Some results on cross-correlation distribution between a p-ary m-sequence and its decimated sequences

Yongbo Xia

A joint work with Chunlei Li, Xiangyong Zeng, and Tor Helleseth

Selmer Center, University of Bergen
Sept. 5, 2014

Outline

(1) Background and preliminaries

Outline

(1) Background and preliminaries
(2) The exponential sum $S_{d}(u, v)$

Outline

(1) Background and preliminaries
(2) The exponential sum $S_{d}(u, v)$
(3) Cross-correlation distribution

Outline

(1) Background and preliminaries
(2) The exponential sum $S_{d}(u, v)$
(3) Cross-correlation distribution
(4) Connection between our decimations and some known ones

Notation

- p : an odd prime.
- m : a positive integer.
- $\mathbb{F}_{p^{m}}$: the finite field with p^{m} elements.
- α : a primitive element of $\mathbb{F}_{p^{m}}$.
- $\{s(t)\}_{t=0}^{p^{m}-2}$: a p-ary m-sequence of period $p^{m}-1$.
- Trace representation (after suitable cyclic shift): $s(t)=\operatorname{Tr}_{1}^{m}\left(\alpha^{t}\right)$.
- The decimation exponent d.
- The l-th d-decimated sequence $\{s(d t+l)\}$ of $\{s(t)\}$:

$$
s(d t+l)=\operatorname{Tr}_{1}^{m}\left(\alpha^{d t+l}\right), 0 \leq l<\operatorname{gcd}\left(d, p^{m}-1\right)
$$

- $\{s(d t+l)\}$ has period $\frac{p^{m}-1}{\operatorname{gcd}\left(d, p^{m}-1\right)}$.

Cross-correlation function $C_{d, l}(\tau)$

- The cross-correlation function of $\{s(t)\}$ and $\{s(d t+l)\}$:

$$
C_{d, l}(\tau)=\sum_{t=0}^{p^{m}-2} \omega_{p}^{\operatorname{Tr}_{1}^{m}\left(\alpha^{t}\right)-\operatorname{Tr}_{1}^{m}\left(\alpha^{d(t+\tau)+l}\right)}
$$

- To determine $C_{d, l}(\tau)$, it suffices to investigate

$$
\begin{equation*}
C_{d}(\gamma)=\sum_{x \in \mathbb{F}_{p^{m}}} \omega_{p}^{\operatorname{Tr}_{1}^{m}\left(x+\gamma x^{d}\right)}-1, \gamma \in \mathbb{F}_{p^{m}}^{*} \tag{1.1}
\end{equation*}
$$

Cross-correlation distribution

Two important problems in sequence design.

- Find new decimation exponents d such that $\max _{\gamma \in \mathbb{F}_{p}^{*}}\left|C_{d}(\gamma)\right|$ is low.
- Determine the cross-correlation distribution, i.e., the multiset

$$
\left\{C_{d}(\gamma) \mid \gamma \in \mathbb{F}_{p^{m}}^{*}\right\} .
$$

Exponential sums related to $C_{d}(\gamma)$

- Define

$$
\begin{equation*}
S_{d}(u, v)=\sum_{x \in \mathbb{F}_{p^{m}}} \omega_{p}^{\operatorname{Tr}_{1}^{m}\left(u x+v x^{d}\right)} \tag{1.2}
\end{equation*}
$$

- Then,

$$
S_{d}(1, \gamma)=C_{d}(\gamma)+1
$$

Some known results (1/4)

- odd prime $p, e=\operatorname{gcd}(k, m), \frac{m}{e} \geq 3$ odd, $d=\frac{p^{2 k}+1}{2}$ or $\frac{p^{3 k}+1}{p^{k}+1}$, 3 -valued, $p^{\frac{m+e}{2}}+1$.
- $p^{\frac{m}{2}} \not \equiv 2(\bmod 3), m$ even, $d=2 p^{\frac{m}{2}}-1,4$-valued, $2 p^{\frac{m}{2}}-1$.
T. Helleseth, "Some results about the cross-correlation function between two maximal linear sequences," Discr. Math., 16: 209-232 (1976)

Some known results (2/4)

- $p=3, m$ odd, $d=2 \cdot 3^{\frac{m-1}{2}}+1,3$-valued, $3^{\frac{m+1}{2}}+1$
- $p=3, m=3 r(r \geq 2), d=3^{r}+2$ or $3^{2 r}+2,4$ or 6 -valued, $3^{2 r}-1$.
H. Dobbertin, T. Helleseth, P. V. Kumar, and H. Martinsen, "Ternary m-sequences with three-valued cross-correlation function: new decimations of Welch and Niho type," IEEE Trans. Inf. Theory, 47(4): 1473-1481 (2001)
T. Zhang, S. Li, T. Feng and G. Ge, "Some new results on the cross correlation of m-sequences," IEEE Trans. Inf. Theory, 60(5): 3062-3068 (2014).
Y. Xia, T. Helleseth and G. Wu, "A note on cross-correlation distribution between a ternary m-sequence and its decimated sequence," to appear in SETA2014.

