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Motivation and Definitions
Motivations
Definitions

Requirements for a substitution box

Assuming F is the Substitution box chosen by a block cipher with SPN
structure. To avoid various attacks, F should satisfy the following
conditions:

e Low differential uniformity (to avoid differential attack);

High nonlinearity (to aviod linear attack);

High algebraic degree (to avoid higher order differential attack);
Defined on Faa (for software implementation);

Others.
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Motivation and Definitions

Motivations
Definitions

Differential uniformity

Let F be a function over Fan. We have the following two different
common methods to characterize its nonlinearity.
For any a € F3, and b € Fan, define

dr(a, b) = |[{x € Fan|F(x + a) + F(x) = b}|, and

ArFr= max_ dfr(a, b).
acF},,beFn (a, )

To prevent the differential attack, we want the value Af to be as small as
possible.

PN functions do not exist in the field with even characteristic.
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To prevent the differential attack, we want the value Af to be as small as
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Motivation and Definitions
Motivations
Definitions

Differential uniformity

Let F be a function over Fan. We have the following two different
common methods to characterize its nonlinearity.
For any a € F3, and b € Fan, define

dr(a, b) = |[{x € Fan|F(x + a) + F(x) = b}|, and

Arp = max_ 0g(a,b).

acF},,beFn

To prevent the differential attack, we want the value Af to be as small as
possible.

@ If AF =1, F is called perfect nonlinear function (PN); *
o If Ap =2, Fis called almost perfect nonlinear function (APN);

@ If Ar =4, F is called differentially 4-uniform function.

PN functions do not exist in the field with even characteristic.
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Motivation and Definitions
Motivations
Definitions

Nonlinearity

(2) For any a € F3, and b € Fon, define

WF(a,b) — Z(_l)’I‘r(aF(x)erx)’
XG]F2n
Wr = . [We(a, b)),

1
NLg = 2"‘1—§WF.

To be resistnt to the linear attack, we want the value NLg to be as large
as possible.
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Motivation and Definitions
Motivations
Definitions

Nonlinearity

(2) For any a € F3, and b € Fon, define

WF(a,b) — Z(_l)’I‘r(aF(x)erx)’
XG]F2n
Wr = . [We(a, b)),

1
I\“-F = 2n—1 - *WF.
2
To be resistnt to the linear attack, we want the value NLF to be as large
as possible.
@ When nis even, Wg < 20/2+1.
@ When n is odd, it is conjectured that Wr < 2(n+1)/2;

@ The function F is called maximal nonlinear if Wg = 2"/2t1 when n is even,
or Wg = 2(0t1)/2 \when n is odd.
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Motivation and Definitions
Motivations
Definitions

EA-equivalence and CCZ-equivalence

(1) The differential uniformity and nonlinearity of a function F is
preserved by EA-equivalence and CCZ-equivalence;

(2) CCZ-equivalence implies EA-equivalence, but not vice versa;

(3) Therefore, obtaining an ideal Sbox can lead to a large class of ideal
Sboxes.

(4) However, given two functions F and G, it is difficult to tell whether
they are CCZ-equivalent (if differential and linear spectrum are the
same).
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Motivation and Definitions
Motivations
Definitions

EA-equivalence and CCZ-equivalence

Definition 1

Two function F, G : Fon — Fan are called extended affine equivalent (EA)
if there exist two affine permutations Az, Ay of Fan and an affine function
A : Fon — Fon such that

G=AioFoAy+ A,

where o denotes the composition of two functions.
For a function F : Fon — Fon, we denote by Gg the graph of the function
of F

Gr = {(x, F(x)) : x € Fan} C F3".

We say two functions F, G : Fon — Fon CCZ-equivalence if there exists an
affine permutation A : Fy2n — Fo2n such that A(Gr) = Ge.
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Construction of differentially 4-uniform permutations Power functions
Construction from the switching method

The power functions

It is natural to search for ideal Sboxes from power functions.

