On the variations of Maiorana-McFarland and (partial) spread class of Boolean functions

Razi Arshad (joint work with Alexander Pott)

Otto von Guericke University, Magdeburg, Germany

BFA 2018, June 2018

1/14

Example:

$$F(x) = x^3$$

defined on \mathbb{F}_{2^n}

$$F(x + a) + F(x) = x^2 a + a^2 x + a^3$$

is 2 to 1 for all $a \neq 0$.

Example:

$$F(x) = x^3$$

defined on \mathbb{F}_{2^n}

$$F(x + a) + F(x) = x^{2}a + a^{2}x + a^{3}$$

is 2 to 1 for all $a \neq 0$. Goal: Find the functions F such that F(x + a) + F(x) are 2 to 1 mapping for all $a \neq 0$.

A function

 $F: \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^n$

is Almost Perfect Nonlinear (APN) if

 $x \longrightarrow F(x+a) + F(x)$

is 2 to 1 mapping for all $a \neq 0$.

A function

 $F: \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^n$

is Almost Perfect Nonlinear (APN) if

$$x \longrightarrow F(x+a) + F(x)$$

is 2 to 1 mapping for all $a \neq 0$. Equivalently, F is non-affine on all 2-dimensional affine subspaces of \mathbb{F}_2^n , that is,

 $F(a) + F(x + a) + F(y + a) + F(x + y + a) \neq 0$,

 \forall distinct a, x, y.

A function

 $F: \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^n$

is Almost Perfect Nonlinear (APN) if

$$x \longrightarrow F(x+a) + F(x)$$

is 2 to 1 mapping for all $a \neq 0$. Equivalently, F is non-affine on all 2-dimensional affine subspaces of \mathbb{F}_2^n , that is,

 $F(a) + F(x+a) + F(y+a) + F(x+y+a) \neq 0,$

 \forall distinct a, x, y. In the example x^3 , the vectorspace \mathbb{F}_2^n has been realized by using the finite field \mathbb{F}_{2^n} .

A function

 $F: \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^n$

is Almost Perfect Nonlinear (APN) if

$$x \longrightarrow F(x+a) + F(x)$$

is 2 to 1 mapping for all $a \neq 0$. Equivalently, F is non-affine on all 2-dimensional affine subspaces of \mathbb{F}_2^n , that is,

 $F(a) + F(x+a) + F(y+a) + F(x+y+a) \neq 0,$

 \forall distinct a, x, y. In the example x^3 , the vectorspace \mathbb{F}_2^n has been realized by using the finite field \mathbb{F}_{2^n} . Note: We need only additive properties.

A complete list of known infinite families in univariate form (from Budaghyan, Helleseth, Li, Sun)