Some known results (3/4)

- odd prime $p, e=\operatorname{gcd}(k, m), \frac{m}{e} \geq 2, d=\frac{p^{k}+1}{2}, \frac{k}{e}$ odd, 9 -valued, $\frac{p^{e}-1}{2} p^{\frac{m}{2}}+1$.
- odd prime $p, m=4 k, d=\left(\frac{p^{2 k}+1}{2}\right)^{2}, 4$-valued, $2 p^{\frac{m}{2}}-1$.
J. Luo and K. Feng, "Cyclic codes and sequence from generalized Coulter-Matthews functions," IEEE Trans. Inf. Theory, 54(12): 5345-5353 (2008)
E. Y. Seo, Y. S. Kim, J. S. No and D. J. Shin, "Cross-correlation distribution of p-ary m-sequence of period $p^{4 k}-1$ and its decimated sequences by $\left(\frac{p^{2 k}+1}{2}\right)^{2}$," IEEE Trans. Inf. Theory, 54(7): 3140-3149 (2008)

Some known results (4/4)

- $p \equiv 3(\bmod 4), m$ odd, $e \mid m, \frac{m}{e} \geq 3, d=\frac{p^{m}+1}{p^{e}+1} \pm \frac{p^{m}-1}{2}$, $\operatorname{gcd}\left(d, p^{m}-1\right)=2,9$-valued, $\frac{p^{e}+1}{2} p^{\frac{m}{2}}+1$.
E. N. Müller, "On the crosscorrelation of sequences over GF (p) with short periods," IEEE Trans. Inf. Theory, 45(1): 289-295 (1999)
Z. Hu, X. Li, D. Mills, E. N. Müller, W. Sun, W. Willems, Y. Yang and Z. Zhang, "On the crosscorrelation of sequences with the decimation factor $d=\frac{p^{n}+1}{p+1}-\frac{p^{n}-1}{2}$," Appl. Algebra Eng. Commun. Comput., 12(3): 255-263 (2001)
Y. Xia, X. Zeng and L. Hu, "Further crosscorrelation properties of sequences with the decimation factor $d=\frac{p^{n}+1}{p+1}-\frac{p^{n}-1}{2}$," Appl. Algebra Eng. Commun. Comput., 21(5): 329-342 (2010)
S. T. Choi, J. Y. Kim, and J. S. No, "On the cross-correlation of a p-ary m-sequence and its decimated sequences by $d=\frac{p^{n}+1}{p^{k}+1}+\frac{p^{n}-1}{2}$," IEICE Trans. Commun., vol. E96-B(9): 2190-2197 (2013)
- An odd prime p and two positive integers m, k :

$$
\begin{equation*}
\frac{m}{\operatorname{gcd}(k, m)} \text { is odd and } \frac{m}{\operatorname{gcd}(k, m)}>1 \tag{1.3}
\end{equation*}
$$

a decimation d :

$$
\begin{equation*}
d\left(p^{k}+1\right) \equiv 2\left(\bmod p^{m}-1\right) \tag{1.4}
\end{equation*}
$$

- The purpose is to determine the cross-correlation distribution for every decimation d satisfying Eq. (1.4).

$d\left(p^{k}+1\right) \equiv 2\left(\bmod p^{m}-1\right)$

Some auxiliary results (1/4)

Lemma 1

For p, m and k satisfying (1.3), there are two distinct integers d_{1}, d_{2} satisfying $d\left(p^{k}+1\right) \equiv 2\left(\bmod p^{m}-1\right)$ in $\mathbb{Z}_{p^{m}-1}$. Then
(i) $d_{1} \equiv 1\left(\bmod p^{e}-1\right)$, and $d_{2} \equiv 1+\frac{p^{e}-1}{2}\left(\bmod p^{e}-1\right)$;
(ii) $\operatorname{gcd}\left(d_{1}, p^{m}-1\right)=1$, and

$$
\operatorname{gcd}\left(d_{2}, p^{m}-1\right)= \begin{cases}1, & \text { if } p^{e} \equiv 1(\bmod 4) \\ 2, & \text { if } p^{e} \equiv 3(\bmod 4)\end{cases}
$$

Some auxiliary results (2/4)

Let m, k be two positive integers satisfying (1.3). Define

$$
\begin{equation*}
Q_{u, v}(x)=\operatorname{Tr}_{e}^{m}\left(u x^{p^{k}+1}+v x^{2}\right), u, v \in \mathbb{F}_{p^{m}} \tag{1.5}
\end{equation*}
$$