Table : Known differentially 4-uniform permutations on Fy« with maximal
nonlinearity

’ Functions ‘ Exponents d | Degree ‘ Conditions ‘

Gold x2+1 2 ged(i,n) =2,n=2t,t odd
Kasami X2 =241 i+1 | gcd(i,n)=2,n=2ttodd
Inverse X2 -1 2t—1 | n=2t

Dobbertin | x2+2'+1 3 n = 4t,t odd

It is conjectured the above table is complete, i.e. all power permutations
with maximal nonlinearity are one of the four families.
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Construction of differentially 4-uniform permutations Power functions
Construction from the switching method

Binomial function

Theorem 2 (Bracken, T. and Tan, 2012)

Let n =3k and k is an even integer with 3 1 k, k/2 is odd. Let s be an
integer with gcd(3k,s) =2 and 3 | k + s. Define the function
F: ]F2n = FQn

F(x) = ax®*! + a2

where « is a primitive element of Fon. Then F is a differentially 4-uniform
permutation with maximal nonlinearity.

v

Note that when gcd(3k,s) = 1, the function F is APN which is discovered
by Budaghyan, Carlet and Leander.
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Construction of differentially 4-uniform permutations Power functions
Construction from the switching method

Switching method

If we do not requre maximal nonlinearity but "good” nonlinearity, much
more infinite classes of differentially 4-uniform permutations can be
obtained. A powerful tool is the so-called switching method, i.e. adding a
Boolean function to F.

Switching method has been previously applied on:

(1). APN functions: a well-known example x3 + Tr(x?) (B-C-L); Many
new APN examples from switching method in E-P’s paper;

(2). planar function: certain CCZ-inequivalent PN functions are switching
neighbors, in P-Z's paper.

(3). permutation polynomial: many PPs with the form F(x) 4+ yTr(H(x))
are obtained in C-K's papers.
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Switching method

If we do not requre maximal nonlinearity but "good” nonlinearity, much
more infinite classes of differentially 4-uniform permutations can be
obtained. A powerful tool is the so-called switching method, i.e. adding a
Boolean function to F.

Switching method has been previously applied on:

(1). APN functions: a well-known example x3 + Tr(x?) (B-C-L); Many
new APN examples from switching method in E-P’s paper;

(2). planar function: certain CCZ-inequivalent PN functions are switching
neighbors, in P-Z's paper.

(3). permutation polynomial: many PPs with the form F(x) 4+ yTr(H(x))
are obtained in C-K's papers.

In the following we apply the switching method on constructing

differentially 4-uniform permutations on Foox.
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Construction of differentially 4-uniform permutations Power functions
Construction from the switching method

Preferred functions

Let n = 2k be an even integer and R be an (n, n)-function. Define the

Boolean function Dg by Dgr(x) = Tr(R(x + 1) + R(x)), and the functions
Qr, Pr as

Qul.) = Dr (1) + Da (% +) . Pely) = Q(0.) = D(0) + Di(y)

Let U be the subset of an X Fon defined by
= {(x,y)]x* + X+ y(y+1) =0,y ¢ F2}. If

Qr(x,y) + Pr(y) =0

satisfies for any elements in (x,y) € U, then we call R a preferred function
(PF), or said to be preferred.
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Construction of differentially 4-uniform permutations Power functions

Construction from the switching method

Properties of PFs

Proposition 1

Let S be a set of PFs defined on Fan. Then the set S defined by

is a subspace of (VF",+).
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Construction of differentially 4-uniform permutations Power functions
Construction from the switching method

Properties of PFs

Proposition 1
Let S be a set of PFs defined on Fan. Then the set S defined by

is a subspace of (VF",+).

If we can find t PFs, we then obtain 2t PFs.
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Construction of differentially 4-uniform permutations Power functions
Construction from the switching method

Why we consider preferred functions?

Theorem 3

Let n = 2k be an even integer, I(x) = x~! be the inverse function and R
be an (n, n)-function. Define

H(x) = x4+ Tr(R(x) + R(x + 1)), and
G(x) = H(I(x)).

Then if R(x) is a preferred function,

(1.) G(x) is a differentially 4-uniform permutation polynomial;

(2.) The algebraic degree of G is n —1;
(3.) The nonlinearity of F

1, s
NLg >2"2 — ZLzz“J — i




Construction of differentially 4-uniform permutations Power functions
Construction from the switching method

Examples of preferred functions

Example 4
Let R(x) = x9 : Fyox — Fpox and F(x) = x + Tr(R(x + 1) + R(x)), where
(1) n=2k=4m, d =22"+2m 41,

(2) d=2t41, where1 <t<k—1,
(3) d=3(2"+1),where2 <t < k—1.
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Construction of differentially 4-uniform permutations Power functions
Construction from the switching method

Examples of preferred functions

Example 4
Let R(x) = x9 : Fyox — Fpox and F(x) = x + Tr(R(x + 1) + R(x)), where
(1) n=2k=4m, d =22"+2m 41,

(2) d=2t+1, where1 <t < k—1,
(3) d=3(2"+1),where2 <t < k—1.

