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Welcome to the BFA (Boolean Functions and their Applications) workshop 2017 which is held at Os,
south of Bergen, Norway. The BFA workshop 2017 at Os is the second in a series of workshops on Boolean
functions. The first BFA workshop took place at Rosendal, Norway, from September 2-7, 2014. It is hoped
to eventually hold this workshop annually, providing an opportunity for specialists in Boolean functions to
share current and ongoing research at picturesque locations within Norway. Each workshop is followed by
a dedicated special issue, being the result of a fast reviewing process. For BFA 2017 the issue is scheduled
to appear online by the end of 2018 and to be published by the beginning of 2019.

Lilya Budaghyan, Claude Carlet, Tor Helleseth

June 13, 2017



Part I

Abstracts for Invited Talks



Linear and Statistical Independence of Linear

Approximations

Kaisa Nyberg

In this talk I will give a survey of independence assumptions in multiple
linear cryptanalysis and present strategies how to satisfy them in practical ap-
plications. A useful link between linear and statistical independence can be
found at http://eprint.iacr.org/2017/432 .



On APN permutations

Marco Calderini

Department of Mathematics, University of Trento, Italy

A Boolean function F : F2n → F2m is called differentially δ-uniform if the
equation F (x+a)−F (x) = b has at most δ solutions for every nonzero element
a of Fn

2 and every b in Fm
2 .

In designing block ciphers, bijective Boolean functions defined over F2n are
usually used as S-boxes. In particular, to thwart differential cryptanalysis we
are interested in invertible Boolean functions whose differential uniformity is
the smallest possible. Functions which are 2-uniform, also called almost perfect
nonlinear (APN), have the smallest possible differential uniformity in the case
n = m.

Moreover, for software implementation, we are interested in APN permu-
tation defined on a field of even degree. However, up to now only one 6-bit
function (up to equivalence) has been shown to be an APN permutation when
the dimension is even.

In this talk, we shall attempt to give a survey of results concerning APN
permutations. We will discuss properties of APN permutations and of their
components. Furthermore, we will examine the open problem of constructing
APN permutations in even dimension.



On S-Box Reverse-Engineering: from

Cryptanalysis to the Big APN Problem

Léo Perrin∗

perrin.leo at gmail.com

DTU Compute, Denmark

S-Boxes are small non-linear functions usually specified via their look-up
table used as components by a vast number of cryptographic primitives. The
design strategy used to build an S-Box is of crucial importance and is, as such,
described by most algorithm designers. However, some designers (such as the
NSA and the FSB) do not describe their design rationale and merely give the
look-up table necessary to the implementation of their S-Box.

S-Box reverse-engineering is about recovering the design criteria and/or the
structure used to build an S-Box given only its look-up table. In this talk, I will
discuss recent results on this topic and their surprising application to the big
APN problem.

First, it is possible to evaluate the probability that a random S-Box has
certain differential or linear properties. If those of a given S-Box are too far from
these expected ones, then it can be assumed that it was not picked uniformly at
random. This analysis can be applied to the S-Box of the block cipher Skipjack.

Many S-Boxes are built like small block ciphers using e.g. a Feistel structure.
Therefore, recovering such structure is equivalent to running a structural attack.
I will briefly present two similar such attacks based on a bound on the algebraic
degree of Feistel networks and Substitution-Permutation networks.

A powerful tool for decomposing S-Boxes with other structures is the TU-
decomposition. By identifying linear spaces in the row and column indices of
the zeroes in the LAT of an n-bit S-Box, it is possible to decompose it into the
composition of two linear permutations and two n/2-bit block ciphers. This
method can be applied to the S-Box used by the last two Russian standards
in symmetric cryptography: the hash function Streebog and the block cipher
Kuznyechik.

Surprisingly, the TU-decomposition can also be applied to the only known
solution to the big APN problem. The 6-bit APN permutation found by Dil-
lon turns out to have such a decomposition. We used it to generalize this
permutation to higher dimensions and called the resulting functions open but-
terflies. We also leveraged the TU-decomposition to identify quadratic func-
tions, called closed butterflies, which are CCZ-equivalent to said permutations.
We showed that butterflies are, for certain parameters, always differentially 4-
uniform. However, we unfortunately proved that no APN butterfly exists that
operates on more than 6 bits.

∗The content of this talk is based on joint papers with Alex Biryukov, Anne Canteaut,
Sébastien Duval, Dmitry Khovratovich and Aleksei Udovenko.



On the possible exponents of APN power functions

and their relation with Sidon sets and sum-free sets

Claude Carlet, LAGA, University of Paris 8
Work in common with S. Mesnager and S. Picek

A function F : F2n 7→ F2n is called APN if, for every nonzero a ∈ F2n and 
every b ∈ F2n , the equation F (x) + F (x + a) = b has at most two solutions. 
Dobbertin proved that a power function F (x) = xd over F2n can be APN (we 
shall call such exponent d an APN exponent) only if gcd(d, 2n−1) equals 1 if 
n is odd and 3 if n is even.

We prove more:

Definition A subset of an additive group (G, +) is called a Sidon set if it does 
not contain elements x, y, z, t, three of which are distinct and such that x + y 
= z + t.

Definition A subset S of an additive group (G, +) is called a sum-free set if it 
does not contain elements x, y, z such that x+y = z (i.e. if S∩(S+S) = ∅).

Theorem For every positive integers n and d and for every integer i such that 
0 ≤ i ≤ n − 1, let ei = gcd(d − 2i, 2n − 1) (viewed as a positive integer, even if 
2i > d), and let Gei be the multiplicative subgroup

Gei = {x ∈ F∗2n ; xd−2i 
= 1} = {x ∈ F∗2n ; xei = 1}

of order ei. If function F (x) = xd is APN over F2n , then, for every i = 0, . . . , 
n − 1, Gei is a Sidon set in the additive group (F2n , +) and is also a sum-free 
set in this same group. Moreover, for every i 6= j, if x ∈ Gei , y ∈ Gej , x 6= y 
and x 6= y−1, then we have (x + 1)d−2i 6= (y + 1)d−2j 

.

We study then those multiplicative subgroups of F2n which are Sidon and 
sum-free and we study if the theorem above can simplify the search of new 
APN exponents (Canteaut checked that no one exists for n ≤ 26 and Edel 
checked the same for n ≤ 34 and n = 36, 38, 40, 42).

We also show a new connection between APN exponents and Dickson 
polynomials.