J. Luo and K. Feng, "On the weight distribution of two classes of cyclic codes," IEEE Trans. Inf. Theory, 54(12): 5332-5344 (2008)
J. Luo and K. Feng, "Cyclic codes and sequence from generalized Coulter-Matthews functions," IEEE Trans. Inf. Theory, 54(12): 5345-5353 (2008)
S. T. Choi, J. Y. Kim, and J. S. No, "On the cross-correlation of a p-ary m-sequence and its decimated sequences by $d=\frac{p^{n}+1}{p^{k}+1}+\frac{p^{n}-1}{2}$," IEICE Trans. Commun., vol. E96-B(9): 2190-2197 (2013)
Z. Zhou and C. Ding, "A class of three-weight cyclic codes," Finite Fields Appl., 25: 79-93 (2014)

Some auxiliary results $(3 / 4)$

Lemma 2 (Luo and Feng, 2008; Choi et. al., 2013; Zhou and Ding, 2014)

Let $Q_{u, v}(x)$ be the quadratic form defined by (1.5), $(u, v) \in \mathbb{F}_{p^{m}}^{2} \backslash\{(0,0)\}$ and $s=\frac{m}{e}$.
(i) The rank of $Q_{u, v}(x)$ is $s, s-1$ or $s-2$. Especially, both $Q_{u, 0}(x)$ with $u \in \mathbb{F}_{p^{m}}^{*}$ and $Q_{0, v}(x)$ with $v \in \mathbb{F}_{p^{m}}^{*}$ have rank s.
(ii) For any given $(u, v) \in \mathbb{F}_{p^{m}}^{2} \backslash\{(0,0)\}$, at least one of $Q_{u, v}(x)$ and $Q_{u,-v}(x)$ has rank s.

Some auxiliary results (4/4)

Lemma 3 (Luo and Feng, 2008)

$$
\begin{equation*}
T(u, v)=\sum_{x \in \mathbb{F}_{p^{m}}} \omega_{p}^{\operatorname{Tr}_{1}^{e}\left(Q_{u, v}(x)\right)} \tag{1.6}
\end{equation*}
$$

Table 1: Value distribution for $T(u, v)$

Value	Frequency (each)
p^{m}	1
$\pm \epsilon p^{\frac{m}{2}}$	$\frac{\left(p^{m}-1\right) p^{2 e}\left(p^{m}-p^{m-e}-p^{m-2 e}+1\right)}{2\left(p^{2 e}-1\right)}$
$p^{\frac{m+e}{2}}$	$\frac{\left(p^{m}-1\right)\left(p^{m-e}+p^{\frac{m-e}{2}}\right)}{2}$
$-p^{\frac{m+e}{2}}$	$\frac{\left(p^{m}-1\right)\left(p^{m-e}-p^{\frac{m-e}{2}}\right)}{2}$
$\pm \epsilon p^{\frac{m+2 e}{2}}$	$\frac{\left(p^{m}-1\right)\left(p^{m-e}-1\right)}{2\left(p^{2 e}-1\right)}$

- d: $d\left(p^{k}+1\right) \equiv 2\left(\bmod p^{m}-1\right)$.
- θ : a fixed nonsquare in $\mathbb{F}_{p^{e}}$.
- $\mathcal{S}=\left\{x^{p^{k}+1}: x \in \mathbb{F}_{p^{m}}^{*}\right\}=\left\{x^{2}: x \in \mathbb{F}_{p^{m}}^{*}\right\}$. Then, $\mathbb{F}_{p^{m}}^{*}=\mathcal{S} \cup \theta \mathcal{S}$.

Then

$$
\begin{aligned}
& S_{d}(u, v) \\
= & \sum_{x \in \mathbb{F}_{p^{m}}} \omega_{p}^{\operatorname{Tr}_{1}^{m}}\left(u x+v x^{d}\right) \\
= & \frac{1}{2} \sum_{x \in \mathbb{F}_{p^{m}}}\left(\omega_{p}^{\operatorname{Tr}_{1}^{m}}\left(u x^{p^{k}+1}+v x^{2}\right)\right. \\
& \left.\omega_{p}^{\operatorname{Tr}_{1}^{m}\left(u \theta x^{p^{k}+1}+v \theta^{d} x^{2}\right)}\right) .
\end{aligned}
$$

A relation between $S_{d}(u, v)$ and $T(u, v)$

- If d satisfies $d \equiv 1\left(\bmod p^{e}-1\right)$, i.e., $\theta^{d}=\theta$,

$$
\begin{align*}
& S_{d}(u, v) \\
= & \frac{1}{2} \sum_{x \in \mathbb{F}_{p^{m}}}\left(\omega_{p}^{\operatorname{Tr}_{1}^{e}\left(Q_{u, v}(x)\right)}+\omega_{p}^{\operatorname{Tr}_{1}^{e}\left(\theta Q_{u, v}(x)\right)}\right) \tag{2.1}\\
= & \frac{1}{2}(T(u, v)+T(u \theta, v \theta))
\end{align*}
$$

