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Motivations
Definitions

Requirements for a substitution box

Assuming F is the Substitution box chosen by a block cipher with SPN
structure. To avoid various attacks, F should satisfy the following
conditions:

Low differential uniformity (to avoid differential attack);

High nonlinearity (to aviod linear attack);

High algebraic degree (to avoid higher order differential attack);

Defined on F22k (for software implementation);

Others.
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Differential uniformity

Let F be a function over F2n . We have the following two different
common methods to characterize its nonlinearity.
For any a ∈ F∗2n and b ∈ F2n , define

δF (a, b) = |{x ∈ F2n |F (x + a) + F (x) = b}|, and

∆F = max
a∈F∗

2n
,b∈F2n

δF (a, b).

To prevent the differential attack, we want the value ∆F to be as small as
possible.

If ∆F = 1, F is called perfect nonlinear function (PN); 1

If ∆F = 2, F is called almost perfect nonlinear function (APN);

If ∆F = 4, F is called differentially 4-uniform function.

1PN functions do not exist in the field with even characteristic.
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Nonlinearity

(2) For any a ∈ F∗2n and b ∈ F2n , define

WF (a, b) =
∑
x∈F2n

(−1)Tr(aF (x)+bx),

WF = max
a∈F∗

2n
,b∈F2n

|WF (a, b)|,

NLF = 2n−1 − 1

2
WF .

To be resistnt to the linear attack, we want the value NLF to be as large
as possible.

When n is even, WF ≤ 2n/2+1;

When n is odd, it is conjectured that WF ≤ 2(n+1)/2;

The function F is called maximal nonlinear if WF = 2n/2+1 when n is even,
or WF = 2(n+1)/2 when n is odd.
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EA-equivalence and CCZ-equivalence

(1) The differential uniformity and nonlinearity of a function F is
preserved by EA-equivalence and CCZ-equivalence;

(2) CCZ-equivalence implies EA-equivalence, but not vice versa;

(3) Therefore, obtaining an ideal Sbox can lead to a large class of ideal
Sboxes.

(4) However, given two functions F and G , it is difficult to tell whether
they are CCZ-equivalent (if differential and linear spectrum are the
same).
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EA-equivalence and CCZ-equivalence

Definition 1

Two function F ,G : F2n → F2n are called extended affine equivalent (EA)
if there exist two affine permutations A1,A2 of F2n and an affine function
A : F2n → F2n such that

G = A1 ◦ F ◦ A2 + A,

where ◦ denotes the composition of two functions.
For a function F : F2n → F2n , we denote by GF the graph of the function
of F

Gf = {(x ,F (x)) : x ∈ F2n} ⊂ F2n
2 .

We say two functions F ,G : F2n → F2n CCZ-equivalence if there exists an
affine permutation A : F22n → F22n such that A(GF ) = GG .
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The power functions

It is natural to search for ideal Sboxes from power functions.

Table : Known differentially 4-uniform permutations on F22k with maximal
nonlinearity

Functions Exponents d Degree Conditions

Gold x2i+1 2 gcd(i , n) = 2, n = 2t, t odd

Kasami x22i−2i+1 i + 1 gcd(i , n) = 2, n = 2t, t odd

Inverse x22t−1 2t − 1 n = 2t

Dobbertin x22t+2t+1 3 n = 4t, t odd

It is conjectured the above table is complete, i.e. all power permutations
with maximal nonlinearity are one of the four families.
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Binomial function

Theorem 2 (Bracken, T. and Tan, 2012)

Let n = 3k and k is an even integer with 3 - k , k/2 is odd. Let s be an
integer with gcd(3k , s) = 2 and 3 | k + s. Define the function
F : F2n → F2n

F (x) = αx2s+1 + α2k x2−k+2k+s
,

where α is a primitive element of F2n . Then F is a differentially 4-uniform
permutation with maximal nonlinearity.

Note that when gcd(3k , s) = 1, the function F is APN which is discovered
by Budaghyan, Carlet and Leander.
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Switching method

If we do not requre maximal nonlinearity but ”good” nonlinearity, much
more infinite classes of differentially 4-uniform permutations can be
obtained. A powerful tool is the so-called switching method, i.e. adding a
Boolean function to F .

Switching method has been previously applied on:

(1). APN functions: a well-known example x3 + Tr(x9) (B-C-L); Many
new APN examples from switching method in E-P’s paper;

(2). planar function: certain CCZ-inequivalent PN functions are switching
neighbors, in P-Z’s paper.

(3). permutation polynomial: many PPs with the form F (x) + γTr(H(x))
are obtained in C-K’s papers.

In the following we apply the switching method on constructing
differentially 4-uniform permutations on F22k .
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Preferred functions

Let n = 2k be an even integer and R be an (n, n)-function. Define the
Boolean function DR by DR(x) = Tr(R(x + 1) + R(x)), and the functions
QR ,PR as

QR(x , y) = DR

(
1

x

)
+ DR

(
1

x
+ y

)
,PR(y) = QR(0, y) = DR(0) + DR(y).

