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Walsh transform

i = 2im
paprlme,gp_exp(p )
V. : an n-dimensional vector space over Z,
a - x :any inner product on Vv,

The Walsh transform of f : V,, — Z, ata eV, is

Z f(x)—ax

xeV,

Whenp =2, = —1 \
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Plateaued functions

A functionf : V, — Z, Is called a plateaued function if the Walsh
transform xy takes at most three values.

Facts :

e Because of Parseval identify, |{}(a)| € {0,p">"} for some
nonnegative integer r.

@ r=0— |xr(a)| = p? : bent functions
@ p=2,r=1,n0dd— |{(a) € {0,2"F } : semi-bent functions

The powerp"T“ is called the amplitude of f.
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Plateaued functions

A functionf : V, — Z, Is called a plateaued function if the Walsh
transform xy takes at most three values.

Facts :

e Because of Parseval identify, |{}(a)| € {0,p">"} for some
nonnegative integer r.

@ r=0— |xr(a)| = p? : bent functions
@ p=2,r=1,n0dd— |{(a) € {0,2"F } : semi-bent functions

The powerp"T“ is called the amplitude of f.

= Characterizations of plateaued functions : Carlet-Prouff 2003,
Cesmelioglu-Meidl 2013, SM 2014, Carlet 2015, Hyun- Lee-Lee
2016, Carlet-SM-Ozbudak-Sinak 2017, etc.
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Generalized plateaued functions

k= exp (2;—,?) k a positive integer
DEFINITION
Let r be an nonnegative integer. A functionf : V,, — Z, is called a

generalized plateaued function with amplitude pnTH if the generalized

Walsh transform
’]—[f(a) — Z C;:]Sx)cp—a.x

x€V,

has modulus 0 or p% foralla € V,.

REMARK

r = 0 : generalized bent functions introduced by Kumar, Scholtz and
Welch

| \

\
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Let f be a function from Z21 = Z& x Z5T! to Zyi1, defined as

k k
fxy) = (in)’i + 1) - 25+ Zy,-2"*1,
i=1 i=1

where x = (xi,--- ,x) € Zandy = (y1,- -+ , 1) € Z5T'. Then for any
u=(u, ) €EZ5and v = (vi, -+ ,vey1) € ZE!, one has
(Qk+1)+1 |
27 2 if =1,
[Hy(u, v)| = R
0 if Vi+1l = 0.

f is generalized plateaued with amplitude P
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There is an one-to-one correspondence between Zpk and ZI’§ :

Every u € Zpk can be uniquely expressed in the form

k
u=>Y up~', wez
i=1

u; shall be called the ith-digit of « in the p-base representation of u.

In the sequel, we shall often use the same notation to denote an
element u of L,y and the sequence u = (uy, ..., u;) of its digits.
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Component functions

Given a Zpk—valued function f, define
k—1
fe=fi+ > cfi, c=(c1,...,qm1) €ZE".
i=1

f. - a component function of f;
f; »ith-digit of f.
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Component functions

Given a Zpk—valued function f, define

D

k—1
fe :ﬁ+Zciﬁ, c=(c1,...,cr1) €Z5L
i=1

f. - a component function of f;
f; »ith-digit of f.
When p = 2, if f is a generalized bent function from V,, to Zpk :

THEOREM (MARTINSEN, MEIDL, STANICA)

Ifn is even then . is bent for all c € Z.

THEOREM (MARTINSEN, MEIDL, SM, STANICA)
Ifn is odd then f, is semi-bent for all c € Zj.
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Component functions of a generalized plateaued
function

THEOREM

Iff:v,— Zpk is a generalized plateaued function with amplitude p"T“
then :
@ ifpisoddorifp =2 andn -+ r is even, f. is plateaued with
amplitude pnTH
Q ifp=2,n+risoddandk > 3,f, is plateaued with amplitude 2"+

| A\

REMARK
Forr =0 and p odd (generalized bent functions), it has been also
established independently by Wang, Wu and Liu.

N
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Sketch of proof

k a positive integer

A basis of the vectorspace Q((,«) over K := Q(¢,) is
{Ch 0<u<pt —1}.

The (unique) decomposition of a Walsh coefficient over this basis is :

S A = 3 > G e (g

xeV, uEZk 1 xew,

where W, = {x eV, ]fl(x) =Ul,... ,fk_l(x) = uk_l}.
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Sketch of proof

k a positive integer

A basis of the vectorspace Q((,«) over K := Q(¢,) is

{Ch 0<u<pt —1}.