Symmetric Encryption Scheme Adapted to

Fully Homomorphic Encryption Scheme:

New Criteria for Boolean functions

Pierrick Meaux

Fully Homomorphic Encryption is a recent powerful cryptographic construc-
tion, which enables one to securely compute all functions on encrypted data, and
decrypt the result of the function applied to the real data. This construction
gives the possibility to securely delegate computation, which is a very important
property with the increasing development of Cloud computing. Nevertheless,
in current client-server frameworks, the client devices are too restricted to sup-
port pure FHE. In order to solve this problem, FHE has to be combined with
primitives which incur small computation and communication cost: Symmetric
Encryption schemes.

In this talk, we will present a symmetric encryption scheme created for this
context: the FLIP family of stream ciphers. This construction has an unusual
design: at each clock cycle, the key register is updated by a different, pub-
licly known, wire-cross permutation and then filtered by a Boolean function
to produce one key-stream bit. Therefore, the security of the scheme crucially
depends on this Boolean function, which should be robust relatively to stan-
dard cryptographic criteria and new ones. This lead to study new criteria on
Boolean functions, to determine the behavior of functions commonly used in
cryptography and to build new functions with good parameters relatively to
these criteria.

More precisely, we will talk about ”low-cost” Boolean functions adapted to
the FHE context; recurrent criteria on Boolean functions obtained by fixing
some variables and Boolean criteria on restricted set of inputs.

The presentation will be based on the following works:

1. Maux, Journault, Standaert, Carlet. Towards stream ciphers for efficient
FHE with low-noise ciphertexts. Eurocrypt 2016

2. Duval, Lallemand, Rotella. Cryptanalysis of the FLIP Family of Stream
Ciphers. Crypto 2016

3. Carlet, Maux, Rotella. Boolean functions with restricted input and their
robustness; application to the FLIP cipher. https://eprint.iacr.org/2017/097.pdf



Proving Resistance of a Block Cipher against

Invariant Attacks

Anne Canteaut

Joint work with Christof Beierle, Gregor Leander and Yann Rotella

Many lightweight block ciphers apply a very simple key schedule in which the
round keys only differ by addition of a round-specific constant. Generally, there
is not much theory on how to choose appropriate constants. In fact, several of
those schemes were recently broken using invariant attacks, i.e. invariant sub-
space or nonlinear invariant attacks. This work analyzes the resistance of such
ciphers against invariant attacks and reveals the precise mathematical proper-
ties that render those attacks applicable. As a first practical consequence, we
prove that some ciphers including Prince, Skinny-64 and Mantis7 are not vul-
nerable to invariant attacks. Also, we show that the invariant factors of the
linear layer have a major impact on the resistance against those attacks. Most
notably, if the number of invariant factors of the linear layer is small (e.g., if
its minimal polynomial has a high degree), we can easily find round constants
which guarantee the resistance to all types of invariant attacks, independently
of the choice of the S-box layer. We also explain how to construct optimal round
constants for a given, but arbitrary, linear layer.



(Generalized) Boolean functions: invariance

under some groups of transformations and

differential properties

Pante Stănică

Naval Postgraduate School
Department of Applied Mathematics

Monterey, CA 93943–5216, USA; pstanica@nps.edu

July 3-8, 2017

In this talk we will survey some properties of Boolean functions in binary and
non-binary (output) characteristic: we concentrate on invariance under some group of
transformations and differential properties of the generalized functions, often comparing
the binary and non-binary case. Avalanche features, correlation immunity, bentness,
etc., will be considered. Constructions, counts will be considered, and open problems
will be proposed.



Rank metric codes and related structures

Yue Zhou
yue.zhou.ovgu@gmail.com

College of Science
National University of Defense Technology

Changsha, China

A rank metric code is just a subset of matrices over a (skew) field equipped with
the rank metric. There are many interesting mathematical structures which
can be interpreted as special types of rank metric codes. In particular, they
include the following functions and associated structures which have important
applications in cryptography and coding theory:

• Finite semifields or quadratic planar functions,

• Quadratic APN functions and their associated dimensional dual hyper-
ovals,

• Quadratic vectorial bent functions and negabent functions.

• Maximum rank metric codes.

In this talk, I will first introduce some basic properties and the equivalence
of rank metric codes. Then we turn to some attractive problems and results of
several special types of rank metric codes, including the number of inequivalent
maximum rank distance codes, the construction of quadratic vectorial bent-
functions and the enumeration of quadratic bent-negabent functions.



Orthogonal group and Boolean functions
Patrick Solé

CNRS/LAGA, University of Paris 8, 93 526 Saint-Denis,
France , sole@enst.fr

(joint work with Minjia Shi and Lin Sok)

Abstract

In this talk, we study orthogonal group over finite fields. We show how
to construct self-dual codes and linear complementary dual codes over
large finite fields from the elements in the group and explore the con-
nections with the generalized Z2m self-dual bent functions. We prove
existence of optimal LCD codes of some certain lengths over large fi-
nite fields. We prove non-existence of the generalized Z2m regular bent
functions in odd variables and classify them in low even variables.

Keywords: Orthogonal matrices, self-dual codes, complementary
dual codes, optimal codes, Walsh Hadamard transform, self-dual bent
functions, regular bent functions.



Generalized plateaued functions and admissible (plateaued) functions

Sihem Mesnager
Department of Mathematics, University of Paris VIII and Paris XIII LAGA, CNRS, France

(work in common with Chunming Tang and Yanfeng Qi)

Plateaued functions are very important cryptographic functions due to their various desirable
cryptographic characteristics. We point out that plateaued functions are more general than bent
functions (that is, functions with maximum nonlinearity).
P-ary plateaued functions have attracted recently some attention in the literature and many
activities on generalized p-ary functions have been carried out. The aim of the talk is to increase
our knowledge on plateaued functions in the general context of generalized p-ary functions.
We firstly introduce two new versions of plateaued functions, which we shall call generalized
plateaued functions and admissible plateaued functions. The generalized plateaued functions
extend the standard notion of plateaued p-ary functions to those whose outputs are in the ring
Zpk . Next, we study the generalized plateaued functions and use admissible plateaued functions
to characterize the generalized plateaued functions by means of their components. Finally, we
provide for the first time two constructions of generalized plateaued functions. In particular,
we generalize a known secondary construction of binary generalized bent functions and derive
constructions of binary generalized plateaued functions with different amplitude.