Let U be the subset of F2n × F2n defined by
U = {(x , y)|x2 + 1

y x + 1
y(y+1) = 0, y 6∈ F2}. If

QR(x , y) + PR(y) = 0

satisfies for any elements in (x , y) ∈ U, then we call R a preferred function
(PF), or said to be preferred.
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Properties of PFs

Proposition 1

Let S be a set of PFs defined on F2n . Then the set S defined by

S =

{∑
f ∈S

af f : af ∈ F2

}

is a subspace of (VFn,+).

If we can find t PFs, we then obtain 2t PFs.
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Why we consider preferred functions?

Theorem 3

Let n = 2k be an even integer, I (x) = x−1 be the inverse function and R
be an (n, n)-function. Define

H(x) = x + Tr(R(x) + R(x + 1)), and

G (x) = H(I (x)).

Then if R(x) is a preferred function,

(1.) G (x) is a differentially 4-uniform permutation polynomial;

(2.) The algebraic degree of G is n − 1;

(3.) The nonlinearity of F

NLF ≥ 2n−2 − 1

4
b2

n
2
+1c − 1.
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Examples of preferred functions

Example 4

Let R(x) = xd : F22k → F22k and F (x) = x + Tr(R(x + 1) + R(x)), where

(1) n = 2k = 4m, d = 22m + 2m + 1,
(2) d = 2t + 1, where 1 ≤ t ≤ k − 1,
(3) d = 3(2t + 1),where 2 ≤ t ≤ k − 1.

Therefore, the function F (x−1) is differentially 4-uniform permutations.
Many PFs can be found in [Qu, T., Tan, Li, IEEE IT (2013)].
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Preferred Boolean functions

Since we obtain a lot of new differentially 4-uniform permutations, it is
inter:esting to consider

Problem 5

Let n = 2k and PF be the set of all PFs on F2n . Define

Sn =
{

H(x−1) | H(x) = x + Tr(R(x + 1) + R(x)), R ∈ PF
}
.

How many CCZ-inequivalent classes of differentially 4-uniform
permutations among Sn?
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Preferred Boolean functions

Definition 6

Let n = 2k be an even integer and f be an n-variable Boolean function.
We call f a preferred Boolean function (PBF for short) if it satisfies the
following two conditions:

(i) f (x + 1) = f (x) for any x ∈ F2n ;

(ii) f
(
1
x

)
+ f

(
1
x + y

)
+ f (0) + f (y) = 0 for any pair (x , y) ∈ U, where

U is the same set when define PFs.
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Properties of preferred Boolean functions

Proposition 2

R : F2n → F2n is a PF if and only if DR(x) = Tr(R(x) + R(x + 1)) is a
PBF. Furthermore, for any PBF f with n variables, there are 2n·2

n−2n−1

preferred functions R such that DR(x) = f (x).

Proposition 3

Let ω be an element of F2n with order 3. Then f is a PBF if and only if it
satisfies the following two conditions:

(i) f (x + 1) = f (x) for any x ∈ F2n ;

(ii) f
(
α + 1

α

)
+ f

(
ωα + 1

ωα

)
+ f

(
ω2α + 1

ω2α

)
= 0 for any α ∈ F2n \ F4.
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Determine all preferred Boolean functions

Define the following two sets:

L1 =
{
{x , x + 1} : x ∈ F2n \ F2

}
,

L2 =

{
{α +

1

α
, ωα +

1

ωα
, ω2α +

1

ω2α
} : α ∈ F2n \ F4

}
.

Let vx and vα be the characteristic function in F2n \ F2 of each

{x , x + 1} ∈ L1 and
{
α + 1

α , ωα + 1
ωα , ω

2α + 1
ω2α

}
∈ L2, respectively.

Define the (|L1|+ |L2|)× (2n − 2) matrix M by

M =

[
vx
vα

]
, (1)

where the columns and rows of M are indexed by the elements in F2n \ F2

and L1 ∪ L2 respectively. Then the dimension of PBF is 2n− 1− rank(M),
and the dimension of PF is n · 2n + 2n−1 − 1− rank(M).
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Determine all preferred Boolean functions

Problem 7

Is the rank of the matrix M above 2n+1−5
3 ? We have verified this true for

n = 6, 8, 10, 12, 14.

Lemma 8

We have

(1) rank(M) ≤ min{|L1|+ |L2|, 2n − 2} = min{2n+1−5
3 , 2n − 2} = 2n+1−5

3 .

(2) For each (n,n)-function F , there are at most (2n)4n+2 = 24n
2+2n

functions which are CCZ-equivalent to it.