Therefore, the function F(x~1!) is differentially 4-uniform permutations.
Many PFs can be found in [Qu, T., Tan, Li, IEEE IT (2013)].
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Number of CCZ-inequivalent PPs via the switching method

Preferred Boolean functions

Since we obtain a lot of new differentially 4-uniform permutations, it is
inter:esting to consider

Problem 5
Let n = 2k and PF be the set of all PFs on Fon. Define

Sn={H(x') | H(x) = x + Tr(R(x + 1) + R(x)), R € PF}.

How many CCZ-inequivalent classes of differentially 4-uniform
permutations among S, ?

15/27



Number of CCZ-inequivalent PPs via the switching method

Preferred Boolean functions

Definition 6

Let n = 2k be an even integer and f be an n-variable Boolean function.
We call f a preferred Boolean function (PBF for short) if it satisfies the

following two conditions:
(i) f(x+1) = f(x) for any x € Fan;
(i) £(2)+f (L +y)+f(0)+f(y) =0 for any pair (x,y) € U, where
U is the same set when define PFs. )
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Number of CCZ-inequivalent PPs via the switching method

Properties of preferred Boolean functions

Proposition 2

R : Fon — Fan is @ PF if and only if Dr(x) = Tr(R(x) + R(x + 1)) is a
PBF. Furthermore, for any PBF f with n variables, there are gn-2"=2"1
preferred functions R such that Dg(x) = f(x).
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Number of CCZ-inequivalent PPs via the switching method

Properties of preferred Boolean functions

Proposition 2

R :Fon — Fon is a PF if and only if Dr(x) = Tr(R(x) + R(x +1)) is a
PBF. Furthermore, for any PBF f with n variables, there are gn-2"=2"1
preferred functions R such that Dg(x) = f(x).

Proposition 3
Let w be an element of Fon with order 3. Then f is a PBF if and only if it
satisfies the following two conditions:

(i) f(x+1) = f(x) for any x € Fon;

(i) fFa+i)+f(wa+2)+f(w?a+ L) =0 forany a € Fon \ Fy.

v
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Number of CCZ-inequivalent PPs via the switching method

Determine all preferred Boolean functions

Define the following two sets:

L = {{X,X+1}:X€F2H\F2},
1 1 1

L, = {{a—i—,wa—i—,w2a+2}:a€F2n\F4}.
o wo wa

Let v, and v, be the characteristic function in an \ F2 of each
{x,x+1} € L; and {a + 5, wa+ m,w a+ o } € Ly, respectively.
Define the (|L1]| + |L2]) X ( — 2) matrix M by

w=| o, &

where the columns and rows of M are indexed by the elements in Fan \ F
and L U Ly respectively. Then the dimension of PBF is 2" — 1 — rank(M),
and the dimension of PF is n-2" 427~ — 1 — rank(M).
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Number of CCZ-inequivalent PPs via the switching method

Determine all preferred Boolean functions

Problem 7

o n+1
Is the rank of the matrix M above 2+T—5

? We have verified this true for
n=26,8,10,12,14.
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Number of CCZ-inequivalent PPs via the switching method

Determine all preferred Boolean functions

Problem 7

Is the rank of the matrix M above 2-=5

£ =27 We have verified this true for
n=26,8,10,12,14.

Lemma 8
We have
(1) rank(M) < min{|Ls] + |Lo|, 2" — 2} = min{Z5=8,27 — 2} = 275,

(2) For each (n,n)-function F, there are at most (2")*12 = 24n"+2n
functions which are CCZ-equivalent to it.
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Number of CCZ-inequivalent PPs via the switching method

Lower bound on the CCZ-inequivalent number of PPs

Theorem 9

2742 . . . o .
There are at least 273 4" =20 C CZ-inequivalent differentially 4-uniform
permutations over Fon among all the functions constructed by Theorem 3.
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Number of CCZ-inequivalent PPs via the switching method

Lower bound on the CCZ-inequivalent number of PPs

Theorem 9

2742 . . . o .
There are at least 273 4" =20 C CZ-inequivalent differentially 4-uniform
permutations over Fon among all the functions constructed by Theorem 3.

