More Constructions of Differentially 4-Uniform Permutations on $\mathbb{F}_{2^{2 k}}$

Yin Tan

Department of Electrical and Computer Engineering University of Waterloo, ON, Canada
yin.tan@uwaterloo.ca
(Joint work with L. Qu, C. Li and G. Gong)

September 3, 2014

Outline

(1) Motivation and Definitions

- Motivations
- Definitions
(2) Construction of differentially 4-uniform permutations
- Power functions
- Construction from the switching method
(3) Number of CCZ-inequivalent PPs via the switching method
(4) Non-decomposable preferred Boolean functions

Requirements for a substitution box

Assuming F is the Substitution box chosen by a block cipher with SPN structure. To avoid various attacks, F should satisfy the following conditions:

- Low differential uniformity (to avoid differential attack);
- High nonlinearity (to aviod linear attack);
- High algebraic degree (to avoid higher order differential attack);
- Defined on $\mathbb{F}_{2^{2 k}}$ (for software implementation);
- Others.

Differential uniformity

Let F be a function over $\mathbb{F}_{2^{n}}$. We have the following two different common methods to characterize its nonlinearity. For any $a \in \mathbb{F}_{2^{n}}^{*}$ and $b \in \mathbb{F}_{2^{n}}$, define

$$
\begin{aligned}
& \delta_{F}(a, b)=\left|\left\{x \in \mathbb{F}_{2^{n}} \mid F(x+a)+F(x)=b\right\}\right|, \text { and } \\
& \Delta_{F}=\max _{a \in \mathbb{F}_{2^{n}, b \in \mathbb{F}_{2^{n}}} \delta_{F}(a, b) .} .
\end{aligned}
$$

To prevent the differential attack, we want the value Δ_{F} to be as small as possible.
${ }^{1} \mathrm{PN}$ functions do not exist in the field with even characteristic.

Differential uniformity

Let F be a function over $\mathbb{F}_{2^{n}}$. We have the following two different common methods to characterize its nonlinearity. For any $a \in \mathbb{F}_{2^{n}}^{*}$ and $b \in \mathbb{F}_{2^{n}}$, define

$$
\begin{aligned}
& \delta_{F}(a, b)=\left|\left\{x \in \mathbb{F}_{2^{n}} \mid F(x+a)+F(x)=b\right\}\right|, \text { and } \\
& \Delta_{F}=\max _{a \in \mathbb{F}_{2^{n}, b \in \mathbb{F}_{2^{n}}} \delta_{F}(a, b) .} .
\end{aligned}
$$

To prevent the differential attack, we want the value Δ_{F} to be as small as possible.

- If $\Delta_{F}=1, F$ is called perfect nonlinear function (PN); ${ }^{1}$
${ }^{1} \mathrm{PN}$ functions do not exist in the field with even characteristic.

Differential uniformity

Let F be a function over $\mathbb{F}_{2^{n}}$. We have the following two different common methods to characterize its nonlinearity. For any $a \in \mathbb{F}_{2^{n}}^{*}$ and $b \in \mathbb{F}_{2^{n}}$, define

$$
\begin{aligned}
& \delta_{F}(a, b)=\left|\left\{x \in \mathbb{F}_{2^{n}} \mid F(x+a)+F(x)=b\right\}\right|, \text { and } \\
& \Delta_{F}=\max _{a \in \mathbb{F}_{2^{n}}^{*}, b \in \mathbb{F}_{2^{n}}} \delta_{F}(a, b) .
\end{aligned}
$$

To prevent the differential attack, we want the value Δ_{F} to be as small as possible.

- If $\Delta_{F}=1, F$ is called perfect nonlinear function (PN); ${ }^{1}$
- If $\Delta_{F}=2, F$ is called almost perfect nonlinear function (APN);
${ }^{1} \mathrm{PN}$ functions do not exist in the field with even characteristic.