- If d satisfies $d \equiv 1+\frac{p^{e}-1}{2}\left(\bmod p^{e}-1\right)$, i.e., $\theta^{d}=-\theta$,

$$
\begin{align*}
& S_{d}(u, v) \\
= & \frac{1}{2} \sum_{x \in \mathbb{F}_{p^{m}}}\left(\omega_{p}^{\operatorname{Tr}_{1}^{e}\left(Q_{u, v}(x)\right)}+\omega_{p}^{\operatorname{Tr}_{1}^{e}\left(\theta Q_{u,-v}(x)\right)}\right) \tag{2.2}\\
= & \frac{1}{2}(T(u, v)+T(u \theta,-v \theta))
\end{align*}
$$

- Define

$$
\begin{equation*}
\widehat{T}(u, v)=(T(u, v), T(u \theta,-v \theta)) \tag{2.3}
\end{equation*}
$$

- Denote $c_{i}=\left\{\begin{array}{ll}\epsilon p^{\frac{m+i e}{2}}, & i=0,2, \\ p^{\frac{m+i e}{2}}, & i=1,\end{array}\right.$ where $\epsilon=\sqrt{\eta_{e}(-1)}$.
- $T(u, v), T(u \theta,-v \theta) \in\left\{\varepsilon c_{i} \mid \varepsilon= \pm 1, i=0,1,2\right\}$.
- $\widehat{T}(u, v) \in\left\{\left(\varepsilon_{1} c_{i_{1}}, \varepsilon_{2} c_{i_{2}}\right) \mid \varepsilon_{1}, \varepsilon_{2} \in\{ \pm 1\}, i_{1}, i_{2} \in\{0,1,2\}\right\}$. (36 possible values!)

A characterization of $\widehat{T}(u, v)$

- Define two sets

$$
\begin{gather*}
N_{\varepsilon, i}=\left\{(u, v) \in \mathbb{F}_{p^{m}}^{2} \mid T(u, v)=\varepsilon c_{i}\right\}, \\
M_{\varepsilon, i}=\left\{(u, v) \in \mathbb{F}_{p^{m}}^{2} \mid T(u \theta,-v \theta)=\varepsilon c_{i}\right\}, \tag{2.4}
\end{gather*}
$$

where $\varepsilon \in\{ \pm 1\}$ and $i \in\{0,1,2\}$.

- Then,

$$
\widehat{T}(u, v)=\left(\varepsilon_{1} c_{i_{1}}, \varepsilon_{2} c_{i_{2}}\right) \Leftrightarrow(u, v) \in N_{\varepsilon_{1}, i_{1}} \cap M_{\varepsilon_{2}, i_{2}},
$$

where $\varepsilon_{1}, \varepsilon_{2} \in\{ \pm 1\}$ and $i_{1}, i_{2} \in\{0,1,2\}$.

Some properties of $N_{\varepsilon, i}$ and $M_{\varepsilon, i}$

Let \mathcal{A} be a set of $\mathbb{F}_{p^{m}}^{2}$, and define

$$
(\theta,-\theta) \mathcal{A}=\{(\theta,-\theta)(a, b) \mid(a, b) \in \mathcal{A}\}=\{(a \theta,-b \theta) \mid(a, b) \in \mathcal{A}\}
$$

and

$$
\theta \mathcal{A}=\{(a \theta, b \theta) \mid(a, b) \in \mathcal{A}\} .
$$

Lemma 4

Let $N_{\varepsilon, i}$ and $M_{\varepsilon, i}$ be the sets defined in (2.4). Then,
(i) for any $\varepsilon \in\{ \pm 1\}$ and any $i \in\{0,1,2\},(\theta,-\theta) N_{\varepsilon, i}=M_{\varepsilon, i}$,
$N_{\varepsilon, i}=(\theta,-\theta) M_{\varepsilon, i}$;
(ii) for any $\varepsilon \in\{ \pm 1\}$ and any $i \in\{0,2\}, \theta N_{\varepsilon, i}=N_{-\varepsilon, i}$, $\theta M_{\varepsilon, i}=M_{-\varepsilon, i}$;
(iii) for any $\varepsilon \in\{ \pm 1\}, \theta N_{\varepsilon, 1}=N_{\varepsilon, 1}, \theta M_{\varepsilon, 1}=M_{\varepsilon, 1}$.

Some properties of $T(u, v)$

Lemma 5

Let $T(u, v)$ be the exponential sum defined in (1.6) and \mathcal{N} be the number given in Lemma 6. Then
(i) $\quad \sum \quad T(u, v) T(u \theta,-v \theta)=p^{2 m}$;

$$
(u, v) \in \mathbb{F}_{p^{m}}^{2}
$$

(ii) $\quad \sum \quad T^{3}(u, v) T(u \theta,-v \theta)=p^{2 m} \mathcal{N}$. $(u, v) \in \mathbb{F}_{p}{ }^{m}$

