Bent and generalized bent function into the cyclic group \mathbb{Z}_{2^k}

Wilfried Meidl, Radon Institute for Computational and Applied Mathematics, OEAW, Linz; Austria

For two finite abelian groups A, B we call a function $f : A \to B$ bent if $|\sum_{x \in A} \chi(x, f(x))| = \sqrt{|A|}$ for all characters χ of $A \times B$ which are nontrivial on $\{0\} \times B$, or equivalently if the graph $R = \{(x, f(x)) : x \in A\}$ of f is a relative difference set in $A \times B$ relative to B. The standard examples are bent functions from \mathbb{F}_2^n to \mathbb{F}_2^k of which one knows many examples even for the maximal possible value of k, k = n/2. If \mathbb{F}_2^k is exchanged with the cyclic group \mathbb{Z}_{2^k} , only a few examples are known, the standard examples are relative difference sets obtained from spreads.

Generalized bent functions from \mathbb{F}_2^n to \mathbb{Z}_2^k are defined as functions that satisfy the weaker condition that

$$\sum_{x \in \mathbb{F}_2^n} \epsilon^{f(x)} (-1)^{u \cdot x}, \quad \epsilon = e^{2\pi i/2^k},$$

has absolute value $2^{n/2}$ for all $u \in \mathbb{F}_2^n$, i.e. only the characters of $\mathbb{F}_2^n \times \mathbb{Z}_{2^k}$ of order 2^k are considered. Generalized bent functions were intensively studied in the last few years and are by now quite well understood.

We summarize the achievements on (generalized) bent functions into \mathbb{Z}_{2^k} , point to connections with earlier works on Boolean bent functions and discuss some open problems on (generalized) bent functions into \mathbb{Z}_{2^k} , respectively relative difference sets in $\mathbb{F}_2^n \times \mathbb{Z}_{2^k}$. Parts of the results presented in this talk are obtained in joint work with Alexander Pott, Otto von Guericke University Magdeburg.