Differential uniformity

Let F be a function over $\mathbb{F}_{2^{n}}$. We have the following two different common methods to characterize its nonlinearity. For any $a \in \mathbb{F}_{2^{n}}^{*}$ and $b \in \mathbb{F}_{2^{n}}$, define

$$
\begin{aligned}
& \delta_{F}(a, b)=\left|\left\{x \in \mathbb{F}_{2^{n}} \mid F(x+a)+F(x)=b\right\}\right|, \text { and } \\
& \Delta_{F}=\max _{a \in \mathbb{F}_{2^{n}}^{*}, b \in \mathbb{F}_{2^{n}}} \delta_{F}(a, b) .
\end{aligned}
$$

To prevent the differential attack, we want the value Δ_{F} to be as small as possible.

- If $\Delta_{F}=1, F$ is called perfect nonlinear function (PN); ${ }^{1}$
- If $\Delta_{F}=2, F$ is called almost perfect nonlinear function (APN);
- If $\Delta_{F}=4, F$ is called differentially 4-uniform function.
${ }^{1}$ PN functions do not exist in the field with even characteristic.

Nonlinearity

(2) For any $a \in \mathbb{F}_{2^{n}}^{*}$ and $b \in \mathbb{F}_{2^{n}}$, define

$$
\begin{aligned}
\mathcal{W}_{F}(a, b) & =\sum_{x \in \mathbb{F}_{2^{n}}}(-1)^{\operatorname{Tr}(a F(x)+b x)} \\
\mathcal{W}_{F} & =\max _{a \in \mathbb{F}_{2^{n}}, b \in \mathbb{F}_{2^{n}}}\left|\mathcal{W}_{F}(a, b)\right|, \\
\mathrm{NL}_{F} & =2^{n-1}-\frac{1}{2} \mathcal{W}_{F}
\end{aligned}
$$

To be resistnt to the linear attack, we want the value NL_{F} to be as large as possible.

Nonlinearity

(2) For any $a \in \mathbb{F}_{2^{n}}^{*}$ and $b \in \mathbb{F}_{2^{n}}$, define

$$
\begin{aligned}
\mathcal{W}_{F}(a, b) & =\sum_{x \in \mathbb{F}_{2^{n}}}(-1)^{\operatorname{Tr}(a F(x)+b x)} \\
\mathcal{W}_{F} & =\max _{a \in \mathbb{F}_{2^{n}}, b \in \mathbb{F}_{2^{n}}}\left|\mathcal{W}_{F}(a, b)\right|, \\
\mathrm{NL}_{F} & =2^{n-1}-\frac{1}{2} \mathcal{W}_{F}
\end{aligned}
$$

To be resistnt to the linear attack, we want the value NL_{F} to be as large as possible.

- When n is even, $\mathcal{W}_{F} \leq 2^{n / 2+1}$;

Nonlinearity

(2) For any $a \in \mathbb{F}_{2^{n}}^{*}$ and $b \in \mathbb{F}_{2^{n}}$, define

$$
\begin{aligned}
\mathcal{W}_{F}(a, b) & =\sum_{x \in \mathbb{F}_{2^{n}}}(-1)^{\operatorname{Tr}(a F(x)+b x)} \\
\mathcal{W}_{F} & =\max _{a \in \mathbb{F}_{2^{n}}, b \in \mathbb{F}_{2^{n}}}\left|\mathcal{W}_{F}(a, b)\right|, \\
\mathrm{NL}_{F} & =2^{n-1}-\frac{1}{2} \mathcal{W}_{F}
\end{aligned}
$$

To be resistnt to the linear attack, we want the value NL_{F} to be as large as possible.

- When n is even, $\mathcal{W}_{F} \leq 2^{n / 2+1}$;
- When n is odd, it is conjectured that $\mathcal{W}_{F} \leq 2^{(n+1) / 2}$;
- The function F is called maximal nonlinear if $\mathcal{W}_{F}=2^{n / 2+1}$ when n is even, or $\mathcal{W}_{F}=2^{(n+1) / 2}$ when n is odd.

EA-equivalence and CCZ-equivalence

(1) The differential uniformity and nonlinearity of a function F is preserved by EA-equivalence and CCZ-equivalence;
(2) CCZ-equivalence implies EA-equivalence, but not vice versa;
(3) Therefore, obtaining an ideal Sbox can lead to a large class of ideal Sboxes.
(4) However, given two functions F and G, it is difficult to tell whether they are CCZ-equivalent (if differential and linear spectrum are the same).