The (unique) decomposition of a Walsh coefficient over this basis is :
S A = 3 > G e (g
xeV, uEZk 1 xew,

where W, = {x eV, ]fl(x) =Ul,... ,fk_l(x) = uk_l}.

On the other hand,

Vi)=Y = N e N g

x€V, uezk"! W,

The two above decompositions of H;(a) and Xy (a) involve the
same sums S,(a) = > ..y & H=ax 2 Q(¢,)
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Sketch of proof

pr = (‘71) p where (-) denotes the Legendre symbol.
If p =2, k > 3 otherwise k a positive integer

THEOREM (REGULARITY OF GENERALIZED PLATEAUED FUNCTIONS)

Letf:V, — Ly be a generalized plateaued function with amplitude
LH

p 2 . Then, foreverya € V,,

Hy(a) = e(a) \/F"HC,“;’IE“)C,’J(“)

forsomee :V, — {—1,0,1},¢:V, — ZPH andh:V, — Z,.

Whenp =2,p* = (3)2=2.
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Sketch of proof

In summary,

=> ¢ e =k

xeW,

= Y isula) =<(a) (Vir)" g,

uEle“l
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Sketch of proof

In summary,

Z C]j;k(x —a-x Cp) - K

)CEWu
ntr a a
= Y s =c@ (Vrr) ¢,
uEle“l

The decomposition of v := (,/p*)""" over the basis
{Gr0<u< p*¥=1 — 1} depends on the parity of p and n + r :
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Sketch of proof

In summary,

Z C]j;k(x —a-x Cp) - K

xE‘Vﬁ
ntr a a
= Y s =c@ (Vrr) ¢,
uEle“l

The decomposition of v := (,/p*)""" over the basis
{Gr0<u< p*¥=1 — 1} depends on the parity of p and n + r :

@ whenpisodd: Q(v/p*) C Q) = v €K.
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Sketch of proof

In summary,
Sula) =Y G eQ(g) = K
xeWw,
M) = 3 Gsila) =cl@) (Vir)" GG,
uEle“l

The decomposition of v := (,/p*)""" over the basis

{Gr0<u< p*¥=1 — 1} depends on the parity of p and n + r :
@ whenpisodd: Q(v/p*) C Q) = v €K.
Q Whenp=2:G=-1and K = Q(&) = Q.
In that case, one has therefore to separate the two subcases :
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Sketch of proof

In summary,
Sula) =Y G eQ(g) = K
xeWw,
M) = 3 Gsila) =cl@) (Vir)" GG,
uEle“l

The decomposition of v := (,/p*)""" over the basis

{¢h0<u< p*¥=1 — 1} depends on the parity of p and n + r :
@ whenpisodd: Q(v/p*) C Q) = v €K.
Q Whenp=2:G=-1and K = Q(&) = Q.
In that case, one has therefore to separate the two subcases :
(@) n+reven:v=p"" =2 €K

19/45



Sketch of proof

In summary,

Z Si(x)—a-x Cp)

xE‘Vﬁ
ntr a a
= Y s =c@ (Vrr) ¢,
uEle“l

The decomposition of v := (,/p*)""" over the basis

{¢h0<u< p*¥=1 — 1} depends on the parity of p and n + r :
@ whenpisodd: Q(v/p*) C Q) = v €K.
Q Whenp=2:G=-1and K = Q(&) = Q.
In that case, one has therefore to separate the two subcases :
(@) n+reven:v= \/ﬁ*"*’ Z"T” eK
(b) n+rodd:p=t =

(G -G e\ K
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Sketch of proof

poddorn+reven, k> 3if p =2 (Cases 1 or 2a)

S Y U = @IS, Ve (G)

ueZIITI xeW,y
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Sketch of proof

poddorn+reven, k> 3if p =2 (Cases 1 or 2a)

u —qa- n-+r
S G =@ EYG, Ve (g)
ueZﬁTl xeW,y
Hence

Sula)= > filo)—ax _ { g(a)\/?*"”c‘ﬁ(a) if u = g(a)

fomrr? otherwise
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Sketch of proof

poddorn+reven, k> 3if p =2 (Cases 1 or 2a)

u —qa- n-+r
S G =@ EYG, Ve (g)
ueZﬁTl xeW,y
Hence

Sula)= > filo)—ax _ { g(a)\/?*"”c‘ﬁ(a) if u = g(a)

fomrr? otherwise

Thus

Gi@) = > Gresula) = Sy (@G

uelecfl
fc is plateaued with amplitude pnTH
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Sketch of proof

p=2,n+roddand k > 3 (Case 2b)