Some recent progress in the applications of Niho

exponents

Nian Li

Niho exponent was originally introduced by Niho who investigated the cross-
correlation between an m-sequence and its decimation in 1972. Since then, Niho
exponents were further studied and had been used in other research topics. In
this talk, we will introduce some research problems related to Niho exponents
and present some recent developments.



On structural properties of the class of bent functions 1

Natalia Tokareva

Maximally nonlinear Boolean functions in n variables, where n is even, are
called bent functions. They form the special mysterious class, Bn, studied from the
early sixties in connection with cryptographic applications. Too many problems
related to this class are still open. Constructions cover only separate parts of Bn

while the core of it is still hidden from one’s eyes.
In this talk we speak about the properties of Bn at whole considering it as

the subset of the corresponding Boolean vector space. We discuss some metrical
properties of Bn, aspects related to isometrical mappings of Bn, introduce some new
results concerning the problem of decomposition of an arbitrary Boolean function
of degree not more than n/2 into sum of two bent functions in n variables.

1Research was supported by RFBR (project 15-07-01328).



Duality of bent functions in odd characteristic

Alexander Pott

Bent functions defined in characteristic 2 have the property that the dual
is, again, a bent function. This is, in general, not true any more in odd charac-
teristic. In my talk, I will discuss recent progress and open problems regarding
duality concepts of bent functions, in particular in odd characteristic. The
talk is mainly based on papers written jointly with Wilfried Meidl and Ayça
Çeşmelioğlu.



«Wavelets	  transformation	  	  and	  its	  	  applications	  in	  information	  security»	  

Levina	  Alla,	  	  	  
ITMO	  University,	  

Department	  of	  Secure	  Information	  Technologies,	  
levina@cit.ifmo.ru	  

Wavelet transformation has become well known and widely used in many fields of 

science. The basic concepts of wavelet theory can be found in the works of Daubechies. Many 

types of wavelets provide quick but very inaccurate compression. My researches based on 

implementation of wavelet theory in different areas of information security, one of such area is 

coding theory. 

Error detecting codes are widely used for the protection in telecommunication channels, 

they ensure the reliability and security of devices from soft, hard errors and side channel attacks. 

The classical approach to providing noise immunity and integrity of information that is 

processed in computing devices and communication channels is to use linear codes. Linear codes 

have fast and efficient algorithms for encoding and decoding information, but these codes 

concentrate their detection and correction abilities in certain error configurations. Robust codes 

provide protection against any configuration of errors at predetermined probability. This is 

accomplished by the use of perfect nonlinear and almost perfect nonlinear functions to calculate 

code redundancy.  I present the error-correcting coding scheme using biorthogonal wavelet 

transform. The wavelet transform is applied in various fields of science. Some wavelet 

applications clean signals from noise, compress data and execute spectral analysis of signal 

components. For developed constructions, was build a generator and check matrix that contain 

the scaling function coefficients of wavelet. Based on linear wavelet codes, was develop robust 

codes that provide uniform protection against all errors.  

An other area of researches is implementation of wavelet theory in construction of 

Boolean Functions, spline-wavelet function was taken as a parameter of Boolean Function, this 

scheme can be very useful in the systems where wavelet transformation is already used. 



On the periodic sequences with maximal

nonlinear complexity

Zhimin Sun, Xiangyong Zeng, Chunlei Li, Tor Helleseth

May 10, 2017

Pseudo-random sequences are widely used in secure and reliable communi-
cations. In cryptographic applications, security characteristics like randomness
and unpredictability of the sequences must be assessed. The linear complexity
is henceforth used for assessing the cryptographic strength of binary sequences
used in stream ciphers. A more general criterion used to test the randomness
property of a sequence is its k-th order complexity. The k-th order complexity
of a sequence is the length of the shortest shift register (FSR) with feedback
functions having algebraic degree at most k that can generate this sequence.
Removal of the restriction on the degree of feedback functions gives the notion
of nonlinear complexity, also referred to as the maximum order complexity and
the nonlinear span, of a sequence.

Whereas there is a considerable amount of literature on the linear complexity,
far less work has been done on the kth-order complexity and the nonlinear
complexity due to their intractability. Our recent work contributes to the theory
of nonlinear complexity by conducting a comprehensive study of the periodic
sequences with maximum nonlinear complexity.

In this talk we characterize the necessary conditions for periodic sequences
over an arbitrary field to have the maximum possible nonlinear complexity and
introduce a recursive approach to generate all maximum nonlinear complexity
sequences. Furthermore, we will give the result of the randomness property of
maximum nonlinear complexity sequences by investigating the enumeration and
distribution, the balance property, nonlinear complexity of subsequences and
the k-error nonlinear complexity of these sequences. It turns out that despite
the optimal nonlinear complexity, these sequences do not possess satisfactory
randomness property



Boolean functions in quantum computation

Ashley Montanaro

Quantum computers are machines which are designed to use quantum me-
chanics to solve certain problems more efficiently than any possible computer
based only on the laws of classical physics. In this talk I will discuss two con-
nections between the theory of boolean functions and the theory of quantum
computation. First, I will describe how certain quantities occurring in the study
of quantum circuits can be understood in terms of low-degree polynomials over
F2. Second, I will introduce a noncommutative generalisation of boolean func-
tions which naturally appears when studying quantum algorithms. In each case
many interesting, and still open, questions arise.

The talk will be based on two papers:

[1] Quantum circuits and low-degree polynomials over F2, Journal of Physics
A, vol. 50, no. 8, 084002, 2017; arXiv:1607.08473

[2] Quantum boolean functions (with Tobias Osborne), Chicago Journal of
Theoretical Computer Science 2010; arXiv:0810.2435



Boolean functions in a Message-Passing, Quantum, and
Machine Learning Context

Matthew G. Parker

June 2, 2017

Quadratic Boolean functions have a straightforward mapping to simple graphs and to
F4-additive codes. Such graphs can be used to realise message-passing algorithms for F4-
additive codes. Such structures also model quantum error-correcting codes and quantum
contextuality scenarios. It is of further interest to explore such structures in the context of
machine learning overlaid with quantum entanglement. This talk will explore these issues.