The number of solutions to a system of equations

Lemma 6

With the notation above, let \mathcal{N} denote the number of solutions of

$$
\left\{\begin{array}{l}
x^{2}+y^{2}+z^{2}-\theta w^{2}=0 \\
x^{p^{k}+1}+y^{p^{k}+1}+z^{p^{k}+1}+\theta w^{p^{k}+1}=0,
\end{array}\right.
$$

where $(x, y, z, w) \in \mathbb{F}_{p^{m}}^{4}$ and θ is a fixed nonsquare in $\mathbb{F}_{p^{e}}$. Then

$$
\mathcal{N}= \begin{cases}p^{m+e}+p^{m}-p^{e}, & \text { if } p^{e} \equiv 1(\bmod 4) \\ 2 p^{2 m}-p^{m+e}-p^{m}+p^{e}, & \text { if } p^{e} \equiv 3(\bmod 4)\end{cases}
$$

Proof sketch of Lemma 6

- $\mathcal{N}_{1}(a, b)$: the number of solutions to

$$
\left\{\begin{array}{l}
x^{2}+y^{2}=a, \\
x^{p^{k+1}}+y^{p^{k+1}}=b .
\end{array}\right.
$$

- $\mathcal{N}_{2}(a, b)$: the number of solutions to

$$
\left\{\begin{array}{l}
z^{2}-\theta w^{2}=-a, \\
z^{p^{k+1}}+\theta w^{p^{k+1}}=-b .
\end{array}\right.
$$

- \mathcal{N} : the number of solutions to the system in Lemma 5

$$
\mathcal{N}=\sum_{(a, b) \in \mathbb{F}_{p^{2}}^{2}} \mathcal{N}_{1}(a, b) \mathcal{N}_{2}(a, b) .
$$

Value distribution of $\widehat{T}(u, v)$

Theorem 1

Let $\widehat{T}(u, v)$ be the function defined by (2.3). Then, the value distribution of $\widehat{T}(u, v)$ as (u, v) runs through $\mathbb{F}_{p^{m}}^{2}$ is given in Table 2 if $p^{e} \equiv 1(\bmod 4)$ and in Table 3 if $p^{e} \equiv 3(\bmod 4)$, where $c_{i}, i=0,1,2$, are defined by (20).

Table 2: Value distribution of $\widehat{T}(u, v)$ if $p^{e} \equiv 1(\bmod 4)$

Value	Frequency (each)
$\left(p^{m}, p^{m}\right)$	1
$\left(c_{0}, c_{0}\right)$ $\left(-c_{0},-c_{0}\right)$	$\frac{\left(p^{2 m}-1\right)\left(p^{e}-1\right)}{4\left(p^{e}+1\right)}$
$\left(-c_{0}, c_{0}\right),\left(c_{0},-c_{0}\right)$	$\frac{\left(p^{m i}-1\right)\left[\left(p^{m+1}+1\right)\left(p^{e}-3\right)+4\right)}{4\left(p^{e}-1\right)}$
$\left(c_{0}, c_{1}\right),\left(c_{1}, c_{0}\right)$ $\left(-c_{0}, c_{1}\right),\left(c_{1},-c_{0}\right)$	$\frac{\left(p^{m}-1\right)\left(p^{m-e}+p^{\frac{m-e}{2}}\right)}{4}$
$\left(-c_{0},-c_{1}\right),\left(-c_{1},-c_{0}\right)$ $\left(c_{0},-c_{1}\right),\left(-c_{1}, c_{0}\right)$	$\frac{\left(p^{m}-1\right)\left(p^{m-e}-p^{\frac{m-e}{2}}\right)}{4}$
$\left(c_{0}, c_{2}\right),\left(c_{2}, c_{0}\right)$ $\left(-c_{0},-c_{2}\right),\left(-c_{2},-c_{0}\right)$	0
$\left(-c_{0}, c_{2}\right),\left(c_{2},-c_{0}\right)$ $\left(c_{0},-c_{2}\right),\left(-c_{2}, c_{0}\right)$	$\frac{\left(p^{m}-1\right)\left(p^{m-e}-1\right)}{2\left(p^{2 e}-1\right)}$

Table 3: Value distribution of $\widehat{T}(u, v)$ if $p^{e} \equiv 3(\bmod 4)$

Value	Frequency (each)
$\left(p^{m}, p^{m}\right)$	1
$\left(c_{0}, c_{0}\right)$ $\left(-c_{0},-c_{0}\right)$	$\frac{\left(p^{m}-1\right)\left[\left(p^{m}+1\right)\left(p^{e}-3\right)+4\right]}{4\left(p^{e}-1\right)}$
$\left(-c_{0}, c_{0}\right),\left(c_{0},-c_{0}\right)$	$\frac{\left(p^{2 m}-1\right)\left(p^{e}-1\right)}{4\left(p^{e}+1\right)}$
$\left(c_{0}, c_{1}\right),\left(c_{1}, c_{0}\right)$ $\left(-c_{0}, c_{1}\right),\left(c_{1},-c_{0}\right)$	$\frac{\left(p^{m}-1\right)\left(p^{m-e}+p^{\frac{m-e}{2}}\right)}{4}$
$\left(-c_{0},-c_{1}\right),\left(-c_{1},-c_{0}\right)$ $\left(c_{0},-c_{1}\right),\left(-c_{1}, c_{0}\right)$	$\frac{\left(p^{m}-1\right)\left(p^{m-e}-p^{\frac{m-e}{2}}\right)}{4}$
$\left(c_{0}, c_{2}\right),\left(c_{2}, c_{0}\right)$ $\left(-c_{0},-c_{2}\right),\left(-c_{2},-c_{0}\right)$	$\frac{\left(p^{m}-1\right)\left(p^{m-e}-1\right)}{2\left(p^{2 e}-1\right)}$
$\left(-c_{0}, c_{2}\right),\left(c_{2},-c_{0}\right)$ $\left(c_{0},-c_{2}\right),\left(-c_{2}, c_{0}\right)$	0