EA-equivalence and CCZ-equivalence

Definition 1

Two function $F, G: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ are called extended affine equivalent (EA) if there exist two affine permutations A_{1}, A_{2} of $\mathbb{F}_{2^{n}}$ and an affine function $A: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ such that

$$
G=A_{1} \circ F \circ A_{2}+A
$$

where \circ denotes the composition of two functions.
For a function $F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$, we denote by \mathcal{G}_{F} the graph of the function of F

$$
\mathcal{G}_{f}=\left\{(x, F(x)): x \in \mathbb{F}_{2^{n}}\right\} \subset \mathbb{F}_{2}^{2 n} .
$$

We say two functions $F, G: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}} C C Z$-equivalence if there exists an affine permutation $A: \mathbb{F}_{2^{2 n}} \rightarrow \mathbb{F}_{2^{2 n}}$ such that $A\left(\mathcal{G}_{F}\right)=\mathcal{G}_{G}$.

The power functions

It is natural to search for ideal Sboxes from power functions.

Table: Known differentially 4-uniform permutations on $\mathbb{F}_{2^{2 k}}$ with maximal nonlinearity

Functions	Exponents d	Degree	Conditions
Gold	$x^{2^{i}+1}$	2	$\operatorname{gcd}(i, n)=2, n=2 t, t$ odd
Kasami	$x^{2^{2 i}-2^{i}+1}$	$i+1$	$\operatorname{gcd}(i, n)=2, n=2 t, t$ odd
Inverse	$x^{2^{2 t}-1}$	$2 t-1$	$n=2 t$
Dobbertin	$x^{2^{2 t}+2^{t}+1}$	3	$n=4 t, t$ odd

It is conjectured the above table is complete, i.e. all power permutations with maximal nonlinearity are one of the four families.

Binomial function

Theorem 2 (Bracken, T. and Tan, 2012)

Let $n=3 k$ and k is an even integer with $3 \nmid k, k / 2$ is odd. Let s be an integer with $\operatorname{gcd}(3 k, s)=2$ and $3 \mid k+s$. Define the function $F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$

$$
F(x)=\alpha x^{2^{s}+1}+\alpha^{2^{k}} x^{2^{-k}+2^{k+s}}
$$

where α is a primitive element of $\mathbb{F}_{2^{n}}$. Then F is a differentially 4-uniform permutation with maximal nonlinearity.

Note that when $\operatorname{gcd}(3 k, s)=1$, the function F is APN which is discovered by Budaghyan, Carlet and Leander.

Switching method

If we do not requre maximal nonlinearity but "good" nonlinearity, much more infinite classes of differentially 4 -uniform permutations can be obtained. A powerful tool is the so-called switching method, i.e. adding a Boolean function to F.

Switching method has been previously applied on:
(1). APN functions: a well-known example $x^{3}+\operatorname{Tr}\left(x^{9}\right)(\mathrm{B}-\mathrm{C}-\mathrm{L})$; Many new APN examples from switching method in E-P's paper;
(2). planar function: certain CCZ-inequivalent PN functions are switching neighbors, in P-Z's paper.
(3). permutation polynomial: many PPs with the form $F(x)+\gamma \operatorname{Tr}(H(x))$ are obtained in C-K's papers.

Switching method

If we do not requre maximal nonlinearity but "good" nonlinearity, much more infinite classes of differentially 4-uniform permutations can be obtained. A powerful tool is the so-called switching method, i.e. adding a Boolean function to F.

Switching method has been previously applied on:
(1). APN functions: a well-known example $x^{3}+\operatorname{Tr}\left(x^{9}\right)$ (B-C-L); Many new APN examples from switching method in E-P's paper;
(2). planar function: certain CCZ-inequivalent PN functions are switching neighbors, in P-Z's paper.
(3). permutation polynomial: many PPs with the form $F(x)+\gamma \operatorname{Tr}(H(x))$ are obtained in C-K's papers.
In the following we apply the switching method on constructing differentially 4 -uniform permutations on $\mathbb{F}_{2^{2 k}}$.