Remarks:

(1.) The number of differentially 4-uniform permutations on F,2« with
highest algebraic degree and nonlinearity greater than the one in
Theorem 3 grows exponentially when n increase;

(2.) A similar question is raised by Edel and Pott on the number of
CCZ-inequivalent APN functions, which is still open now.
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Number of CCZ-inequivalent PPs via the switching method

Some statistics

Table : Nonlinearity of the differentially 4-uniform permutations constructed by
Theorem 3 on Fa» when 6 < n < 10 (n even)

’ n | Samplesize | Ave(NL) ‘ Var(NL) ‘ Dist(NL) ‘ Soundin KMNL
43 849 6161
6 10, 000 18.4022 | 1.2034 ;3292’816221; 18 14 24

8210, 8430, 86307 88150
8 10, 000 94.2740 | 2.2576 90540, 921620 943450 55 112
063490 gg680

4187, 4207°, 422°, 424%
426132, 42863 43070
432730 4341053 4361022
438910, 440315 442

10 5,000 434.2524 3.7225 239 480
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Number of CCZ-inequivalent PPs via the switching method

What about the case n odd?

Does the number of differentially 4-uniform permutations grows
exponentially when n increases?
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Number of CCZ-inequivalent PPs via the switching method

What about the case n odd?

Does the number of differentially 4-uniform permutations grows
exponentially when n increases?

Yes. Consider G(x) = x~1 + f(x), where f is Boolean. It is shown in [T,
Qu, Tan, Li, SETA12] that there are 22"7" f such that G is PP. So there
are at least

on—1
2 _ ~2"1_4n?2_2n

24n2+2n -

CCZ-inequivalent permutations over Fo» (n odd) with differential
uniformity at most 4.
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Non-decomposable preferred Boolean functions

Triple set

- For any a € Fan \ Fy4, we call the set
1 1

Aw ={a+ —,wa+ — wa
o wa

a triple set with respect to a (or TS for short).

- Let A; and A, be two triple sets. They are called adjacent if there exist
ac€ A; and b€ Ay such that a+ b=1. To be more clear, we call As is
adjacent to A; at a, and call A; is adjacent to Ay at b.

- For any triple set A,, it has either three or exactly one neighbors. If it
has one neighbor, we call it slim, otherwise call it fat.
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Non-decomposable preferred Boolean functions

Non-decomposable PBFs

Definition 10

Let f be a nonzero PBF. If there exist two PBFs f; and £ such that
f =1+ f, and supp(f;) C supp(f),1 < i <2, then f is called
decomposable. Otherwise it is called non-decomposable.

Definition 11

We define the following sets for later usage:

T = {XEIF‘gn]Tr<)1(>—Tr( i1>—1},

T, = {X€F2n|Tr<1>—|—Tr< L ):1},
X x+1

T3 = {X€F2n|TI‘<1>:TI‘< 1 >:0}
X x+1

X

’)A, 27



Non-decomposable preferred Boolean functions

Characterization of non-decomposable PBFs

Theorem 12

Let f be a Boolean function with n variables. Assume that |supp(f)| = 2t
and there are r (0 < r <'t) TSs A; = {aj, b;,a; + b;} such that
supp(f) N Ai = {aj, bj}. Then the following results hold:
(i) Ift =1, then f is a non-decomposable PBF if and only if r = 0 and
there exists 3 € Ty such that supp(f) = {5,1+ 5},

(i) Ift =2, then f is a non-decomposable PBF if and only if r = 1 and
there exists a slim TS A = {1, B2, 1 + B2} such that
supp(f) = {B1,B2,1+ B1,1 + B2}, where By, B € To;
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Non-decomposable preferred Boolean functions

Characterization of non-decomposable PBFs

(cont.)

(iii) If t > 3, then either r = t or r = t — 1. Furthermore,

()

If r =t, then f is a non-decomposable PBF if and only if there
exist fat TSs Ay = {61, 52, B1 + B2},

Ai={1+Bi—1,Bi41, 1+ Bic1 + Bis1}, 2<i<t—1, and

At = {1 + ﬂt—l, 14 /Btaﬂt—l + ﬁt} such that Al, s aAt—l and At
form a circle of TSs, and supp(f) = {8;, 1+ 8|1 < i < t}.

If r=t—1, then f is a non-decomposable PBF if and only if there
exist TSs Ay = {1, B2, b1 + B2}, Ao = {1+ B1, 83,1 + 1 + B3},
and A,' = {1 +ﬁ,',5,'+1,1 —|—ﬁ, +6,'+1}, 3 < i <r such that Al,A,—
are slim TSs and Ay, -+ ,A,_1 are fat TSs, and

supp(F) = (B 1+ 1< i < t}.
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Non-decomposable preferred Boolean functions

Thanks for the Attention!

Question?
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