More Constructions of Differentially 4-Uniform Permutations on $\mathbb{F}_{2^{2k}}$

Yin Tan

Department of Electrical and Computer Engineering University of Waterloo, ON, Canada

yin.tan@uwaterloo.ca

(Joint work with L. Qu, C. Li and G. Gong)

September 3, 2014

<u>Outline</u>

Motivation and Definitions

- Motivations
- Definitions

2 Construction of differentially 4-uniform permutations

- Power functions
- Construction from the switching method
- 3 Number of CCZ-inequivalent PPs via the switching method
- 4 Non-decomposable preferred Boolean functions

Construction of differentially 4-uniform permutations Number of CCZ-inequivalent PPs via the switching method Non-decomposable preferred Boolean functions Motivations Definitions

Requirements for a substitution box

Assuming F is the Substitution box chosen by a block cipher with SPN structure. To avoid various attacks, F should satisfy the following conditions:

- Low differential uniformity (to avoid differential attack);
- High nonlinearity (to aviod linear attack);
- High algebraic degree (to avoid higher order differential attack);
- Defined on $\mathbb{F}_{2^{2k}}$ (for software implementation);
- Others.

Construction of differentially 4-uniform permutations Number of CCZ-inequivalent PPs via the switching method Non-decomposable preferred Boolean functions Motivations Definitions

Differential uniformity

Let F be a function over \mathbb{F}_{2^n} . We have the following two different common methods to characterize its nonlinearity. For any $a \in \mathbb{F}_{2^n}^*$ and $b \in \mathbb{F}_{2^n}$, define

$$\delta_F(a,b) = |\{x \in \mathbb{F}_{2^n}|F(x+a) + F(x) = b\}|, \text{ and}$$

 $\Delta_F = \max_{a \in \mathbb{F}_{2^n}^*, b \in \mathbb{F}_{2^n}} \delta_F(a,b).$

To prevent the differential attack, we want the value Δ_F to be as small as possible.

¹PN functions do not exist in the field with even characteristic.

Construction of differentially 4-uniform permutations Number of CCZ-inequivalent PPs via the switching method Non-decomposable preferred Boolean functions Motivations Definitions

Differential uniformity

Let F be a function over \mathbb{F}_{2^n} . We have the following two different common methods to characterize its nonlinearity. For any $a \in \mathbb{F}_{2^n}^*$ and $b \in \mathbb{F}_{2^n}$, define

$$\delta_F(a,b) = |\{x \in \mathbb{F}_{2^n}|F(x+a) + F(x) = b\}|, \text{ and}$$

 $\Delta_F = \max_{a \in \mathbb{F}_{2^n}^*, b \in \mathbb{F}_{2^n}} \delta_F(a,b).$

To prevent the differential attack, we want the value Δ_F to be as small as possible.

• If
$$\Delta_F = 1$$
, F is called perfect nonlinear function (PN); ¹

¹PN functions do not exist in the field with even characteristic.

Construction of differentially 4-uniform permutations Number of CCZ-inequivalent PPs via the switching method Non-decomposable preferred Boolean functions Motivations Definitions

Differential uniformity

Let F be a function over \mathbb{F}_{2^n} . We have the following two different common methods to characterize its nonlinearity. For any $a \in \mathbb{F}_{2^n}^*$ and $b \in \mathbb{F}_{2^n}$, define

$$\delta_F(a,b) = |\{x \in \mathbb{F}_{2^n}|F(x+a) + F(x) = b\}|, \text{ and}$$

 $\Delta_F = \max_{a \in \mathbb{F}_{2^n}^*, b \in \mathbb{F}_{2^n}} \delta_F(a,b).$

To prevent the differential attack, we want the value Δ_F to be as small as possible.

- If $\Delta_F = 1$, F is called *perfect nonlinear function* (PN); ¹
- If $\Delta_F = 2$, F is called *almost perfect nonlinear function* (APN);

¹PN functions do not exist in the field with even characteristic.