Preferred functions

Let $n=2 k$ be an even integer and R be an (n, n)-function. Define the Boolean function D_{R} by $D_{R}(x)=\operatorname{Tr}(R(x+1)+R(x))$, and the functions Q_{R}, P_{R} as
$Q_{R}(x, y)=D_{R}\left(\frac{1}{x}\right)+D_{R}\left(\frac{1}{x}+y\right), P_{R}(y)=Q_{R}(0, y)=D_{R}(0)+D_{R}(y)$.
Let U be the subset of $\mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}}$ defined by
$U=\left\{(x, y) \left\lvert\, x^{2}+\frac{1}{y} x+\frac{1}{y(y+1)}=0\right., y \notin \mathbb{F}_{2}\right\}$. If

$$
Q_{R}(x, y)+P_{R}(y)=0
$$

satisfies for any elements in $(x, y) \in U$, then we call R a preferred function (PF), or said to be preferred.

Properties of PFs

Proposition 1

Let S be a set of PFs defined on $\mathbb{F}_{2^{n}}$. Then the set \mathcal{S} defined by

$$
\mathcal{S}=\left\{\sum_{f \in S} a_{f} f: a_{f} \in \mathbb{F}_{2}\right\}
$$

is a subspace of $\left(\mathcal{V} F^{n},+\right)$.

Properties of PFs

Proposition 1

Let S be a set of PFs defined on $\mathbb{F}_{2^{n}}$. Then the set \mathcal{S} defined by

$$
\mathcal{S}=\left\{\sum_{f \in S} a_{f} f: a_{f} \in \mathbb{F}_{2}\right\}
$$

is a subspace of $\left(\mathcal{V F}^{n},+\right)$.
If we can find $t \mathrm{PFs}$, we then obtain $2^{t} \mathrm{PFs}$.

Why we consider preferred functions?

Theorem 3

Let $n=2 k$ be an even integer, $I(x)=x^{-1}$ be the inverse function and R be an (n, n)-function. Define

$$
\begin{aligned}
H(x) & =x+\operatorname{Tr}(R(x)+R(x+1)), \text { and } \\
G(x) & =H(I(x)) .
\end{aligned}
$$

Then if $R(x)$ is a preferred function,
(1.) $G(x)$ is a differentially 4-uniform permutation polynomial;
(2.) The algebraic degree of G is $n-1$;
(3.) The nonlinearity of F

$$
N L_{F} \geq 2^{n-2}-\frac{1}{4}\left\lfloor 2^{\frac{n}{2}+1}\right\rfloor-1 .
$$

Examples of preferred functions

Example 4

Let $R(x)=x^{d}: \mathbb{F}_{2^{2 k}} \rightarrow \mathbb{F}_{2^{2 k}}$ and $F(x)=x+\operatorname{Tr}(R(x+1)+R(x))$, where
(1) $n=2 k=4 m, d=2^{2 m}+2^{m}+1$,
(2) $d=2^{t}+1$, where $1 \leq t \leq k-1$,
(3) $d=3\left(2^{t}+1\right)$, where $2 \leq t \leq k-1$.

Examples of preferred functions

Example 4

Let $R(x)=x^{d}: \mathbb{F}_{2^{2 k}} \rightarrow \mathbb{F}_{2^{2 k}}$ and $F(x)=x+\operatorname{Tr}(R(x+1)+R(x))$, where
(1) $n=2 k=4 m, d=2^{2 m}+2^{m}+1$,
(2) $d=2^{t}+1$, where $1 \leq t \leq k-1$,
(3) $d=3\left(2^{t}+1\right)$, where $2 \leq t \leq k-1$.

Therefore, the function $F\left(x^{-1}\right)$ is differentially 4-uniform permutations. Many PFs can be found in [Qu, T., Tan, Li, IEEE IT (2013)].

Preferred Boolean functions

Since we obtain a lot of new differentially 4-uniform permutations, it is inter:esting to consider

Problem 5

Let $n=2 k$ and $\mathcal{P F}$ be the set of all PFs on $\mathbb{F}_{2^{n}}$. Define

$$
S_{n}=\left\{H\left(x^{-1}\right) \mid H(x)=x+\operatorname{Tr}(R(x+1)+R(x)), R \in \mathcal{P} \mathcal{F}\right\} .
$$

How many CCZ-inequivalent classes of differentially 4-uniform permutations among S_{n} ?