Value distribution of $S_{d}(u, v)$

Theorem 2

Let $S_{d}(u, v)$ be the exponential sum defined by (1.2).
(i) When $d \equiv 1\left(\bmod p^{e}-1\right)$, the value distribution of $S_{d}(u, v)$ is given in Table 4;
(ii) When $d \equiv 1+\frac{p^{e}-1}{2}\left(\bmod p^{e}-1\right)$, the value distribution of $S_{d}(u, v)$ is given in Table 5 if $p^{e} \equiv 1(\bmod 4)$ and in Table 6 if $p^{e} \equiv 3(\bmod 4)$.

Table 4: Value distribution of $S_{d}(u, v)$ when $d \equiv 1\left(\bmod p^{e}-1\right)$

Value	Frequency (each)
p^{m}	1
0	$\left(p^{m}-1\right)\left(p^{m}-p^{m-e}+1\right)$
$p^{\frac{m+e}{2}}$	$\frac{\left(p^{m}-1\right)\left(p^{m-e}+p^{\frac{m-e}{2}}\right)}{2}$
$-p^{\frac{m+e}{2}}$	$\frac{\left(p^{m}-1\right)\left(p^{m-e}-p^{\frac{m-e}{2}}\right)}{2}$

Table 5: Value distribution of $S_{d}(u, v)$ when $d \equiv 1+\frac{p^{e}-1}{2}\left(\bmod p^{e}-1\right)$ and $p^{e} \equiv 1(\bmod 4)$

Value	Frequency (each)
p^{m}	1
$\pm p^{\frac{m}{2}}$	$\frac{\left(p^{2 m}-1\right)\left(p^{e}-1\right)}{4\left(p^{e}+1\right)}$
0	$\frac{\left(p^{m}-1\right)\left[\left(p^{m /}+1\right)\left(p^{e}-3\right)+4\right]}{2\left(p^{e}-1\right)}$
$\frac{ \pm 1+\sqrt{p^{e}}}{2} p^{\frac{m}{2}}$	$\frac{\left(p^{m}-1\right)\left(p^{m-e}+p^{\frac{m-e}{2}}\right)}{2}$
$\frac{ \pm 1-\sqrt{p^{e}}}{2} p^{\frac{m}{2}}$	$\frac{\left(p^{m}-1\right)\left(p^{m-e}-p^{\frac{m-e}{2}}\right)}{2}$
$\pm \frac{p^{e}-1}{2} p^{\frac{m}{2}}$	$\frac{\left(p^{m}-1\right)\left(p^{m-e}-1\right)}{\left(p^{2 e}-1\right)}$

Table 6: Value distribution of $S_{d}(u, v)$ when $d \equiv 1+\frac{p^{e}-1}{2}\left(\bmod p^{e}-1\right)$ and $p^{e} \equiv 3(\bmod 4)$

Value	Frequency (each)
p^{m}	1
$\pm p^{\frac{m}{2}} \sqrt{-1}$	$\frac{\left(p^{m}-1\right)\left[\left(p^{m}+1\right)\left(p^{e}-3\right)+4\right]}{4\left(p^{e}-1\right)}$
0	$\frac{\left(p^{2 m}-1\right)\left(p^{e}-1\right)}{2\left(p^{e}+1\right)}$
$\pm \sqrt{-1}+\sqrt{p^{e}}$	
2	$p^{\frac{m}{2}}$
$\frac{\left(p^{m}-1\right)\left(p^{m-e}+p^{\frac{m-e}{2}}\right)}{2}$	
$\pm \frac{p^{e}+1}{2} p^{\frac{m}{2}} \sqrt{p^{e}} p^{\frac{m}{2}}$	$\frac{\left(p^{m}-1\right)\left(p^{m-e}-p^{\frac{m-e}{2}}\right)}{2}$

Recall some facts

- $d\left(p^{k}+1\right) \equiv 2\left(\bmod p^{m}-1\right)$;
- $S_{d}(u, v)=\sum_{x \in \mathbb{F}_{p^{m}}} \omega_{p}^{\operatorname{Tr}_{1}^{m}\left(u x+v x^{d}\right)}$;
- $C_{d}(\gamma)=\sum_{x \in \mathbb{F}_{p} m} \omega_{p}^{\operatorname{Tr}_{1}^{m}\left(x+\gamma x^{d}\right)}-1=S_{d}(1, \gamma)-1$.