Construction of differentially 4-uniform permutations Number of CCZ-inequivalent PPs via the switching method Non-decomposable preferred Boolean functions Motivations Definitions

Differential uniformity

Let F be a function over \mathbb{F}_{2^n} . We have the following two different common methods to characterize its nonlinearity. For any $a \in \mathbb{F}_{2^n}^*$ and $b \in \mathbb{F}_{2^n}$, define

$$\delta_F(a,b) = |\{x \in \mathbb{F}_{2^n}|F(x+a) + F(x) = b\}|, \text{ and}$$

 $\Delta_F = \max_{a \in \mathbb{F}_{2^n}^*, b \in \mathbb{F}_{2^n}} \delta_F(a,b).$

To prevent the differential attack, we want the value Δ_{F} to be as small as possible.

- If $\Delta_F = 1$, F is called *perfect nonlinear function* (PN); ¹
- If $\Delta_F = 2$, F is called *almost perfect nonlinear function* (APN);
- If $\Delta_F = 4$, F is called *differentially* 4-*uniform function*.

¹PN functions do not exist in the field with even characteristic.

Construction of differentially 4-uniform permutations Motivations Number of CCZ-inequivalent PPs via the switching method Non-decomposable preferred Boolean functions

Nonlinearity

(2) For any $a \in \mathbb{F}_{2^n}^*$ and $b \in \mathbb{F}_{2^n}$, define

$$\mathcal{W}_{F}(a, b) = \sum_{x \in \mathbb{F}_{2^{n}}} (-1)^{\operatorname{Tr}(aF(x)+bx)},$$
$$\mathcal{W}_{F} = \max_{a \in \mathbb{F}_{2^{n}}^{*}, b \in \mathbb{F}_{2^{n}}} |\mathcal{W}_{F}(a, b)|,$$
$$\mathsf{NL}_{F} = 2^{n-1} - \frac{1}{2} \mathcal{W}_{F}.$$

To be resistnt to the linear attack, we want the value NL_F to be as large as possible.

Construction of differentially 4-uniform permutations Number of CCZ-inequivalent PPs via the switching method Non-decomposable preferred Boolean functions Motivations Definitions

Nonlinearity

(2) For any $a \in \mathbb{F}_{2^n}^*$ and $b \in \mathbb{F}_{2^n}$, define

$$\begin{split} \mathcal{W}_{F}(a,b) &= \sum_{x \in \mathbb{F}_{2^{n}}} (-1)^{\operatorname{Tr}(aF(x)+bx)}, \\ \mathcal{W}_{F} &= \max_{a \in \mathbb{F}_{2^{n}}^{*}, b \in \mathbb{F}_{2^{n}}} |\mathcal{W}_{F}(a,b)|, \\ \mathsf{NL}_{F} &= 2^{n-1} - \frac{1}{2} \mathcal{W}_{F}. \end{split}$$

To be resistnt to the linear attack, we want the value NL_F to be as large as possible.

• When *n* is even, $W_F \leq 2^{n/2+1}$;

Construction of differentially 4-uniform permutations Number of CCZ-inequivalent PPs via the switching method Non-decomposable preferred Boolean functions

Nonlinearity

(2) For any $a \in \mathbb{F}_{2^n}^*$ and $b \in \mathbb{F}_{2^n}$, define

$$egin{array}{rcl} \mathcal{W}_F(a,b) &=& \displaystyle\sum_{x\in\mathbb{F}_{2^n}}(-1)^{\mathrm{Tr}(aF(x)+bx)}, \ \mathcal{W}_F &=& \displaystyle\max_{a\in\mathbb{F}_{2^n}^*,b\in\mathbb{F}_{2^n}}|\mathcal{W}_F(a,b)|, \ \mathrm{NL}_F &=& \displaystyle2^{n-1}-rac{1}{2}\mathcal{W}_F. \end{array}$$

Motivations

Definitions

To be resistnt to the linear attack, we want the value NL_F to be as large as possible.