inequivalent to power functions on ± 2.0		
N°	Functions	Conditions
1-2	$x^{2^{s}+1} + \alpha^{2^{k}-1}x^{2^{ik}+2^{mk+s}}$	$\begin{split} n &= pk, \mbox{ gcd}(k,p) = \mbox{gcd}(s,pk) = 1, \\ p &\in \{3,4\}, \ i = sk \ \mbox{mod} \ p, \ m = p - i, \\ n &\geq 12, \ \alpha \ \mbox{primitive in} \ \mathbb{F}_{2^n}^* \end{split}$
3	$x^{2^{2i}+2^{i}} + bx^{q+1} + cx^{q(2^{2i}+2^{i})}$	$\begin{split} q &= 2^m, n = 2m, \gcd(i,m) = 1, \\ \gcd(2^i + 1, q + 1) \neq 1, cb^q + b \neq 0, \\ c \not\in \{\lambda^{(2^i+1)(q-1)}, \lambda \in \mathbb{F}_{2^n}\}, c^{q+1} = 1 \end{split}$
4	$x(x^{2^{i}} + x^{q} + cx^{2^{i}q}) + x^{2^{i}}(c^{q}x^{q} + sx^{2^{i}q}) + x^{(2^{i}+1)q}$	$q = 2^m, n = 2m, \gcd(i, m) = 1,$ $c \in \mathbb{F}_{2^n}, s \in \mathbb{F}_{2^n} \setminus \mathbb{F}_q,$ $X^{2^i+1} + cX^{2^i} + c^qX + 1$
		is irreducible over \mathbb{F}_{2^n}
5	$x^3 + a^{-1} \operatorname{tr}_1^n(a^3 x^9)$	$a \neq 0$
6	$x^3 + a^{-1} \operatorname{tr}_3^n (a^3 x^9 + a^6 x^{18})$	$3 n, a \neq 0$
7	$x^3 + a^{-1} \operatorname{tr}_3^n (a^6 x^{18} + a^{12} x^{36})$	$3 n, a \neq 0$
8-10	$ux^{2^{s}+1} + u^{2^{k}}x^{2^{-k}+2^{k+s}} + vx^{2^{-k}+1} + wu^{2^{k}+1}x^{2^{s}+2^{k+s}}$	$\begin{split} n &= 3k, \gcd(k,3) = \gcd(s,3k) = 1, \\ &v,w \in \mathbb{F}_{2^k}, vw \neq 1, \\ &3 (k+s), u \text{ primitive in } \mathbb{F}_{2^n}^* \end{split}$
11	$ \begin{aligned} &\alpha x^{2^{k}+1} + \alpha^{2^{k}} x^{2^{k}+s} + 2^{k} + \\ &\beta x^{2^{k}+1} + \sum_{i=1}^{k-1} \gamma_{i} x^{2^{k+i}+2^{i}} \end{aligned} $	$\begin{split} n &= 2k, \gcd(s,k) = 1, s,k \text{ odd}, \\ \beta \notin \mathbb{F}_{2^k}, \gamma_i \in \mathbb{F}_{2^k}, \\ \alpha \text{ not a cube} \end{split}$

Table 2. Known classes of quadratic APN polynomials inequivalent to power functions on \mathbb{F}_{2^n} .

4/14

Most constructions of APN functions use finite field. Is there any possible alternative approach?

- Most constructions of APN functions use finite field. Is there any possible alternative approach?
- We are interested in the construction of APN functions by using coordinate functions:

$$F(x) = \begin{pmatrix} f_1(x) \\ \vdots \\ f_n(x) \end{pmatrix}.$$

- Most constructions of APN functions use finite field. Is there any possible alternative approach?
- We are interested in the construction of APN functions by using coordinate functions:

$$F(x) = \begin{pmatrix} f_1(x) \\ \vdots \\ f_n(x) \end{pmatrix}.$$

Find the Boolean functions where the number of affine 2-dimensional subspaces which are non-affine is large. Use these to build APN functions.

Step 1: Find a Boolean function $f_1(x)$ and determine the affine 2-dimensional which are affine on f_1 :

 $f_1(a) + f_1(x + a) + f_1(y + a) + f_1(x + y + a) = 0.$

Step 1: Find a Boolean function $f_1(x)$ and determine the affine 2-dimensional which are affine on f_1 :

 $f_1(a) + f_1(x + a) + f_1(y + a) + f_1(x + y + a) = 0.$

Step 2: Find a Boolean function f_2 which is non-affine on many of the affine 2-dimensional which are survived in Steps 1.

Step 1: Find a Boolean function $f_1(x)$ and determine the affine 2-dimensional which are affine on f_1 :

 $f_1(a) + f_1(x + a) + f_1(y + a) + f_1(x + y + a) = 0.$

Step 2: Find a Boolean function f_2 which is non-affine on many of the affine 2-dimensional which are survived in Steps 1.

Step i+1: Find a Boolean function f_{i+1} which is non-affine on many of the affine 2-dimensional which are survived in Steps $1, \ldots, i$.