19 / 27
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Lower bound on the CCZ-inequivalent number of PPs

Theorem 9

There are at least 2
2n+2

3
−4n2−2n CCZ-inequivalent differentially 4-uniform

permutations over F2n among all the functions constructed by Theorem 3.

Remarks:

(1.) The number of differentially 4-uniform permutations on F22k with
highest algebraic degree and nonlinearity greater than the one in
Theorem 3 grows exponentially when n increase;

(2.) A similar question is raised by Edel and Pott on the number of
CCZ-inequivalent APN functions, which is still open now.
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Some statistics

Table : Nonlinearity of the differentially 4-uniform permutations constructed by
Theorem 3 on F2n when 6 ≤ n ≤ 10 (n even)

n Sample size Ave(NL) Var(NL) Dist(NL)
Bound in
Theorem 3

KMNL

6 10, 000 18.4022 1.2034
1448, 16849, 186161

202928, 2214
14 24

8 10, 000 94.2740 2.2576
8210, 8430, 8630, 88150

90540, 921620, 943450

963490, 98680
55 112

10 5, 000 434.2524 3.7225

4184, 42016, 4225, 42435

426132, 428263, 430470

432730, 4341053, 4361022

438910, 440315, 44245

239 480
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What about the case n odd?

Does the number of differentially 4-uniform permutations grows
exponentially when n increases?

Yes. Consider G (x) = x−1 + f (x), where f is Boolean. It is shown in [T,
Qu, Tan, Li, SETA12] that there are 22

n−1
f such that G is PP. So there

are at least
22

n−1

24n2+2n
= 22

n−1−4n2−2n

CCZ-inequivalent permutations over F2n (n odd) with differential
uniformity at most 4.
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Triple set

- For any α ∈ F2n \ F4, we call the set

Aα = {α +
1

α
, ωα +

1

ωα
, ω2α +

1

ω2α
}

a triple set with respect to α (or TS for short).

- Let A1 and A2 be two triple sets. They are called adjacent if there exist
a ∈ A1 and b ∈ A2 such that a + b = 1. To be more clear, we call A2 is
adjacent to A1 at a, and call A1 is adjacent to A2 at b.

- For any triple set Aα, it has either three or exactly one neighbors. If it
has one neighbor, we call it slim, otherwise call it fat.
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Non-decomposable PBFs

Definition 10

Let f be a nonzero PBF. If there exist two PBFs f1 and f2 such that
f = f1 + f2 and supp(fi ) ( supp(f ), 1 ≤ i ≤ 2, then f is called
decomposable. Otherwise it is called non-decomposable.

Definition 11

We define the following sets for later usage:

T1 = {x ∈ F2n |Tr
(

1

x

)
= Tr

(
1

x + 1

)
= 1},

T2 = {x ∈ F2n |Tr
(

1

x

)
+ Tr

(
1

x + 1

)
= 1},

T3 = {x ∈ F2n |Tr
(

1

x

)
= Tr

(
1

x + 1

)
= 0}.
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Characterization of non-decomposable PBFs

Theorem 12

Let f be a Boolean function with n variables. Assume that |supp(f )| = 2t
and there are r (0 ≤ r ≤ t) TSs Ai = {ai , bi , ai + bi} such that
supp(f ) ∩ Ai = {ai , bi}. Then the following results hold:

(i) If t = 1, then f is a non-decomposable PBF if and only if r = 0 and
there exists β ∈ T1 such that supp(f ) = {β, 1 + β};

(ii) If t = 2, then f is a non-decomposable PBF if and only if r = 1 and
there exists a slim TS A = {β1, β2, β1 + β2} such that
supp(f ) = {β1, β2, 1 + β1, 1 + β2}, where β1, β2 ∈ T2;
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Characterization of non-decomposable PBFs

(cont.)

(iii) If t ≥ 3, then either r = t or r = t − 1. Furthermore,

(a) If r = t, then f is a non-decomposable PBF if and only if there
exist fat TSs A1 = {β1, β2, β1 + β2},
Ai = {1 + βi−1, βi+1, 1 + βi−1 + βi+1}, 2 ≤ i ≤ t − 1, and
At = {1 + βt−1, 1 + βt , βt−1 + βt} such that A1, · · · ,At−1 and At

form a circle of TSs, and supp(f ) = {βi , 1 + βi |1 ≤ i ≤ t}.
(b) If r = t − 1, then f is a non-decomposable PBF if and only if there

exist TSs A1 = {β1, β2, β1 + β2}, A2 = {1 + β1, β3, 1 + β1 + β3},
and Ai = {1 + βi , βi+1, 1 + βi + βi+1}, 3 ≤ i ≤ r such that A1,Ar

are slim TSs and A2, · · · ,Ar−1 are fat TSs, and
supp(f ) = {βi , 1 + βi |1 ≤ i ≤ t}.
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Thanks for the Attention!

Question?
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