- When *n* is even, $W_F \leq 2^{n/2+1}$;
- When *n* is odd, it is conjectured that $W_F \leq 2^{(n+1)/2}$;
- The function F is called maximal nonlinear if W_F = 2^{n/2+1} when n is even, or W_F = 2^{(n+1)/2} when n is odd.

Construction of differentially 4-uniform permutations Number of CCZ-inequivalent PPs via the switching method Non-decomposable preferred Boolean functions Motivations Definitions

EA-equivalence and CCZ-equivalence

- (1) The differential uniformity and nonlinearity of a function *F* is preserved by EA-equivalence and CCZ-equivalence;
- (2) CCZ-equivalence implies EA-equivalence, but not vice versa;
- (3) Therefore, obtaining an ideal Sbox can lead to a large class of ideal Sboxes.
- (4) However, given two functions *F* and *G*, it is difficult to tell whether they are CCZ-equivalent (if differential and linear spectrum are the same).

Construction of differentially 4-uniform permutations Number of CCZ-inequivalent PPs via the switching method Non-decomposable preferred Boolean functions Motivations Definitions

EA-equivalence and CCZ-equivalence

Definition 1

Two function $F, G : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ are called *extended affine equivalent* (EA) if there exist two affine permutations A_1, A_2 of \mathbb{F}_{2^n} and an affine function $A : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ such that

$$G=A_1\circ F\circ A_2+A,$$

where \circ denotes the composition of two functions.

For a function $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$, we denote by \mathcal{G}_F the graph of the function of F

$$\mathcal{G}_f = \{(x, F(x)) : x \in \mathbb{F}_{2^n}\} \subset \mathbb{F}_2^{2^n}.$$

We say two functions $F, G : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ *CCZ-equivalence* if there exists an affine permutation $A : \mathbb{F}_{2^{2n}} \to \mathbb{F}_{2^{2n}}$ such that $A(\mathcal{G}_F) = \mathcal{G}_G$.

Power functions Construction from the switching method

The power functions

It is natural to search for ideal Sboxes from power functions.

Table : Known differentially 4-uniform permutations on $\mathbb{F}_{2^{2k}}$ with maximal nonlinearity

Functions	Exponents d	Degree	Conditions
Gold	$x^{2^{i}+1}$	2	gcd(i, n) = 2, n = 2t, t odd
Kasami	$x^{2^{2i}-2^i+1}$	i + 1	gcd(i, n) = 2, n = 2t, t odd
Inverse	$x^{2^{2t}-1}$	2t - 1	n = 2t
Dobbertin	$x^{2^{2t}+2^t+1}$	3	n = 4t, t odd

It is conjectured the above table is complete, i.e. all power permutations with maximal nonlinearity are one of the four families.

Power functions Construction from the switching method

Binomial function

Theorem 2 (Bracken, T. and Tan, 2012)

Let n = 3k and k is an even integer with $3 \nmid k, k/2$ is odd. Let s be an integer with gcd(3k, s) = 2 and $3 \mid k + s$. Define the function $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ $F(x) = \alpha x^{2^s+1} + \alpha^{2^k} x^{2^{-k}+2^{k+s}},$

where α is a primitive element of \mathbb{F}_{2^n} . Then F is a differentially 4-uniform permutation with maximal nonlinearity.

Note that when gcd(3k, s) = 1, the function F is APN which is discovered by Budaghyan, Carlet and Leander.

Power functions Construction from the switching method

Switching method

If we do not requre maximal nonlinearity but "good" nonlinearity, much more infinite classes of differentially 4-uniform permutations can be obtained. A powerful tool is the so-called *switching method*, i.e. adding a Boolean function to F.

Switching method has been previously applied on:

- APN functions: a well-known example x³ + Tr(x⁹) (B-C-L); Many new APN examples from switching method in E-P's paper;
- (2). planar function: certain CCZ-inequivalent PN functions are switching neighbors, in P-Z's paper.
- (3). permutation polynomial: many PPs with the form $F(x) + \gamma \text{Tr}(H(x))$ are obtained in C-K's papers.