Number of affine subspaces

Theorem Let $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$, $m \le n$. Then F is affine on

$$\frac{1}{24} \left[\frac{1}{2^{n+m}} \left(\sum_{\substack{a \in \mathbb{F}_2^n, b \in \mathbb{F}_2^n, \\ b \neq 0}} W_F^4(a, b) + 2^{4n} \right) - 3 \cdot 2^{2n} + 2^{n+1} \right]$$

of 2-dimensional affine subspaces of \mathbb{F}_2^n , where $W_F(a, b) = \sum_{x \in \mathbb{F}_2^n} (-1)^{b \cdot F(x) + a \cdot x}$.

Number of affine subspaces

Theorem Let $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$, $m \le n$. Then F is affine on

$$\frac{1}{24} \left[\frac{1}{2^{n+m}} \left(\sum_{\substack{a \in \mathbb{F}_2^n, b \in \mathbb{F}_2^n, \\ b \neq 0}} W_F^4(a, b) + 2^{4n} \right) - 3 \cdot 2^{2n} + 2^{n+1} \right]$$

of 2-dimensional affine subspaces of \mathbb{F}_2^n , where $W_F(a, b) = \sum_{x \in \mathbb{F}_2^n} (-1)^{b \cdot F(x) + a \cdot x}$.

Which functions can be used?

Number of affine subspaces

Theorem Let $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$, $m \le n$. Then F is affine on

$$\frac{1}{24} \left[\frac{1}{2^{n+m}} \left(\sum_{\substack{a \in \mathbb{F}_{2}^{n}, b \in \mathbb{F}_{2}^{m}, \\ b \neq 0}} W_{F}^{4}(a, b) + 2^{4n} \right) - 3 \cdot 2^{2n} + 2^{n+1} \right]$$

of 2-dimensional affine subspaces of \mathbb{F}_2^n , where $W_F(a, b) = \sum_{x \in \mathbb{F}_2^n} (-1)^{b \cdot F(x) + a \cdot x}$.

- Which functions can be used?
- $f: \mathbb{F}_2^n \to \mathbb{F}_2$ is plateaued (*t*-plateaued) function if

$$W_f(a) = \sum_{x \in \mathbb{F}_2^n} (-1)^{f(x) + a \cdot x} \in \{0, \pm 2^{\frac{n+t}{2}}\},$$

for some fixed $t, 0 \le t \le n$, n + t even, $\forall a \in \mathbb{F}_2^n$.

Example

Let $F : \mathbb{F}_{2^8} \longrightarrow \mathbb{F}_{2^8}$ defined as

$F(x) = x^3$

Table: Reduction in the number of affine subspaces

Total number of 2-dimensional affine subspaces = 690880		
Component function	Number of affine subspaces	
1	342720	
2	168640	
3	81600	
4	39616	
5	18624	
6	8128	
7	2880	
8	0	

<ロト < 部 > < 言 > < 言 > 三 の Q () 8/14

Which functions can be used?

The best functions that can be used are bent functions: They are non-affine on

$$\frac{2^{3n-4}-2^{2n-4}}{3}$$

of

$$\frac{2^{3n-3}-3\cdot 2^{2n-3}+2^{n-2}}{3}$$

2-dimensional affine subspaces, i.e., approximately half of them.

Which functions can be used?

The best functions that can be used are bent functions: They are non-affine on

$$\frac{2^{3n-4}-2^{2n-4}}{3}$$

of

$$\frac{2^{3n-3}-3\cdot 2^{2n-3}+2^{n-2}}{3}$$

2-dimensional affine subspaces, i.e., approximately half of them.

Quadratic functions of full rank are bent functions. what about functions of smaller rank, for instance x₁x₂?

Which functions can be used?

The best functions that can be used are bent functions: They are non-affine on

$$\frac{2^{3n-4}-2^{2n-4}}{3}$$

of

$$\frac{2^{3n-3}-3\cdot 2^{2n-3}+2^{n-2}}{3}$$

2-dimensional affine subspaces, i.e., approximately half of them.