Part II

Abstracts for Contributed Talks



On the S-boxes Generated via Cellular Automata

Rules

Stjepan Picek

In this paper we investigate cellular automata (CA) rules that are used to
describe S-boxes with good cryptographic properties. Up to now, CA have been
used in several ciphers to define an S-box, but in all those ciphers, the same
CA rule is used. This CA rule is known best as the one defining the Keccak
transformation. Since there exists no straightforward method for constructing
CA rules that define S-boxes of arbitrary size and with good cryptographic
properties, we use a special kind of heuristics for that Genetic Programming.
Although it is not possible to theoretically prove the efficiency of such a method,
our experimental results show that heuristics are able to find a large number
of CA rules that define good S-boxes in a relatively easy way. Particularly
interesting is the internal encoding of the solutions in the considered heuristics
using combinatorial circuits; this makes it easy to approximate a priori the S-
box implementation properties like circuit latency (the number of combinatorial
gates between input and output) and area (the number of gates). Indeed, when
using heuristics of genetic programming type where the obtained solutions are
expressed in the tree form, one can easily estimate the latency by just observing
the tree depth. Next, we discuss the number of S-boxes obtainable by using
only one cellular automata rule and the possible gains from using the switching
technique. For the 4 4 size, we explore how many classes and which ones
(out of 16 optimal classes) can be obtained with CA rules. In order to do so,
we run an exhaustive search since with a single CA rule the search space size
equals only 2 16. Subsequently, for the 5 5 size we again conduct an exhaustive
search and investigate which AB power functions can be obtained with CA
rules. On the other hand, since for 66 and 77 sizes the exhaustive search is not
possible, we run heuristics in order to estimate which AB/APN power functions
can be constructed. On the basis of those results, we discuss the notion of
equivalence and whether CA rules are preserved under various types of affine
transformations. We discuss the difference between the global and local CA rules
with a special emphasis on a Keccak type rule which results in bijections only
for odd dimensions. Moreover, with the increase in the number of variables of
an (n, m)- function we can easily see that a number of cryptographic properties
degrade if one uses the Keccak rule. For instance, when used in 3 3 S-boxes,
both the nonlinearity and differential uniformity equal 2, which is optimal, but
if used in 7 7 S-boxes, both of those properties would have a value equal to 32,
which is far from optimal. Finally, we investigate what is the necessary number
of inputs that needs to be involved in a CA rule in order to obtain optimal
values for nonlinearity and differential uniformity.



On APN functions EA-equivalent to permutations

Valeriya Idrisova∗

∗Sobolev Institute of Mathematics and Novosibirsk State University, Akademgorodok, Novosibirsk, Russia

Abstract

The appearance of the differential cryptanalysis in 1990 made it necessary to search a means to resist this method: the
notions of an APN function and a differentially δ-uniform function were proposed by K. Nyberg [2]. A vectorial function
from Fn

2 into Fn
2 is called an APN function if, for every nonzero a and every b in Fn

2 , the equation F (x) + F (x+ a) = b
has at most two solutions. It is also known that APN functions were investigated starting from 1968 by V. Bashev and
B. Egorov in USSR.

One of the most interesting problems in this area is constructing bijective APN functions in even dimensions. There
was a conjecture that such functions do not exist, but in 2009 J.F.Dillon et al. [1] presented the first APN permutation for
n = 6. This permutation was constructed using non-bijective CCZ-equivalent APN function. In this work we investigate
special functions EA-equivalent to permutations. More precisely, we consider 2-to-1 APN functions F such that F + L
is a permutation for some linear functions L.

Consider the set of all 2-to-1 vectorial Boolean functions. It is easy to prove that for each 2-to-1 function G there
exist a function A such that G+A is a permutation and every coordinate Boolean function of A is balanced. This gives
an idea that amongst these functions A there can be linear functions since they have balanced coordinate functions. The
goal of this work is to find a method how to construct 2-to-1 APN function and search through linear functions L to
obtain APN permutations.

An arbitrary 2-to-1 APN function F is 2-to-1 vectorial Boolean function such that all its derivatives Da(F ) are
2-to-1 functions for every nonzero vector a from Fn

2 . So, if we consider the vector of values as some sequence of variables
{α, β, γ, ε, ...} where each variable occurs twice, we obtain the set of restrictions on this sequence for every nonzero a. For
example, if n = 3 the sequence of values α, α, β, γ, β, ε, γ, ε satisfies all the restrictions, but the sequence α, β, β, α, γ, ε, γ, ε
does not, since for a = 010 and for any values of α and β holds: F (000) + F (010) = F (001) + F (011) = α+ β.

This gives us an algorithm of generating all possible sequences of variables satisfying all the restrictions for every
n. The next stage of the method is to assign obtained sequences with some vectors from Fn

2 such that the result still
satisfies APN property. In particular, for n = 3 is sufficient to use any subset of Fn

2 that is free from any linear subspace
of dimension 2.

We found various 2-to-1 APN functions for n = 3, 5, 6 such that their sum with some linear functions gives APN
permutation. The examples of such function can be found below.

Table 1. An example of 2-to-1 function that gives an APN permutation of F5
2

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

F (x) 0 23 5 21 12 31 0 14 8 17 5 7 17 9 26 7

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

F (x) 12 15 21 15 8 28 27 9 28 27 22 26 23 22 31 14

Table 2. An example of 2-to-1 function that gives the APN permutation of F6
2 (Dillon et al.)

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

F (x) 54 52 48 57 14 39 34 0 63 45 45 0 2 33 32 28

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

F (x) 55 1 6 46 5 46 28 8 37 57 5 19 2 25 48 32

x 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

F (x) 17 54 58 58 33 1 34 14 51 21 8 29 55 12 30 29

x 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

F (x) 27 19 21 37 17 40 63 52 40 27 51 12 6 30 39 25

References

[1] Browning K. A., Dillon J. F., McQuistan M. T., Wolfe A. J. An APN permutation in dimension six. (Proc. of the
9th International Conference on Finite Fields and Applications, Dublin, Ireland, July 2009)// Contemporary Math-
ematics. — 2010. — Vol. 518. — P. 33-42.

[2] Nyberg K. Differentially uniform mappings for cryptography. On almost perfect nonlinear permutations (Proc. of
Eurocrypt’ 93, Norway, May, 1993) // Lecture Notes in Computer Science. — 1994. — V.765. — P. 55–64.



