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We show the existence of many explicitly defined infinite classes of permutations over finite
fields by extending the notion of linear translators, introduced by Kyureghyan [3]. This paper
essentially generalizes the results of two articles [1, 4].1 In [1] several new classes of permutation
polynomials of the form

F : x 7→ L(x) + L(γ)h(f(x)), (1)

where f : Fprk → Fpk , h : Fpk → Fpk , γ ∈ F∗
prk

is a so-called b-linear translator of f and L a

linear permutation, which were originally studied by Kyureghyan [3].
The main obstacle when considering permutations of the form (1) is that new classes of

permutation polynomials could be specified provided the existence of suitable polynomials {f}
admitting linear translators. Such polynomials turns out to be quite rare [1] and we introduce

Frobenius translators so that f(x+ uγ)− f(x) = up
i
b, for all x ∈ Fpn and all u ∈ Fpk , whereas

the standard definition covers only the case i = 0.

Theorem 0.1 For n = rk, let h : Fpk → Fpk be an arbitrary mapping and let γ ∈ Fpn be an

(i, b)-Frobenius translator of f : Fpn → Fpk , that is f(x+ uγ)− f(x) = up
i
b for all x ∈ Fpn and

all u ∈ Fpk . Then, the mapping

G(x) = L(x)p
i

+ L(γ)p
i
h(f(x)), (2)

where L : Fpn → Fpn is an Fpk-linear permutation, permutes Fpn if and only if g(u) = u+ bh(u)
permutes Fpk .

To justify this extension we may for instance consider the mapping f : x 7→ Tn
k (x2

`k+1) over
F2n , where n = rk, 1 ≤ ` ≤ r− 1, which does not have linear but admits a Frobenius translator.
This gives us the possibility to construct permutation polynomials of the form

L(x)p
i

+ L(γ)p
i
h(f(x)), (3)

which greatly resembles (1) though Frobenius translators are used instead. For instance, among
other results, we have:

Proposition 0.2 For n = 4k, the function f : Fpn → Fp2k , defined by f(x) = Trnk (x)+Trn2k(x),

always has a 0-translator if γ+γp
2k

= 0. In the binary case, it also has a (k, γp
k
+γp

3k
)-Frobenius

translator.

In connection to [1], we also present new classes of permutations of the form F (x) = L(x) +

(xp
k − x+ δ)s.

Theorem 0.3 Let p be odd, n = 2k,S = {y ∈ Fpn | Tn
k (y) = 0}, L be a linear permutation.

Then F (x) = L(x) + (xp
k − x + δ)s, is a permutation for any δ ∈ S, s ∈ {2, 4, . . . , pn − 1}, or

for any δ ∈ Fpn , s = t(pk + 1), t ∈ N.

1The extended version of this abstract is available at https://arxiv.org/abs/1801.08460.



In the second part of this article, we consider the extension of Mesnager et al. [5, 6], where
secondary bent functions are deduced using a suitable set of permutations constructed using
linear translators. The method uses a quadruple of bent functions that satisfy certain property
(called (An)) , which can be suitably derived from permutations obtained using the concept of
linear translators. These results are generalized in a straightforward manner using Frobenius
translators, thus offering a wider class of secondary bent functions.

Theorem 0.4 (Generalized Theorem 1, [4]) Let f : F2n → F2k , let L : F2n → F2n be an
F2k-linear permutation of F2n, and let g : F2k → F2k be a permutation. Assume γ1, γ2, γ3 ∈ F∗

2n

are all pairwise distinct (a, i)-Frobenius translators of f with respect to F2k (a ∈ F∗
2k

) such that
γ1 + γ2 + γ3 is again an (a, i)-Frobenius translator. Suppose γ1 + γ2 + γ3 6= 0. Set ρ(x) =(
g(f(x)) + f(x)

a

)2n−i

and ρ̃(x) = a2
i
(
g−1

(
f(x)
a

)
+ f(x)

)2n−i

. Then,

H(x, y) = Tr(xL(y)) + Tr(L(γ1)xρ(y))Tr(L(γ2)xρ(y)) +

Tr(L(γ1)xρ(y))Tr(L(γ3)xρ(y)) +

Tr(L(γ2)xρ(y))Tr(L(γ3)xρ(y))

is bent.

The existence of pairwise distinct (a, i)-Frobenius translators γ1, γ2, γ3 such that γ1 + γ2 + γ3 is
again an (a, i)-Frobenius translator is also confirmed.

The results in [2, 5, 6] and our generalization that is based on Frobenius translators consider
quadruples of bent functions whose duals are related through f∗1 + f∗2 + f∗3 + f∗4 = 0. On the
other hand, a recent initiative taken in [2] provides slightly different framework for designing
secondary bent functions where instead the condition is that f∗1 +f∗2 +f∗3 +f∗4 = 1. The existence
of such quadruples of bent functions was left as an open problem in [2].

Theorem 0.5 Let fi(x, y) = Tr(xφi(y))+hi(y) for i ∈ {1, 2, 3}, where φi satisfies the condition
(An) and x, y ∈ F2n/2. If the functions hi satisfy

h1(φ
−1
1 (x)) + h2(φ

−1
2 (x)) + h3(φ

−1
3 )(x))+

(h1 + h2 + h3)((φ1 + φ2 + φ3)
−1(x)) = 1,

then f1, f2, f3 are solutions to Open Problem in [2].

The condition on hi turns out to be easily specified and an example of construction is provided
in the extended version.
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[6] S. Mesnager, P. Ongan, and F. Özbudak, Further constructions of infinite families of bent
functions from new permutations and their duals. Cryptography and Communications 8.2,
2016, pp.229-246.