Power functions Construction from the switching method

Switching method

If we do not requre maximal nonlinearity but "good" nonlinearity, much more infinite classes of differentially 4-uniform permutations can be obtained. A powerful tool is the so-called *switching method*, i.e. adding a Boolean function to F.

Switching method has been previously applied on:

- APN functions: a well-known example x³ + Tr(x⁹) (B-C-L); Many new APN examples from switching method in E-P's paper;
- (2). planar function: certain CCZ-inequivalent PN functions are switching neighbors, in P-Z's paper.
- (3). permutation polynomial: many PPs with the form $F(x) + \gamma \text{Tr}(H(x))$ are obtained in C-K's papers.

In the following we apply the switching method on constructing differentially 4-uniform permutations on $\mathbb{F}_{2^{2k}}.$

Power functions Construction from the switching method

Preferred functions

Let n = 2k be an even integer and R be an (n, n)-function. Define the Boolean function D_R by $D_R(x) = \text{Tr}(R(x+1) + R(x))$, and the functions Q_R, P_R as

$$Q_R(x,y) = D_R\left(\frac{1}{x}\right) + D_R\left(\frac{1}{x} + y\right), P_R(y) = Q_R(0,y) = D_R(0) + D_R(y).$$

Let U be the subset of $\mathbb{F}_{2^n} \times \mathbb{F}_{2^n}$ defined by $U = \{(x, y) | x^2 + \frac{1}{y}x + \frac{1}{y(y+1)} = 0, y \notin \mathbb{F}_2\}.$ If

$$Q_R(x,y)+P_R(y)=0$$

satisfies for any elements in $(x, y) \in U$, then we call R a preferred function (PF), or said to be preferred.

Power functions Construction from the switching method

Properties of PFs

Proposition 1

Let S be a set of PFs defined on \mathbb{F}_{2^n} . Then the set S defined by

$$\mathcal{S} = \left\{ \sum_{f \in S} a_f f : a_f \in \mathbb{F}_2 \right\}$$

is a subspace of $(\mathcal{VF}^n, +)$.

Power functions Construction from the switching method

Properties of PFs

Proposition 1

Let S be a set of PFs defined on \mathbb{F}_{2^n} . Then the set S defined by

$$\mathcal{S} = \left\{ \sum_{f \in S} \mathsf{a}_f f : \mathsf{a}_f \in \mathbb{F}_2 \right\}$$

is a subspace of $(\mathcal{VF}^n, +)$.

If we can find t PFs, we then obtain 2^t PFs.

Power functions Construction from the switching method

Why we consider preferred functions?

Theorem 3

Let n = 2k be an even integer, $I(x) = x^{-1}$ be the inverse function and R be an (n, n)-function. Define

$$H(x) = x + Tr(R(x) + R(x + 1)),$$
 and
 $G(x) = H(I(x)).$

Then if R(x) is a preferred function,

(1.) G(x) is a differentially 4-uniform permutation polynomial;

(2.) The algebraic degree of G is n - 1;

(3.) The nonlinearity of F

$$NL_F \geq 2^{n-2} - \frac{1}{4} \lfloor 2^{\frac{n}{2}+1} \rfloor - 1.$$

Power functions Construction from the switching method

Examples of preferred functions

Example 4

Let $R(x) = x^d : \mathbb{F}_{2^{2k}} \to \mathbb{F}_{2^{2k}}$ and $F(x) = x + \operatorname{Tr}(R(x+1) + R(x))$, where

(1)
$$n = 2k = 4m, d = 2^{2m} + 2^m + 1,$$

(2) $d = 2^t + 1,$ where $1 \le t \le k - 1,$
(3) $d = 3(2^t + 1),$ where $2 \le t \le k - 1.$

Power functions Construction from the switching method

Examples of preferred functions

Example 4

Let $R(x) = x^d : \mathbb{F}_{2^{2k}} \to \mathbb{F}_{2^{2k}}$ and $F(x) = x + \operatorname{Tr}(R(x+1) + R(x))$, where

(1)
$$n = 2k = 4m, d = 2^{2m} + 2^m + 1,$$

(2) $d = 2^t + 1,$ where $1 \le t \le k - 1,$
(3) $d = 3(2^t + 1),$ where $2 \le t \le k - 1.$

Therefore, the function $F(x^{-1})$ is differentially 4-uniform permutations. Many PFs can be found in [Qu, T., Tan, Li, IEEE IT (2013)].