Investigating the CCZ-Equivalence between
Functions with Low Differential Uniformity by

Projected Differential Spectrum
Xi Chen, Longjiang Qu and Chao Li

Abstract

Recently, many new constructions of differentially 4-uniform permutations over F22k were presented. The
most famous class was constructed by switching neighbours of the inverse function in the narrow sense. We
call them 4-uniform BI permutations for short since they can be regarded as adding a properly chosen Boolean
function to the inverse function. C. Carlet et al. presented another construction of differentially 4-uniform
permutations on F22k (4-uniform BCTTL permutations for short), which used the APN property of the inverse
function on F22k−1 [1]. Very recently, J. Peng et al. generalized the switching method and presented a method
to construct new differentially 4-uniform permutations from known one by determining the corresponding
cycle sets [3]. For simplicity, we call them PTW differentially 4-uniform permutations. The size of all
aforementioned three classes of differentially 4-uniform permutations grows doubly exponentially when k
grows. At Crypto’16, L. Perrin et al. introduced a structure named butterfly, which leads to permutations
over F22k with differential uniformity at most 4 when k is odd.

It is well known that many cryptographic criteria, such as differential uniformity, nonlinearity, etc,
of CCZ-equivalent functions are the same. To prove the CCZ-inequivalence between two functions is
mathematically (and also computationally) difficult, unless one can verify that some of their CCZ-equivalent
invariants are different. Due to the big cardinality of the aforementioned three classes of differentially 4-
uniform permutations, it seems to be quite difficult to prove or to check the CCZ-equivalence between them
even for small fields. Very recently, X. Chen et al., introduced a new notion called R-projected differential
spectrum to investigate the CCZ-equivalence between functions with low differential uniformity [2].

In this paper, we study the CCZ-equivalence between PTW differentially 4-uniform permutations and
other known differentially 4-uniform permutations by selecting different R-projections from [2]. We first
introduce an interesting property on PTW differentially 4-uniform permutations. Using this property, we
present a necessary condition to check whether a sporadic differentially 4-uniform permutation on small
fields is CCZ-inequivalent to any PTW differentially 4-uniform permutations by considering R-projected
differential spectrum. As an application, we verified by Magma that any differentially 4-uniform permutations
mentioned by L. Perrin et al. [4] with generalised butterfly structure on F26 is CCZ-inequivalent to any 4-
uniform BI permutations, 4-uniform BCTTL permutations or PTW differentially 4-uniform permutations.
By considering the projected differential spectrum on F4k−2

2 , we prove a necessary condition and verify that
any 4-uniform BCTTL permutations is CCZ-inequivalent to any PTW differentially 4-uniform permutations
when 3 ≤ k ≤ 7 by Magma.

REFERENCES

[1] C. Carlet, D. Tang, X.H. Tang and Q.Y. Liao, New Construction of Differentially 4-Uniform Bijections. Information Security
and Cryptology, Vol. 8567, pp. 22-38, 2014.

[2] X. Chen, L.J. Qu, C. Li and J. Du, A New Method to Investigate the CCZ-Equivalence between Functions with Low Differential
Uniformity. Finite Fields and their Applications. Vol. 42, pp. 165-186, 2016.

[3] J. Peng, C. Tan and Q.C. Wang, New secondary construction of differentially 4-uniform permutations over F22k . International
Journal of Computer Mathematics, to appear, DOI: 10.1080/00207160.2016.1227433.

[4] L. Perrin, A. Udovenko, and A. Biryukov. Cryptanalysis of a theorem: Decomposing the only known solution to the big APN
problem. Advances in Cryptology - CRYPTO 2016, Part II, volume 9815 of LNCS, pages 93-122. Springer, 2016.



On Some Properties of Quadratic APN Functions

of a Special Form
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Abstract

In a recent paper it is shown that functions of the form L1(x3)+L2(x9),
where L1 and L2 are linear, are a good source for the construction of new
infinite families of Almost Perfect Nonlinear (APN) functions. In the
present work we study necessary and sufficient conditions for such func-
tions to be APN and we give some computational results on low dimension
cases.



Quadratic APN Polynomials in Few Terms
in Small Dimensions

Bo Sun
University of Bergen

Bergen, Norway
Bo.Sun@uib.no

Abstract

We consider quadratic APN polynomials over F2n with coefficients in F2 for n 6 11. We computa-
tionally determine all such polynomials (up to CCZ-equivalence) containing up to 6 terms. In particular,
obtained results are summerized in the table below. These results are from a joint work with Lilya
Budaghyan.

Table 1.
Quadratic APN functions over F2n with coefficients in F2 (6 ≤ n ≤ 11)

n Number of Terms Number of Polynomials of Type I * Number of Polynomials Type II**

6 3-6 – –

7

3 2 2
4 6 5
5 10 4
6 12 1

8

3 2 2
4 – –
5 4 2
6 3 1

9,10 3-6 – –

11

3 – –
4 – –
5 5 5
6 – –

*This is a number of APN polynomials (up to CCZ-equivalence) which are not CCZ-equivalent to power functions.
**This is a number of APN polynomials (up to CCZ-equivalence) which are not CCZ-equivalent to APN polynomials
in fewer terms with coefficients in F2.



New classes of generalized bent functions

Bimal Mandal, Pantelimon Stănică and Sugata Gangopadhyay
{bimalmandal90, gsugata}@gmail.com, pstanica@nps.edu

Abstract

In 1985, Kumar et al. introduced the concept of generalized bent functions
f : Zn

q −→ Zq, where q > 1 is a positive integer and gave constructions for every
possible q and n, except for n is odd and q ≡ 2 (mod 4). There has been a
flourish of new research into this area, with new constructions being displayed,
characterizations, and even connecting them to certain combinatorial objects such
as partial difference sets, strongly regular graphs and association schemes. We
consider the generalized Boolean functions from F2n

p to Fp, where p is an odd prime
integer, and the set of all n variables generalized Boolean function is denoted by
Bpn. The main contribution of our work can be summarized as follows:

In the first part, we define the subspace sum of f ∈ Bpn with respect to a
subspace V of Fn

p

SV f(x) =
∑
s∈V

f(x+ s) for all x ∈ Fn
p .

Let V = 〈a〉 be an one dimensional subspace of Fn
p . Then we prove that

SV f(x) = DaDa . . . Da︸ ︷︷ ︸
(p−1)−times

f(x), for all x ∈ Fn
p .

It is proved that if f, h ∈ Bpn are affine equivalent, then so are SV f and SV h, where
V is a subspace of Fn

p . Further, we extend to characteristic p > 2 a binary result of
Dillon, concerning the vanishing subspace sum of any Maiorana–McFarland bent
functions.