Z Cgk Z l)fk(x —a-x 2n+£ 1( l)h(a) (Cgk(a)—"_Zk_S . Cgl{(a)+3'2k_3>

uezg—l xeEW,
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Sketch of proof

p=2,n+roddand k > 3 (Case 2b)

Z Cgk Z l)fk(x —a-x 2n+£ 1( 1)h(a) (Cgk(a)+2k*3 . Cgk(a)+3.2k—3)

MGZ’;_I xEWu

Hence
e(a)2" 5 (—1)"@  ifu = g(a) +2¢3

Su(@) = > (=17 = & ()25 (1) i = g(a) + 3242
xeWu 0 otherwise

Thus

= a —)-c a 2k=3Y.¢

Nila) = (~DE@OFTVeg 0 a(a@) — (D)@ L ea(a).

f . +271 - 2ﬂ+£+1
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Let f be a function from V,, to Zpk where p odd or p =2 and n + r even

Question : if all the f.’s are plateaued with the same amplitude, is f a
generalized plateaued function ?

26/45



Let f be a function from V,, to Zpk where p odd or p =2 and n + r even

Question : if all the f.’s are plateaued with the same amplitude, is f a
generalized plateaued function ?

Answer : it is NOT necessary true
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Let f be a function from V,, to Zpk where p odd or p =2 and n + r even
Question : if all the f.’s are plateaued with the same amplitude, is f a
generalized plateaued function ?

Answer : it is NOT necessary true

Generalized bent function : r =0
When p = 2, various characterizations involving the f,’s have been

found
@ k=2 :Solé, Tokereva (2009)
@ k=3 : Stanica et al (2013)
@ k a positive integer : Hodzic, Pasalic (2016), Tang, Qi, Xiang, Feng
(2016)

Each of them require an additional statement on the f_.’s.
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An important remark

Let f be a generalized plateaued function from V,, to Zpk

Cases 1 and 2a : p be odd or n + r be even

We have proved that all the component functions f, of f have all the
same amplitude but above we have shown that

Forallac V,, c e Z’;*‘ andd € Zlﬁ*l, we have

Xz (@)] = IXz(a)|
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An important remark

Let f be a generalized plateaued function from V,, to Zpk

Cases 1 and 2a : one can extend all the preceding results and show
that

THEOREM
ForallH € Z,[Xy, ..., Xk-1], fu = fi + H(fi1, - - . .fi—1) IS plateaued with
amplitude p"TH and, for alla inV,, H, ,H> in zZ, [Xi,...,Xk], we have :

IXpu, (@] = X, (@)]-

| \

REMARK

k—1
fc =f[-1 WithH(xl, 500 ,xk_l) = Zc,-xl-
i=1
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Admissible (plateaued) functions

From now, suppose p is odd or p = 2 and n + r is even.

Let P = {Pi,...,P,} be apartition of V,, : Ui_, Pi = Z, P; N P; = 0,
i #j.

A function g : V,, — Z, is said to be piecewise constant over P if it
locally constant on each element of P.

Letf:V, — Z,. Then, f is said to be r-admissible for P if and only if,
for every piecewise constant function g : V,, — Z, over P, f + g is

plateaued with amplitude pnTH and |xy(a)| = |Xf+g(a)| foralla € V,.
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Let f be a function from Z3**! = 7§ x Z5+! to Z,, defined as

k
f(xy) = sz%' + Yi+15

i=1

where x = (x1,--- ,x) € Z5andy = (y1,- -+ ,ye1) € Z5T'. Let
P={Pgy..;y: 01, ) € Z5}, where

P{)’la---v)’k} = {(vala v aykayk+1) € Z§k+1 X E Zl§7y1c+l c ZZ} Thenf is
1-admissible for P.
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Admissible (plateaued) functions

Letf: V., — Z, be a r-admissible function for a partition
P =A{Pi,...,P;} of V,.

Define

Sia) = 32 40

XEP;

PROPOSITION
Foreveryl <i<j<tandaecV, Si(a)Sj(a) =0

The proof relies strongly on the fact that |xr(a)| = |Xr+¢(a)| for all
a € V, for every piecewise constant function g : V,, — Z, over P.
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Characterization of generalized plateaued function

Let k a positive integer
Letf: Vv, — Zpk and f; denotes the ith-digit of f

Let us construct a particular partition of Z7 involving the (k — 1)st digits

of f:
k—1
Po= () (a)
i=1

and
Pflv-wfk—l = {Pa’ ac leg_l}'
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Characterization of generalized plateaued function

In that case, every function g which piecewise constant for P can
be expressed in the form g(x) = H(fi(x),...,fi—i(x)) for some H €
Z,[Xi, ..., Xx—1] and the preceding proposition rewrites as follows :