Preferred Boolean functions

Since we obtain a lot of new differentially 4-uniform permutations, it is inter:esting to consider

Problem 5

Let n = 2k and \mathcal{PF} be the set of all PFs on \mathbb{F}_{2^n} . Define

$$S_n = \{H(x^{-1}) \mid H(x) = x + \operatorname{Tr}(R(x+1) + R(x)), R \in \mathcal{PF}\}.$$

How many CCZ-inequivalent classes of differentially 4-uniform permutations among S_n ?

Preferred Boolean functions

Definition 6

Let n = 2k be an even integer and f be an *n*-variable Boolean function. We call f a *preferred Boolean function* (PBF for short) if it satisfies the following two conditions:

(i)
$$f(x+1) = f(x)$$
 for any $x \in \mathbb{F}_{2^n}$;
(ii) $f\left(\frac{1}{x}\right) + f\left(\frac{1}{x} + y\right) + f(0) + f(y) = 0$ for any pair $(x, y) \in U$, where U is the same set when define PFs.

Properties of preferred Boolean functions

Proposition 2

 $R : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is a PF if and only if $D_R(x) = \operatorname{Tr}(R(x) + R(x+1))$ is a PBF. Furthermore, for any PBF f with n variables, there are $2^{n \cdot 2^n - 2^{n-1}}$ preferred functions R such that $D_R(x) = f(x)$.

Properties of preferred Boolean functions

Proposition 2

 $R : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is a PF if and only if $D_R(x) = \operatorname{Tr}(R(x) + R(x+1))$ is a PBF. Furthermore, for any PBF f with n variables, there are $2^{n \cdot 2^n - 2^{n-1}}$ preferred functions R such that $D_R(x) = f(x)$.

Proposition 3

Let ω be an element of \mathbb{F}_{2^n} with order 3. Then f is a PBF if and only if it satisfies the following two conditions:

(i)
$$f(x+1) = f(x)$$
 for any $x \in \mathbb{F}_{2^n}$;
(ii) $f(\alpha + \frac{1}{\alpha}) + f(\omega \alpha + \frac{1}{\omega \alpha}) + f(\omega^2 \alpha + \frac{1}{\omega^2 \alpha}) = 0$ for any $\alpha \in \mathbb{F}_{2^n} \setminus \mathbb{F}_4$.

Determine all preferred Boolean functions

Define the following two sets:

$$\begin{split} L_1 &= \left\{ \{x, x+1\} : x \in \mathbb{F}_{2^n} \setminus \mathbb{F}_2 \right\}, \\ L_2 &= \left\{ \{\alpha + \frac{1}{\alpha}, \omega \alpha + \frac{1}{\omega \alpha}, \omega^2 \alpha + \frac{1}{\omega^2 \alpha} \} : \alpha \in \mathbb{F}_{2^n} \setminus \mathbb{F}_4 \right\}. \end{split}$$

Let v_x and v_α be the characteristic function in $\mathbb{F}_{2^n} \setminus \mathbb{F}_2$ of each $\{x, x+1\} \in L_1$ and $\left\{\alpha + \frac{1}{\alpha}, \omega\alpha + \frac{1}{\omega\alpha}, \omega^2\alpha + \frac{1}{\omega^2\alpha}\right\} \in L_2$, respectively. Define the $(|L_1| + |L_2|) \times (2^n - 2)$ matrix M by

$$M = \begin{bmatrix} & v_{\rm x} \\ & v_{\alpha} \end{bmatrix},\tag{1}$$

where the columns and rows of M are indexed by the elements in $\mathbb{F}_{2^n} \setminus \mathbb{F}_2$ and $L_1 \cup L_2$ respectively. Then the dimension of \mathcal{PBF} is $2^n - 1 - \operatorname{rank}(M)$, and the dimension of \mathcal{PF} is $n \cdot 2^n + 2^{n-1} - 1 - \operatorname{rank}(M)$.