For the binary case, Carlet constructed two new classes of bent function by
modifying the Maiorana-McFarland bent function. In the second part, we construct
two new classes of generalized bent functions, is denoted by Dp, Dp

0 and Cp. Here
Dp

0 is a subclass of Dp and we observe that if f ∈ Dp
0 is an n variables Boolean

function, then n ≡ 0 (mod 4). We prove that Mp and Dp
0 ⊆ Dp are overlapping

classes, but in general not included in one another, which is not the case for the
binary instance, where M ( D0.

For construction of Cp bent functions, it is needed to consider a permutation
polynomial π on Fn

p such that π−1(a+L) is a flat for any a ∈ Fn
p , where L is a linear

subspace of Fn
p . We investigate these conditions for many classes of permutations

and suitable linear subspaces of the dimension less than and equal to 2 for p = 3.



Generalized bent functions from spreads and their spectra
Wilfried Meidl, Alexander Pott

Otto von Guericke Universiät Magdeburg

Let p be a prime, and let ζq = e
2πi
q . For a ∈ Zpm , u ∈ Fn

p , denote by
χa,u(x, y) = ζaypmζ

u·x
p the characters of the group Fn

p × Zpm (u · x denotes the
conventional dot product). A function f from Fn

p to the cyclic group Zpm is
called bent if the character sum

Hf (a, u) =
∑
x∈Fnp

χa,u(x, f(x)) =
∑
x∈Fnp

ζ
af(x)
pm ζu·xp (1)

has absolute value pn/2 for every nonzero a ∈ Zpm , and every u ∈ Fn
p . The

graph (x, f(x)) of f is a relative difference set in Fn
p × Zpm with parameters

(pn, pm, pn, pn−m) and forbidden subgroup Zpm . Standard examples of such
difference sets are obtained from spreads for every m ≤ n/2.

Recently for the case of p = 2, a class of functions that satisfies weaker
conditions attracted a lot of attention: Requiring that |Hf (a, u)| = 2n/2 for all
u ∈ Fn

2 , but only for a = 1 (and hence for all odd a, i.e. exactly for the characters
of order 2m−1), yields the so called generalized bent (gbent) functions, which
turned out to be essentially a partition of Fn

2 depending on a Boolean bent
function.

Though gbent functions are not relative difference set, they inherit some
interesting properties. For instance, when n is even, one can see a gbent function
written as f(x) = a0(x) + 2a1(x) + · · · + 2m−2am−2(x) + 2m−1am−1(x) for
uniquely determined Boolean functions ai, as an affine space of bent functions
am−1 + 〈a0, . . . , am−2〉 of dimension m−1 with interesting additional properties
(if the dimension is smaller, then the function reduces to a function from Fn

2 to
Z2m′ for some m′ < m).

In this talk we analyze the construction of gbent functions from (partial)
spreads for p = 2, which extends some earlier results, and generalize these results
to gbent functions from Fn

p to Zpm for odd primes p, which are defined in an
analog way. We show that there is a large amount of generalized bent functions
in dimension n/2, the largest dimension that permits relative difference sets,
which do not come from bent functions (i.e. from relative difference sets). Even
more, using spreads, for any subset B ⊂ {m − 1, . . . , 2} we design functions
from Fn

2 to Z2m for which |
∑

x∈Fn2
χa,u(x, f(x))| = 2n/2 for all characters χa,u

of order 2t, t ∈ B. For instance, there exist gbent funtions from Fn
2 to Z2n/2

(with dimension n/2) for which |Hf (a, u)| = 2n/2 for all u ∈ Fn
2 and a ∈ Z2m

except from a = 2n/2−2, 3 · 2n/2−2. From the character values point of view,
such functions can be seen as those gbent functions that are as close as possible
to a bent function (without being bent).



Efficient Numerical Approximation of
the DMC Channel Capacity

Y. Lu, Z. Tu, D. Zhang

Abstract

This submission work is part of an interdisciplinary project ”Walsh 
Spectrum Analysis and the Cryptographic Applications”. The project 
initiates the study of finding the largest (and/or significantly large) 
Walsh coefficients and the index positions of an unknown distribution 
by sampling. This proposed problem is considered suitable for sub-
mission to the Nature journal, because it has greatest significance in 
Cryptography, Communications, Computer science, and Signal Pro-
cessing and both scientific and engineering communities are believed 
to benefit from it.

For a few Discrete Memoryless Channels (DMCs) it is known 
that the capacity can be computed analytically; in general, there 
is no closed-form solution. This work is concerned with numerical 
computation of channel capacity for a general DMC. We study both 
the Blahut-Arimoto algorithm (which gave the first numerical so-
lution historically) and the most recent results [Sutter et al’2014]. 
For an ε-approximation (i.e., the desired absolute accuracy of the 
approximate solution) of the capacity, the former has the computa-

tional complexit√ y O(MN2 log N/ε), while the latter has the complex-
ity O(M2N log N/ε). We will give an efficient algorithm to compute 
numerically the channel capacity and implement it. Meanwhile, we 
will study the relation of Renyi’s divergence of degree 1/2 and the 
generalized channel capacity of degree 1/2.



On the Multiplicative Complexity of 6-variable

Boolean Functions

Çağdaş Çalık, Meltem Sönmez Turan, René Peralta
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Abstract. Multiplicative complexity C∧(f) of a Boolean function is the minimum number of mul-

tiplications (AND-∧ gates) that are sufficient to evaluate the function over the basis (AND, XOR,

NOT). Finding the multiplicative complexity of a given function is computationally intractable, even

for functions with small number of inputs. Turan et al. [1] showed that n-variable Boolean functions

can be implemented with at most n− 1 AND gates for n ≤ 5 by utilizing affine equivalence classes. A

simple counting argument can be used to show that, for n ≥ 7, there exists n-variable functions with

multiplicative complexity n. However, nobody has yet been able to show that any particular function

has this complexity. For n = 6, the question remains open.

In this work, we study the multiplicative complexity of 6-variable Boolean functions. The problem of

finding the multiplicative complexities of all functions is reduced to finding the multiplicative complexi-

ties of 150 357 affine equivalence classes on 6-variables constructed in [2]. The multiplicative complexity

of each class is determined by generating all possible circuits for a particular number of AND gates and

then identifying which of the classes can be generated by those circuits.