Preferred Boolean functions

Definition 6

Let $n=2 k$ be an even integer and f be an n-variable Boolean function. We call f a preferred Boolean function (PBF for short) if it satisfies the following two conditions:
(i) $f(x+1)=f(x)$ for any $x \in \mathbb{F}_{2^{n}}$;
(ii) $f\left(\frac{1}{x}\right)+f\left(\frac{1}{x}+y\right)+f(0)+f(y)=0$ for any pair $(x, y) \in U$, where U is the same set when define PFs.

Properties of preferred Boolean functions

Proposition 2

$R: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ is a PF if and only if $D_{R}(x)=\operatorname{Tr}(R(x)+R(x+1))$ is a PBF. Furthermore, for any PBF f with n variables, there are $2^{n \cdot 2^{n}-2^{n-1}}$ preferred functions R such that $D_{R}(x)=f(x)$.

Properties of preferred Boolean functions

Proposition 2

$R: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ is a PF if and only if $D_{R}(x)=\operatorname{Tr}(R(x)+R(x+1))$ is a $P B F$. Furthermore, for any PBF f with n variables, there are $2^{n \cdot 2^{n}-2^{n-1}}$ preferred functions R such that $D_{R}(x)=f(x)$.

Proposition 3

Let ω be an element of $\mathbb{F}_{2^{n}}$ with order 3 . Then f is a PBF if and only if it satisfies the following two conditions:
(i) $f(x+1)=f(x)$ for any $x \in \mathbb{F}_{2^{n}}$;
(ii) $f\left(\alpha+\frac{1}{\alpha}\right)+f\left(\omega \alpha+\frac{1}{\omega \alpha}\right)+f\left(\omega^{2} \alpha+\frac{1}{\omega^{2} \alpha}\right)=0$ for any $\alpha \in \mathbb{F}_{2^{n}} \backslash \mathbb{F}_{4}$.

Determine all preferred Boolean functions

Define the following two sets:

$$
\begin{aligned}
& L_{1}=\left\{\{x, x+1\}: x \in \mathbb{F}_{2^{n}} \backslash \mathbb{F}_{2}\right\}, \\
& L_{2}=\left\{\left\{\alpha+\frac{1}{\alpha}, \omega \alpha+\frac{1}{\omega \alpha}, \omega^{2} \alpha+\frac{1}{\omega^{2} \alpha}\right\}: \alpha \in \mathbb{F}_{2^{n}} \backslash \mathbb{F}_{4}\right\} .
\end{aligned}
$$

Let v_{x} and v_{α} be the characteristic function in $\mathbb{F}_{2^{n}} \backslash \mathbb{F}_{2}$ of each $\{x, x+1\} \in L_{1}$ and $\left\{\alpha+\frac{1}{\alpha}, \omega \alpha+\frac{1}{\omega \alpha}, \omega^{2} \alpha+\frac{1}{\omega^{2} \alpha}\right\} \in L_{2}$, respectively. Define the $\left(\left|L_{1}\right|+\left|L_{2}\right|\right) \times\left(2^{n}-2\right)$ matrix M by

$$
M=\left[\begin{array}{l}
v_{x} \tag{1}\\
v_{\alpha}
\end{array}\right]
$$

where the columns and rows of M are indexed by the elements in $\mathbb{F}_{2^{n}} \backslash \mathbb{F}_{2}$ and $L_{1} \cup L_{2}$ respectively. Then the dimension of $\mathcal{P B F}$ is $2^{n}-1-\operatorname{rank}(M)$, and the dimension of $\mathcal{P F}$ is $n \cdot 2^{n}+2^{n-1}-1-\operatorname{rank}(M)$.

Determine all preferred Boolean functions

Problem 7

Is the rank of the matrix M above $\frac{2^{n+1}-5}{3}$? We have verified this true for $n=6,8,10,12,14$.

Determine all preferred Boolean functions

Problem 7

Is the rank of the matrix M above $\frac{2^{n+1}-5}{3}$? We have verified this true for $n=6,8,10,12,14$.