Some properties of $S_{d}(u, v)$

Lemma 7

Let $S_{d}(u, v)$ be the exponential sum given in (1.2).
(i) $S_{d}(u, 0)=0$ for any $u \in \mathbb{F}_{p^{m}}^{*}$;
(ii) When $d \equiv 1\left(\bmod p^{e}-1\right)$, or $d \equiv 1+\frac{p^{e}-1}{2}\left(\bmod p^{e}-1\right)$ and $p^{e} \equiv 1(\bmod 4), S_{d}(0, v)=0$ for any $v \in \mathbb{F}_{p^{m}}^{*}$;
(iii) When $d \equiv 1+\frac{p^{e}-1}{2}\left(\bmod p^{e}-1\right)$ and $p^{e} \equiv 3(\bmod 4)$,
$S_{d}(0, v) \in\left\{ \pm p^{\frac{m}{2}} \sqrt{-1}\right\}$ for any $v \in \mathbb{F}_{p^{m}}^{*}$ and each value occurs $\frac{p^{m}-1}{2}$ times as v runs through $\mathbb{F}_{p^{m}}^{*}$;
(iv) For any given $u \in \mathbb{F}_{p^{m}}^{*}$, as v runs through $\mathbb{F}_{p^{m}}^{*}, S_{d}(u, v)$ and $S_{d}(1, v)$ have the same value distribution.

Cross-correlation distribution for d

Theorem 3

Let p, m and k satisfy Eq. (1.3), and d satisfy Eq. (1.4).
(i) When $\operatorname{gcd}\left(d, p^{m}-1\right)=1$, the value distribution of $C_{d}(\gamma)$ is given in Table 7 if $d \equiv 1\left(\bmod p^{e}-1\right)$, and in Table 8 if $d \equiv 1+\frac{p^{e}-1}{2}\left(\bmod p^{e}-1\right)$ and $p^{e} \equiv 1(\bmod 4)$.
(ii) When $\operatorname{gcd}\left(d, p^{m}-1\right)=2$, i.e., $d \equiv 1+\frac{p^{e}-1}{2}\left(\bmod p^{e}-1\right)$ and $p^{e} \equiv 3(\bmod 4)$, the value distribution of $C_{d}(\gamma)$ is given in Table 9.

Table 7: Cross-correlation distribution for $d \equiv 1\left(\bmod p^{e}-1\right)$

Value	Frequency (each)
-1	$\left(p^{m}-p^{m-e}-1\right)$
$p^{\frac{m+e}{2}}-1$	$\frac{\left(p^{m-e}+p^{\frac{m-e}{2}}\right)}{2}$
$-p^{\frac{m+e}{2}}-1$	$\frac{\left(p^{m-e}-p^{\frac{m-e}{2}}\right)}{2}$

Table 8: Cross-correlation distribution for $d \equiv 1+\frac{p^{e}-1}{2}\left(\bmod p^{e}-1\right)$ and $p^{e} \equiv 1(\bmod 4)$

Value	Frequency (each)
-1	$\frac{\left(p^{m+e}-3 p^{m}-3 p^{e}+5\right)}{2\left(p^{e}-1\right)}$
$\pm p^{\frac{m}{2}}-1$	$\frac{\left(p^{m e}+1\right)\left(p^{e}-1\right)}{4\left(p^{e}+1\right)}$
$\frac{ \pm 1+\sqrt{p^{e}}}{2} p^{\frac{m}{2}}-1$	$\left.\frac{\left(p^{m-e}+p^{\frac{m-e}{2}}\right)}{2}\right)$
$\frac{ \pm 1-\sqrt{p^{e}}}{2} p^{\frac{m}{2}}-1$	$\frac{\left(p^{m-e}-p^{\frac{m-e}{2}}\right)}{2}$
$\pm \frac{p^{e}-1}{2} p^{\frac{m}{2}}-1$	$\frac{p^{m-e}-1}{p^{2 e}-1}$

Table 9: Cross-correlation distribution for $d \equiv 1+\frac{p^{e}-1}{2}\left(\bmod p^{e}-1\right)$ and $p^{e} \equiv 3(\bmod 4)$

Value	Frequency (each)
-1	$\frac{p^{m+e}-p^{m}-p^{e}-3}{2\left(p^{e}+1\right)}$
$\pm p^{\frac{m}{2}} \sqrt{-1}-1$	$\frac{p^{m+e}-3 p^{m}-p^{e}+3}{4\left(p^{e}-1\right)}$
$\pm \sqrt{-1}+\sqrt{p^{e}} p^{\frac{m}{2}}-1$	$\frac{\left(p^{m-e}+p^{\frac{m-e}{2}}\right)}{2}$
$\pm \sqrt{-1}-\sqrt{p^{e}} p^{\frac{m}{2}}-1$	$\frac{\left(p^{m-e}-p^{\frac{m-e}{2}}\right)}{2}$
$\pm \frac{p^{e}+1}{2} p^{\frac{m}{2}} \sqrt{-1}-1$	$\frac{p^{m-e}-1}{p^{2 e}-1}$