We provide the multiplicative complexity distribution of 6-variable Boolean functions and show that

they can be implemented using at most 6 AND gates. Our techniques also enable us to exhibit specific

6-variable functions which have multiplicative complexity 6.

Keywords: Affine equivalence, Boolean functions, Multiplicative complexity
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variables. In Thomas Eisenbarth and Erdinç Öztürk, editors, Lightweight Cryptography for Security and Privacy

- Third International Workshop, LightSec 2014, Istanbul, Turkey, September 1-2, 2014, Revised Selected Papers,

volume 8898 of Lecture Notes in Computer Science, pages 21–33. Springer, 2014.

2. Joanne Elizabeth Fuller. Analysis of affine equivalent boolean functions for cryptography. PhD thesis, Queensland

University of Technology, 2003.



Solving polynomial systems over Boolean rings by
elimination of variables

Bjørn Møller Greve1, H̊avard Raddum2 Gunnar Fløystad3 and Øyvind Ytrehus2.

1 Norwegian Defence Research Establishment (FFI),2 Simula@UiB and3 Department of
Mathematics, University of Bergen Norway

bjorn-moller.greve@ffi.no, haavardr@simula.no, gunnar.floystad@uib.no,

oyvindy@simula.no

We present a new algorithm for eliminating variables from a system of Boolean equa-
tions of low degree, while bounding the degree of the resulting polynomials. Our motivation
comes from symmetric cryptography, where ciphers can be described as systems of Boolean
equations of degree 2 over GF (2). Assume that the plaintext P and the ciphertext C are
known, and that the goal is to find the secret key K. Our aim is to find a method to extract
the secret key K by solving the equation system produced by the encryption EK(P ) = C.
In addition to the bits of the unknown K, auxiliary variables need to be introduced to
keep the initial equations simple. We attempt to eliminate the auxiliary variables from the
set of equations, resulting in some equations containing only variables from K.

The algorithm combines in a novel fashion elements of previously known elimination
algorithms, namely the traditional theory of resultants and the theory of Gröbner bases.
It is general since it treats any system of quadratic Boolean functions as input and is
developed with a focus on bounding the complexity.

For input systems of quadratic and/or cubic Boolean equations, the elimination will
never produce polynomials with higher degree than 3. The algorithm’s input then consists
of two sets F and G of Boolean equations of degree 3 and 2, respectively. In the resul-
tant and coefficient constraint step of the algorithm, all monomials containing a particular
variable are eliminated, not just single monomials like in the traditional Gröbner basis
algorithms. The hybrid step of the algorithm removes monomials from the cubic polyno-
mials using the quadratic polynomials as a basis by normalization. This provides a large
set of monomials that cannot appear in the cubic sets in the end, and it may squeeze
out quadratic polynomials enlarging the elimination sets. We also discuss ways to use the
equations that the algorithm produces.

The penalty for lowering the complexity of variable elimination is expansion of the total
solution space, which means that the algorithm produces false solutions. Therefore we also
present an algorithm for lifting candidate solutions backwards to filter out false solutions to
the system. The expansion of the solution space results in a trade-off between complexity
and information loss, and we measure this loss during elimination. This approach has the
potential to measure the strength of block ciphers.

We apply the algorithm to two small-scale block ciphers. In one case we fail to produce
equations of degree only in variables of K, but instead measure how fast information about
K is lost during elimination. In the other case we are able to construct such polynomials,
and show that the method of re-linearization would break this cipher faster than exhaustive
search.



PI is not at least as succinct as MODS

Nikolay Stoyanov Kaleyski

Department of Informatics, University of Bergen, Norway

Given two languages L1 and L2 of Boolean sentences, we say that L1 is at least as succinct as L2 if there
exists a polynomial p such that for every sentence S2 in L2 there exists an equivalent sentence S1 in L1 with
|S1| ≤ p(|S2|), i.e. whose size is polynomial in the size of S2 with respect to p.

We show that the language of prime implicates (PI) is not at least as succinct as the language of models
(MODS) by constructing a sequence of Boolean functions with “many” prime implicates and “few” models
which serves as a counterexample. We prove a lower bound on the number of prime implicates of these
functions, and describe how an upper bound and even an exact formula for their number of prime implicates
may be derived as well.



On Alltop functions
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1 Institute of Applied Mathematics, Middle East Technical University, Turkey
2 Department of Mathematics, Middle East Technical University, Turkey

fuad_hamidli@yahoo.com,ozbudak@metu.edu.tr

1 Abstract

Let q be a power of an odd prime p and let Fq be a finite field. A map f is called
planar on Fq if for any a ∈ F?

q, the difference map (or derivative of f at a point a)
Da(x) = f(x + a) − f(x) is bijective. The definition of Alltop function is that, the
difference map at point a in the given field of odd characteristic is itself planar for any
a ∈ F?

q. Alltop functions have special importance in cryptography and related areas.
For example, they are used to construct mutually unbiased bases (MUB) in quantum
information theory. The map x 7→ x3 is an Alltop function in all finite fields found by
Alltop in 1980 which is an optimal function with respect to the known bounds on auto
and crosscorrelation. Since then it was shown that these kind of functions do not exist
when p = 3 (Hall, Rao, Donovan). So far, it has been found that xq+2 is also an Alltop
function over finite field Fq2 where 3 does not divide q + 1 and this is EA-inequivalent
to x3 whereas its difference function (derivative), which is planar, is EA-equivalent to
x2 (Hall, Rao, Gagola). It is still an open problem whether there exist another EA-
inequivalent Alltop functions or any method to construct new Alltop functions.
In this paper classification of all q-cubic Alltop binomials over Fq2 is given. Specifi-
cally, x3 + uxq+2 and x3 + ux2q+1 in Fq2 for u ∈ F∗

q2 are analyzed and for the former
case it is shown that it cannot be Alltop, for the latter case permutation polynomials
L1(x) = ax+ bxq and L2(x) = cx+dxq are found that satisfy L1 ◦x3 ◦L2 = x3 +ux2q+1

and L1 ◦ xq+2 ◦ L2 = x3 + ux2q+1 for suitable values of u. Moreover, except x3 and
the ones in its equivalence class, it is shown that there is no Alltop cubic q-monomials
in Fq3 . In addition, new notion “p-ary Alltop functions” are defined from Fpn to Fp

and the relation between Alltop functions and p-ary Alltop functions over finite fields
is given. Furthermore, by using Maiorana-McFarland construction approach for p-ary
bent functions, construction method for p-ary Alltop functions from p-ary bent func-
tions is established.

