $R M(k, n)$ is the set of images of Boolean functions of degree $\leq k$.
- Let R be a generator matrix of the Reed-Muller code $R M(3,7)$.
- $z \in\{0,1\}:(-1)^{z}=1-2 z$.
- Solve

$$
\left(2^{n / 2-1} I \mid-2^{n / 2-1} I-H_{n-1}\right) \cdot\binom{Y}{\mathbf{1}_{2^{n-1}}-2 R^{\top} z}=0
$$

where $Y \in\{ \pm 1\}^{2^{n-1}}$ and $z \in\{0,1\}^{2^{n-1}}$.

Problem reduction to a Diophantine Linear System

With $A:=2^{n / 2} I+2 H_{n-1}$ and $b:=(I+A) \cdot\left(\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right)$, the system to solve is

$$
\left(\begin{array}{cccc}
0 & -I & R^{\top} & -2 I \\
-2^{n / 2+1} & A & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{c}
y \\
z \\
x \\
s
\end{array}\right)=\binom{0}{b},
$$

where $x_{i}, y_{i}, z_{i} \in\{0,1\}, \quad s_{i} \in \mathbb{Z}_{0}^{+}$.

Symmetry breaking

- $\left|\mathcal{O}_{8}\right|=185794560$
- $S_{6}<\mathcal{O}_{8}$
- $T:=\left\{x \in \mathbb{F}^{6} \mid \operatorname{wgt}(x)=3\right\}$
- $|T|=\binom{6}{3}=20$ and $T^{S_{6}}=T$
- For $k=0, \ldots, 20$ compute the orbits of S_{6} acting on $\binom{T}{k}$
- Total of 2136 orbits
- Solve 2136 Diophantine linear systems, each having 20 variables fixed

Solving the Diophantine linear systems

- With our LLL-based, exhaustive solver all solutions of these 2136 cases have been computed
- Solver is enhanced version of DISCRETA - tool for construction of combinatorial t-designs
- Total : 1912496 solutions

Find canonical representatives

- f Boolean function

$$
G_{f}=\left(\begin{array}{c|c|c}
0 & 1 & 1 \ldots 1 \\
\hline 1 & f(0) & f(x), x \in \mathbb{F}^{n} \backslash\{0\} \\
\hline 0 & 0 & x \in \mathbb{F}^{n} \backslash\{0\}
\end{array}\right)
$$

generator matrix of a linear $\left[2^{8}+1,10\right]_{2}$ code

- f and f^{\prime} are two equivalent self-dual bent functions over \mathbb{F}^{n} iff
there exists $M=\left(\begin{array}{ccc}1 & 0 & 0 \\ c & 1 & b^{\top} \\ L b & 0 & L\end{array}\right)$ with
- $L \in \mathcal{O}_{n}$
- $b \in \mathbb{F}^{n}, \operatorname{wgt}(b)$ even
- $c \in \mathbb{F}$
such that

$$
G_{f^{\prime}} \cdot \Pi_{M}=M \cdot G_{f}
$$

Find canonical representatives

- Th. Feulner has written efficient software for this task
- Computing time for isomorphism check : about 2 hours

Results

There are exactly

- 4 non-equivalent self-dual bent functions of degree 2
- 45 non-equivalent self-dual bent functions of degree 3
- 104960 self-dual bent functions of degree 2
- 1162420992 self-dual bent functions of degree 3

Formally self-dual Boolean functions

[Hyun, Lee and Lee 2012] Let f be a formally self-dual Boolean function in n variables with respect to its near weight enumerator. Then

$$
\begin{equation*}
W_{C_{f}}(x, y)=-2^{\frac{n}{2}-1} x^{n}+\sum_{j=0}^{\frac{n}{2}} a_{j}\left(x^{2}+y^{2}\right)^{n-j}\left(x y-y^{2}\right)^{j} \tag{1}
\end{equation*}
$$

where a_{j} 's are integers.
[Hyun, Lee and Lee 2012] Every self-dual bent function is formally self-dual Boolean function with respect to its near weight enumerator.

Classification of formally self-dual Boolean functions

Theorem (Sok and Solé 2012)

Up to the extended permutation group, there are 2, 91 and at least 5535376 non-equivalent formally self-dual Boolean functions (1, 3 non-equivalent self-dual bent functions in 2 and 4 variables) in 2, 4 and 6 variables respectively.

Conclusion: complete classification of formally self-dual Boolean functions in six variables is intractable in practice.

Open problems

PhD topic : give an algorithm to construct all bent function with prescribed Rayleigh quotient up to orthogonal equivalence The Hadamard Leitmotiv can come back each time there is a new generalization of bent functions, with possibly a different Fourier transform matrix.

- generalized bent functions as per K.U. Schmidt :

$$
f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{Z}_{4}
$$

the WHT matrix is the same

- bent functions as per Kumar et al

$$
f: \mathbb{Z}_{4}^{n} \longrightarrow \mathbb{Z}_{4}
$$

is difficult

- bent functions of the elementary abelian type

$$
f: \mathbb{F}_{p}^{n} \longrightarrow \mathbb{F}_{p}
$$

for p odd.

Thank you!