Lemma 8

We have
(1) $\operatorname{rank}(M) \leq \min \left\{\left|L_{1}\right|+\left|L_{2}\right|, 2^{n}-2\right\}=\min \left\{\frac{2^{n+1}-5}{3}, 2^{n}-2\right\}=\frac{2^{n+1}-5}{3}$.
(2) For each (n, n)-function F, there are at most $\left(2^{n}\right)^{4 n+2}=2^{4 n^{2}+2 n}$ functions which are CCZ-equivalent to it.

Lower bound on the CCZ-inequivalent number of PPs

Theorem 9

There are at least $2^{\frac{2^{n}+2}{3}-4 n^{2}-2 n}$ CCZ-inequivalent differentially 4 -uniform permutations over $\mathbb{F}_{2^{n}}$ among all the functions constructed by Theorem 3.

Lower bound on the CCZ-inequivalent number of PPs

Theorem 9

There are at least $2^{\frac{2^{n}+2}{3}-4 n^{2}-2 n}$ CCZ-inequivalent differentially 4-uniform permutations over $\mathbb{F}_{2^{n}}$ among all the functions constructed by Theorem 3.

Remarks:
(1.) The number of differentially 4-uniform permutations on $\mathbb{F}_{2^{2 k}}$ with highest algebraic degree and nonlinearity greater than the one in Theorem 3 grows exponentially when n increase;
(2.) A similar question is raised by Edel and Pott on the number of CCZ-inequivalent APN functions, which is still open now.

Some statistics

Table : Nonlinearity of the differentially 4 -uniform permutations constructed by Theorem 3 on $\mathbb{F}_{2^{n}}$ when $6 \leq n \leq 10$ (n even)

n	Sample size	Ave(NL)	$\operatorname{Var}(\mathrm{NL})$	$\operatorname{Dist}(\mathrm{NL})$	Bound in Theorem 3	KMNL
6	10,000	18.4022	1.2034	$14^{48}, 16^{849}, 18^{6161}$ $20^{2928}, 22^{14}$		
8	10,000	94.2740	2.2576	$82^{10}, 84^{30}, 86^{30}, 88^{150}$ $90^{540}, 92^{1620}, 94^{3450}$ $96^{3490}, 98^{680}$	14	24
10	5,000	434.2524	3.7225	$418^{4}, 420^{16}, 422^{5}, 424^{35}$ $426^{132}, 428^{263}, 430^{470}$ $432^{730}, 434^{1053}, 436^{1022}$ $438^{910}, 440^{315}, 442^{45}$	55	112

What about the case n odd?

Does the number of differentially 4-uniform permutations grows exponentially when n increases?

What about the case n odd?

Does the number of differentially 4-uniform permutations grows exponentially when n increases?

Yes. Consider $G(x)=x^{-1}+f(x)$, where f is Boolean. It is shown in [T, Qu, Tan, Li, SETA12] that there are $2^{2^{n-1}} f$ such that G is PP. So there are at least

$$
\frac{2^{2^{n-1}}}{2^{4 n^{2}+2 n}}=2^{2^{n-1}-4 n^{2}-2 n}
$$

CCZ-inequivalent permutations over $\mathbb{F}_{2^{n}}(n$ odd $)$ with differential uniformity at most 4.

Triple set

- For any $\alpha \in \mathbb{F}_{2^{n}} \backslash \mathbb{F}_{4}$, we call the set

$$
A_{\alpha}=\left\{\alpha+\frac{1}{\alpha}, \omega \alpha+\frac{1}{\omega \alpha}, \omega^{2} \alpha+\frac{1}{\omega^{2} \alpha}\right\}
$$

a triple set with respect to α (or TS for short).

- Let A_{1} and A_{2} be two triple sets. They are called adjacent if there exist $a \in A_{1}$ and $b \in A_{2}$ such that $a+b=1$. To be more clear, we call A_{2} is adjacent to A_{1} at a, and call A_{1} is adjacent to A_{2} at b.
- For any triple set A_{α}, it has either three or exactly one neighbors. If it has one neighbor, we call it slim, otherwise call it fat.