PROPOSITION

Foralla € V,, and (u,v) € (Zf,‘l)z, Su(a)S,(a) = 0 where

) = Y e

xGVVﬁ
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Characterization of generalized plateaued function

Thanks to this result, one can establish the following characterization :

Letf:V, — Zpk. Then, f is a generalized plateaued function with

geee
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Admissible (bent) functions

0-admissible — bent functions

In that case, the equality |xy(a)| = |xr+e(a)| of the modulus of Walsh
coefficients is always true and the definition rewrites

Letf:V, — Z,. Then, f is said to be 0-admissible for P if and only if,
for every piecewise constant function g : V, — Z, over P, f + g is bent.
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Admissible (bent) functions

0-admissible — bent functions

In that case, the equality |xy(a)| = |xr+e(a)| of the modulus of Walsh
coefficients is always true and the definition rewrites

Letf:V, — Z,. Then, f is said to be 0-admissible for P if and only if,
for every piecewise constant function g : V, — Z, over P, f + g is bent.

Thus, the preceding characterization rewrites for generalized bent
functions as follows :

COROLLARY

Letf:V, — Zpk. Then, f is a generalized bent function if and only if
fr + F(fl, ce ,fkfl) is bent for all F € Zp[Xl, o 7Xk71]-
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Letf:v, — Zpk be a generalized bent function with amplitude 2"
Let r be a nonnegative integer
Case2b: p=2andn+ rodd
In that case, a component function f, i

The preceding notion of admissible functions can not be simply
adapted since, one may have for some a € V, and (c,d) € Zf,*l

X @ # Xz

The preceding characterization of generalized plateaued function
when p is odd or n + r is even relies strongly on the fact that
IXr.(@)| = Xy for all a, c and d.

39/45



Generalized plateaued functions from other ones

Letf: V, = Z,
Suppose p is odd or n + r even
Let 7 be a positive integer

Let H,, ..., H, be functions from Zi~' to Z,
Define

g(x) =p" filx) +ZH(fl )y feet ()P
Then,

Iff is a generalized plateaued function with amplitude p"TH the g is a
generalized plateaued function with amplitude p > .
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Generalized plateaued functions from other ones

Letf: V, = Z,
Suppose p is odd or n + r even
Let 7 be a positive integer

Let H,, ..., H, be functions from Zi~' to Z,
Define

g(x) =p" filx) +ZH(fl )y feet ()P
Proot,

It is a direct consequence of the fact that at most one sum
Su(@) =Y ewm, ™~ is non zero and whose modulus is equal to
n+r

p 2 .
j : X) ~—a-x f H;i(u pi L i Hi(u pi 1 *
— Cgt( )C E C; 1 (u) S'u(a) :; 1 (u) S'u(a )

xeV, ueZ;g_]

for some a* € V,. O




Generalized plateaued functions from other ones

in lower dimension

Letf:V, — Z,
Suppose p =2,k >3 and n+ r odd

Define g : Z5 x Zo — Zy« @s
k—2

§(r.2) = (R(X) + Fhir (0)2 +222 4 3 fi(w)2!

i=1

X ¥ X i—1
CJZ[IS ) _ )fk( ka 1 CZ f( )2

)

G = ¢ “‘)c and (5 = (—1yfm @

f is a generalized plateaued function with amplitude 23" ifand only ifg
is a generalized plateaued function with amplitude 25
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Generalized plateaued functions from other ones

in lower dimension

Letf: V, — Z,
Suppose p =2,k >3 and n+ r even
Define g : Zj x Zo — Zy @s

g(x,2) = 2 fi(x) ZH (i), - fier(x))27!
+ 21~ 2zl(f1( ),--.,fkfl( )

where the H;’s are maps from Z ' to Z, and 1 : Z4~! — Z,.
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Generalized plateaued functions from other ones

in lower dimension

Letf: V, — Z,
Observe that

GO0 = (M and (8D = (A )

where

h(x) =2 fi(x +ZH(fl e feer ()2

Now, if I is equal to Oor2 C’(fl(x)""’f" W) ¢ {—1,1} while, if it equal to 1
0r3 Cl(fl ()5 fie—1( E{ C4 C4}
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Generalized plateaued functions from other ones

in lower dimension

Letf:V, — Z,

THEOREM
Suppose that f is a generalized plateaued function with amplitude p"TH.
Then
@ /f1 takes only the values 1 and 3, g is a generalized plateaued
function with amplitude pnTH
© If1 takes only the values 0 and 2, g is a generalized plateaued

function with amplitude p* ="

If I can take three values then g cannot be plateaued. \
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