Determine all preferred Boolean functions

Problem 7

Is the rank of the matrix M above $\frac{2^{n+1}-5}{3}$? We have verified this true for n = 6, 8, 10, 12, 14.

Determine all preferred Boolean functions

Problem 7

Is the rank of the matrix M above $\frac{2^{n+1}-5}{3}$? We have verified this true for n = 6, 8, 10, 12, 14.

Lemma 8

We have

(1)
$$\operatorname{rank}(M) \leq \min\{|L_1| + |L_2|, 2^n - 2\} = \min\{\frac{2^{n+1}-5}{3}, 2^n - 2\} = \frac{2^{n+1}-5}{3}.$$

(2) For each (n,n)-function F, there are at most $(2^n)^{4n+2} = 2^{4n^2+2n}$ functions which are CCZ-equivalent to it.

Lower bound on the CCZ-inequivalent number of PPs

Theorem 9

There are at least $2^{\frac{2^n+2}{3}-4n^2-2n}$ CCZ-inequivalent differentially 4-uniform permutations over \mathbb{F}_{2^n} among all the functions constructed by Theorem 3.

Lower bound on the CCZ-inequivalent number of PPs

Theorem 9

There are at least $2^{\frac{2^n+2}{3}-4n^2-2n}$ CCZ-inequivalent differentially 4-uniform permutations over \mathbb{F}_{2^n} among all the functions constructed by Theorem 3.

Remarks:

- (1.) The number of differentially 4-uniform permutations on $\mathbb{F}_{2^{2k}}$ with highest algebraic degree and nonlinearity greater than the one in Theorem 3 grows exponentially when *n* increase;
- (2.) A similar question is raised by Edel and Pott on the number of CCZ-inequivalent APN functions, which is still open now.

Some statistics

Table : Nonlinearity of the differentially 4-uniform permutations constructed by Theorem 3 on \mathbb{F}_{2^n} when $6 \le n \le 10$ (*n* even)

n	Sample size	Ave(NL)	Var(NL)	Dist(NL)	Bound in Theorem 3	KMNL
6	10,000	18.4022	1.2034	$\frac{14^{48}, 16^{849}, 18^{6161}}{20^{2928}, 22^{14}}$	14	24
8	10,000	94.2740	2.2576	$\begin{array}{r} 82^{10}, 84^{30}, 86^{30}, 88^{150} \\ 90^{540}, 92^{1620}, 94^{3450} \\ 96^{3490}, 98^{680} \end{array}$	55	112
10	5,000	434.2524	3.7225	$\begin{array}{c} 418^4, 420^{16}, 422^5, 424^{35}\\ 426^{132}, 428^{263}, 430^{470}\\ 432^{730}, 434^{1053}, 436^{1022}\\ 438^{910}, 440^{315}, 442^{45} \end{array}$	239	480

What about the case *n* odd?

Does the number of differentially 4-uniform permutations grows exponentially when n increases?

What about the case *n* odd?

Does the number of differentially 4-uniform permutations grows exponentially when n increases?

Yes. Consider $G(x) = x^{-1} + f(x)$, where f is Boolean. It is shown in [T, Qu, Tan, Li, SETA12] that there are $2^{2^{n-1}} f$ such that G is PP. So there are at least

$$\frac{2^{2^{n-1}}}{2^{4n^2+2n}} = 2^{2^{n-1}-4n^2-2n}$$

CCZ-inequivalent permutations over \mathbb{F}_{2^n} (*n* odd) with differential uniformity at most 4.