Non-decomposable PBFs

Definition 10

Let f be a nonzero PBF. If there exist two PBFs f_{1} and f_{2} such that $f=f_{1}+f_{2}$ and $\operatorname{supp}\left(f_{i}\right) \subsetneq \operatorname{supp}(f), 1 \leq i \leq 2$, then f is called decomposable. Otherwise it is called non-decomposable.

Definition 11

We define the following sets for later usage:

$$
\begin{aligned}
& T_{1}=\left\{x \in \mathbb{F}_{2^{n}} \left\lvert\, \operatorname{Tr}\left(\frac{1}{x}\right)=\operatorname{Tr}\left(\frac{1}{x+1}\right)=1\right.\right\}, \\
& T_{2}=\left\{x \in \mathbb{F}_{2^{n}} \left\lvert\, \operatorname{Tr}\left(\frac{1}{x}\right)+\operatorname{Tr}\left(\frac{1}{x+1}\right)=1\right.\right\}, \\
& T_{3}=\left\{x \in \mathbb{F}_{2^{n}} \left\lvert\, \operatorname{Tr}\left(\frac{1}{x}\right)=\operatorname{Tr}\left(\frac{1}{x+1}\right)=0\right.\right\} .
\end{aligned}
$$

Characterization of non-decomposable PBFs

Theorem 12

Let f be a Boolean function with n variables. Assume that $|\operatorname{supp}(f)|=2 t$ and there are $r(0 \leq r \leq t)$ TSs $A_{i}=\left\{a_{i}, b_{i}, a_{i}+b_{i}\right\}$ such that $\operatorname{supp}(f) \cap A_{i}=\left\{a_{i}, b_{i}\right\}$. Then the following results hold:
(i) If $t=1$, then f is a non-decomposable PBF if and only if $r=0$ and there exists $\beta \in T_{1}$ such that $\operatorname{supp}(f)=\{\beta, 1+\beta\}$;
(ii) If $t=2$, then f is a non-decomposable PBF if and only if $r=1$ and there exists a slim TS $A=\left\{\beta_{1}, \beta_{2}, \beta_{1}+\beta_{2}\right\}$ such that $\operatorname{supp}(f)=\left\{\beta_{1}, \beta_{2}, 1+\beta_{1}, 1+\beta_{2}\right\}$, where $\beta_{1}, \beta_{2} \in T_{2} ;$

Characterization of non-decomposable PBFs

(cont.)
(iii) If $t \geq 3$, then either $r=t$ or $r=t-1$. Furthermore,
(a) If $r=t$, then f is a non-decomposable PBF if and only if there exist fat TSs $A_{1}=\left\{\beta_{1}, \beta_{2}, \beta_{1}+\beta_{2}\right\}$,
$A_{i}=\left\{1+\beta_{i-1}, \beta_{i+1}, 1+\beta_{i-1}+\beta_{i+1}\right\}, 2 \leq i \leq t-1$, and
$A_{t}=\left\{1+\beta_{t-1}, 1+\beta_{t}, \beta_{t-1}+\beta_{t}\right\}$ such that A_{1}, \cdots, A_{t-1} and A_{t} form a circle of TSs, and $\operatorname{supp}(f)=\left\{\beta_{i}, 1+\beta_{i} \mid 1 \leq i \leq t\right\}$.
(b) If $r=t-1$, then f is a non-decomposable PBF if and only if there exist TSs $A_{1}=\left\{\beta_{1}, \beta_{2}, \beta_{1}+\beta_{2}\right\}, A_{2}=\left\{1+\beta_{1}, \beta_{3}, 1+\beta_{1}+\beta_{3}\right\}$, and $A_{i}=\left\{1+\beta_{i}, \beta_{i+1}, 1+\beta_{i}+\beta_{i+1}\right\}, 3 \leq i \leq r$ such that A_{1}, A_{r} are slim TSs and A_{2}, \cdots, A_{r-1} are fat TSs, and $\operatorname{supp}(f)=\left\{\beta_{i}, 1+\beta_{i} \mid 1 \leq i \leq t\right\}$.

Thanks for the Attention!

Question?