Keywords: Alltop functions, planar functions, p-ary bent functions



Low-Depth, Low-Size Circuits for Cryptographic

Applications

Joan Boyar∗ Magnus Gausdal Find† René Peralta†

Determining the circuit complexity of a Boolean function is a highly intractable problem. In
fact, it is known to be inapproximable even when restricted to linear functions. Here, we report
on new techniques for reducing the size and depth of circuits over the basis XOR, AND, NOT
(equivalently, arithmetic circuits over GF (2)). The techniques have yielded new records for the
circuit complexity of Boolean functions of interest to cryptography and coding theory. These
include multiplication over GF (2), finite field multiplication, and finite field inversion.

Circuits with few AND gates will naturally have large sections which are purely linear, i.e.,
contain no AND gates. The size of linear components can be significantly reduced using various
heuristics. Boyar and Peralta [1] and Courtois et al. [2] have used this insight to construct circuits
much smaller than previously known for a variety of applications. The heuristic both of those
papers use is a two-step process which first reduces multiplicative complexity and then optimizes
linear components. We present a new heuristic that allows us to simultaneously reduce depth and
size of linear circuits.

Our overall approach uses the observation that one can obtain smaller low-depth circuits by re-
peatedly optimizing the different linear components of the circuit based on gate-depth information
from previous optimizations. We call the resulting heuristic the See-Saw Method. The heuristic
builds a circuit by repeatedly picking a new pair of wires to XOR. As in Paar’s algorithm [3]
the target functions, as well as already computed functions, are encoded into a Boolean matrix.
However, by keeping track of depth information we are able to avoid XORing gates when doing so
would increase the depth beyond precomputed limits. Additionally, a Generalized Paar Operation
is introduced which allows cancellation (an XOR operation where at least one variable is present
in the linear combinations expressing both inputs to the XOR and thus not in the output). We
have elsewhere shown that any heuristic which does not allow cancellation (such as Paar’s) will
do significantly worse than one that does.

We report new records for size and depth of circuits for the AES S-Box, multiplication in the
field GF (28), inversion in the field GF (216), and multiplication of polynomials over GF (2).
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Separable Statistics and Multivariate Linear Cryptanalysis
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A new extension to linear cryptanalysis is developed here. It is a statistical attack based on a priori
computed joint distributions of the encryption algorithm internal bits. We have applied the method to
DES, but it should work for other block ciphers as well. Let Xi−1, Xi be two 32-bit input-blocks to the
i-th encryption round in DES. X0, X1 is plain-text and X17, X16 is cipher-text 64-bit blocks. We find
probability distribution of the 14-bit vector of internal bits, x:

x = (X2[24, 18, 7, 29], X15[16, 15, 14, 13, 12, 11], X16[24, 18, 7, 29]) . (1)

The exact distribution is hard to compute as it depends on the 56-bit DES key. Under certain statistical
assumptions, similar to those used by Matsui in his linear cryptanalysis, a close approximation is found.
The approximated distribution of x depends on 7 key-bits. The observation on x depends on plaintext-
ciphertext pairs and 39 key-bits from the first and the last round keys. We use the distribution of x in a
known-plaintext attack given n plaintext-ciphertext pairs. Logarithmic Likelihood Ratio (LLR) statistic f
depends on 45 different key-bits k, besides plaintext-ciphertext pairs, so multivariate linear cryptanalysis
of Hermelin et al. won’t give any advantage over one-variate linear cryptanalysis. In this case there should
be 245 values of the statistic f to range. Therefore, we instead use 10-bit projections of (1):

xi,j = (X2[24, 18, 7, 29], X15[i, j], X16[24, 18, 7, 29]) (2)

for i, j ∈ {16, 15, 14, 13, 12, 11}, where i > j except i, j = 16, 11 for which (2) is uniformly distributed.
There are 14 choices of i, j. LLR statistic fi,j for each xi,j depends on 21 different key-bits denoted by
ki,j . We range the values of ki,j for each i, j separately by the value of fi,j . We then combine the values
of ki,j to the value of k such that

F =
∑
i,j

cijfi,j > z (3)

for some optimal constants ci,j and threshold z. The main idea of this new approach is to use the separable
statistic F instead of LLR statistic f based on the distribution of x. The statistics fi,j are dependent.
Nevertheless, as fi,j come from the same (1), we were able to compute the distribution of F in two cases:
the value of k is correct and it is incorrect. That enables to evaluate the probability of not missing the
correct value of k (success probability) and average number of false candidates for k. All k-candidate are
then brute-forced. By symmetry in DES,

x′ = (X1[24, 18, 7, 29], X2[16, 15, 14, 13, 12, 11], X15[24, 18, 7, 29])

is similarly distributed as x. As x and x′ incorporate different internal bits of the encryption, they are
considered independent. So we have two independent identically distributed separable statistics F and F ′

which involve 28 LLR statistics for 10-bit projections of x and x′. They depend on 54 key-bits combined.
We built a search tree from the LLR values by a gluing type algorithm that goes through the tree to

find candidates for 54 out of the 56 key-bits. A 54-bit key candidate is accepted if F > z and F ′ > z
simultaneously. This is brute forced to find the 56-bit DES key.

The complexity of our attack is measured by n (the number of plaintext-ciphertext pairs), the number
of nodes visited while traversing the tree, and the number of encryptions to brute force the remaining
2 key-bits for all candidates. For fixed n, we choose the parameter z so that the number of candidates
returned from our algorithm is n/4. Then n encryptions were performed. Particularly, we fixed n = 241.8

and chose z so that 239.8 candidates are expected. The number of encryptions is 241.8. The success
probability of the attack is the probability that F > z and F ′ > z for the correct key simultaneously.
The success probability is 0.85 (computed theoretically) for our choice of n and z.

We have implemented the method and run an attack on 16-round DES without the final brute force
step. The algorithm returned 239.46 candidates and the number of visited nodes in the search tree was
245.78. The average complexity of visiting one node is 15 bit-xors and 12 small integer additions to
compute (3) for F and F ′ combined. The complexity of doing one DES encryption is 1280 bit-xors. So
final complexity of our attack is close to the complexity of 241.8 DES encryptions. The goal is to have the
final complexity to be less than 241.8 encryptions. There is a way to reduce the number of visited nodes.
This work is ongoing.
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