Triple set

- For any $lpha\in\mathbb{F}_{2^n}\setminus\mathbb{F}_4$, we call the set

$$A_{\alpha} = \{\alpha + \frac{1}{\alpha}, \omega \alpha + \frac{1}{\omega \alpha}, \omega^{2} \alpha + \frac{1}{\omega^{2} \alpha}\}$$

a *triple set* with respect to α (or TS for short).

- Let A_1 and A_2 be two triple sets. They are called *adjacent* if there exist $a \in A_1$ and $b \in A_2$ such that a + b = 1. To be more clear, we call A_2 is adjacent to A_1 at a, and call A_1 is adjacent to A_2 at b.
- For any triple set A_{α} , it has either three or exactly one neighbors. If it has one neighbor, we call it *slim*, otherwise call it *fat*.

Non-decomposable PBFs

Definition 10

Let f be a nonzero PBF. If there exist two PBFs f_1 and f_2 such that $f = f_1 + f_2$ and $supp(f_i) \subsetneq supp(f), 1 \le i \le 2$, then f is called *decomposable*. Otherwise it is called *non-decomposable*.

Definition 11

We define the following sets for later usage:

$$T_1 = \{ x \in \mathbb{F}_{2^n} | \operatorname{Tr} \left(\frac{1}{x} \right) = \operatorname{Tr} \left(\frac{1}{x+1} \right) = 1 \},$$

$$T_2 = \{ x \in \mathbb{F}_{2^n} | \operatorname{Tr} \left(\frac{1}{x} \right) + \operatorname{Tr} \left(\frac{1}{x+1} \right) = 1 \},$$

$$T_3 = \{ x \in \mathbb{F}_{2^n} | \operatorname{Tr} \left(\frac{1}{x} \right) = \operatorname{Tr} \left(\frac{1}{x+1} \right) = 0 \}.$$

24/27

Characterization of non-decomposable PBFs

Theorem 12

Let f be a Boolean function with n variables. Assume that |supp(f)| = 2tand there are $r (0 \le r \le t)$ TSs $A_i = \{a_i, b_i, a_i + b_i\}$ such that $supp(f) \cap A_i = \{a_i, b_i\}$. Then the following results hold:

- (i) If t = 1, then f is a non-decomposable PBF if and only if r = 0 and there exists β ∈ T₁ such that supp(f) = {β, 1 + β};
- (ii) If t = 2, then f is a non-decomposable PBF if and only if r = 1 and there exists a slim TS $A = \{\beta_1, \beta_2, \beta_1 + \beta_2\}$ such that $supp(f) = \{\beta_1, \beta_2, 1 + \beta_1, 1 + \beta_2\}$, where $\beta_1, \beta_2 \in T_2$;

Characterization of non-decomposable PBFs

(cont.)

(iii) If t ≥ 3, then either r = t or r = t - 1. Furthermore,
(a) If r = t, then f is a non-decomposable PBF if and only if there exist fat TSs A₁ = {β₁, β₂, β₁ + β₂}, A_i = {1 + β_{i-1}, β_{i+1}, 1 + β_{i-1} + β_{i+1}}, 2 ≤ i ≤ t - 1, and A_t = {1 + β_{t-1}, 1 + β_t, β_{t-1} + β_t} such that A₁, ..., A_{t-1} and A_t form a circle of TSs, and supp(f) = {β_i, 1 + β_i|1 ≤ i ≤ t}.
(b) If r = t - 1, then f is a non-decomposable PBF if and only if there exist TSs A₁ = {β₁, β₂, β₁ + β₂}, A₂ = {1 + β₁, β₃, 1 + β₁ + β₃}, and A_i = {1 + β_i, β_{i+1}, 1 + β_i + β_{i+1}}, 3 ≤ i ≤ r such that A₁, A_r are slim TSs and A₂, ..., A_{r-1} are fat TSs, and supp(f) = {β_i, 1 + β_i|1 ≤ i ≤ t}.

Thanks for the Attention!

Question?