- Type 1: odd prime $p, \frac{m}{e} \geq 3$ odd, $e=\operatorname{gcd}(k, m)$, $d\left(p^{k}+1\right) \equiv 2\left(\bmod p^{m}-1\right), d \equiv 1\left(\bmod p^{e}-1\right), 3$-valued, $p^{\frac{m+e}{2}}+1$.
- (Helleseth, 1976): odd prime $p, \frac{m}{e} \geq 3$ odd, $e=\operatorname{gcd}(k, m)$, $d=\frac{p^{k}+1}{2}, \frac{k}{e}$ even, 3 -valued, $p^{\frac{m+e}{2}}+1$. (Inverse is covered by Type 1.)
T. Helleseth, "Some results about the cross-correlation function between two maximal linear sequences," Discr. Math., 16: 209-232 (1976)
- Recently, Ding et al. reported three new decimations for ternary m-sequences that give a three-valued cross-correlation function:
- $\frac{3^{m+1}-1}{3^{h}+1}+\frac{3^{m}-1}{2}, m \geq 3$ odd, $\frac{m+1}{h}$ even
- $\left(3^{\frac{m+1}{8}}-1\right)\left(3^{\frac{m+1}{4}}+1\right)\left(3^{\frac{m+1}{2}}+1\right)+\frac{3^{m}-1}{2}$, $m \equiv 7(\bmod 8)$
- $\left(3^{\frac{m+1}{4}}-1\right)\left(3^{\frac{m+1}{2}}+1\right)+\frac{3^{m}-1}{2}, m \equiv 3(\bmod 4)$
- These decimations are of Type 1 .
C. Ding, Y. Gao and Z. Zhou, "Five families of three-weight ternary cyclic codes and their duals," IEEE Trans. Inf. Theory, 59(12): 7940-7946(2013)
- Type 2 : odd prime $p, p^{e} \equiv 1(\bmod 4), \frac{m}{e} \geq 3$ odd, $e=\operatorname{gcd}(k, m), d\left(p^{k}+1\right) \equiv 2\left(\bmod p^{m}-1\right)$, $d \equiv 1+\frac{p^{e}-1}{2}\left(\bmod p^{e}-1\right), 9$-valued, $\frac{p^{e}-1}{2} p^{\frac{m}{2}}+1$.
- (Luo and Feng, 2008): odd prime $p, p^{e} \equiv 1(\bmod 4)$, $e=\operatorname{gcd}(k, m), \frac{m}{e} \geq 3$ odd, $d=\frac{p^{k}+1}{2}, \frac{k}{e}$ odd, 9 -valued, $\frac{p^{e}-1}{2} p^{\frac{m}{2}}+1$. (Inverse is covered by Type 2.)
J. Luo and K. Feng, "Cyclic codes and sequence from generalized Coulter-Matthews functions," IEEE Trans. Inf. Theory, 54(12): 5345-5353 (2008)

Type 3

- Type 3 : odd prime $p, p^{e} \equiv 3(\bmod 4), \frac{m}{e} \geq 3$ odd, $e=\operatorname{gcd}(k, m), d\left(p^{k}+1\right) \equiv 2\left(\bmod p^{m}-1\right)$, $d \equiv 1+\frac{p^{e}-1}{2}\left(\bmod p^{e}-1\right), \operatorname{gcd}\left(d, p^{m}-1\right)=2,9$-valued, $\frac{p^{e}+1}{2} p^{\frac{m}{2}}+1$.
- (Xia et. al, 2010, and Choi et. al, 2013$): p \equiv 3(\bmod 4), m$ odd, $e \mid m, \frac{m}{e} \geq 3, d=\frac{p^{m}+1}{p^{e}+1} \pm \frac{p^{m}-1}{2}, \operatorname{gcd}\left(d, p^{m}-1\right)=2$, 9 -valued, $\frac{p^{e}+1}{2} p^{\frac{m}{2}}+1$. (Special cases of Type 3.)
Y. Xia, X. Zeng and L. Hu, "Further crosscorrelation properties of sequences with the decimation factor $d=\frac{p^{n}+1}{p+1}-\frac{p^{n}-1}{2}$," Appl. Algebra Eng. Commun. Comput., 21(5): 329-342 (2010)
S. T. Choi, J. Y. Kim, and J. S. No, "On the cross-correlation of a p-ary m-sequence and its decimated sequences by $d=\frac{p^{n}+1}{p^{k}+1}+\frac{p^{n}-1}{2}$," IEICE Trans. Commun., vol. E96-B(9): 2190-2197 (2013)

Thank you!