- Quadratic functions of full rank are bent functions. what about functions of smaller rank, for instance x₁x₂?
- Quadratic functions of rank n t are non-affine on

$$\frac{2^{3n-4}-2^{2n+t-4}}{3}$$

of all 2-dimensional affine subspaces.

イロン 不得 とうほう イロン 二日

There are constructions of bent function of the type partial spread.

- There are constructions of bent function of the type partial spread.
- **Starting point:** look for (partial) spread Boolean functions.

- There are constructions of bent function of the type partial spread.
- Starting point: look for (partial) spread Boolean functions.
- Let n = 2m, a spread of order k in 𝔽ⁿ₂ is a set of k
 m-dimensional subspaces H₁, ..., H_k of 𝔽ⁿ₂ such that
 H_i ∩ H_j = {0} for all i ≠ j.

- There are constructions of bent function of the type partial spread.
- Starting point: look for (partial) spread Boolean functions.
- ▶ Let n = 2m, a spread of order k in \mathbb{F}_2^n is a set of k*m*-dimensional subspaces $H_1, ..., H_k$ of \mathbb{F}_2^n such that $H_i \cap H_j = \{0\}$ for all $i \neq j$.
- ▶ k-spread Boolean function is an indicator function of $H^* = \bigcup_{i=1}^{k} H_i \setminus \{0\} \text{ which is non-affine on}$ $\frac{1}{24} \left[-\frac{1}{2^{2m+1}} \left[(2^{2m} - 2^{m+1}k + 2k)^4 + (2k)^4 (2^{2m} - 2^mk + k - 1) \right] + (2k - 2^{m+1})^4 (2^mk - k) \right] + 2^{6m} \text{ of all 2-dimensional affine}$ subspaces.

For k = 2^{m−1}, we have bent function. For k = 2^{m−1} − 1, the k-spread Boolean function is non-affine on

$$\frac{1}{3} \left[2^{6m-4} - 2^{4m-4} - 5 \cdot 2^{2m} + 3 \cdot 2^{m+2} - 7 \right]$$

of all 2-dimensional affine subspaces.

For k = 2^{m−1}, we have bent function. For k = 2^{m−1} − 1, the k-spread Boolean function is non-affine on

$$\frac{1}{3} \left[2^{6m-4} - 2^{4m-4} - 5 \cdot 2^{2m} + 3 \cdot 2^{m+2} - 7 \right]$$

of all 2-dimensional affine subspaces.

For $k = 2^{m-1} + 1$, the *k*-spread Boolean function is non-affine on $1 \begin{bmatrix} 2^{6m-4} & 2^{4m-4} & 2^{2m} \end{bmatrix} = 1$

$$\frac{1}{3}\left[2^{6m-4}-2^{4m-4}-2^{2m}+1\right]$$

of all 2-dimensional affine subspaces.

For k = 2^{m−1}, we have bent function. For k = 2^{m−1} − 1, the k-spread Boolean function is non-affine on

$$\frac{1}{3} \left[2^{6m-4} - 2^{4m-4} - 5 \cdot 2^{2m} + 3 \cdot 2^{m+2} - 7 \right]$$

of all 2-dimensional affine subspaces.

For $k = 2^{m-1} + 1$, the *k*-spread Boolean function is non-affine on $\frac{1}{2} \left[26m - 4 - 24m - 4 - 22m - 1 \right]$

$$\frac{1}{3} \left[2^{6m-4} - 2^{4m-4} - 2^{2m} + 1 \right]$$

of all 2-dimensional affine subspaces.

• The quadratic Boolean function of rank n-2 is non-affine on

$$\frac{1}{3} \left[2^{6m-4} - 2^{4m-2} \right]$$

of all 2-dimensional affine subspaces.

 There are constructions of bent function of the type Maiorana-McFarland (MM).

- There are constructions of bent function of the type Maiorana-McFarland (MM).
- Let n = 2m and $f : \mathbb{F}_2^m \times \mathbb{F}_2^m \to \mathbb{F}_2$ such that $f(x, y) = x \cdot \pi(y) + h(y)$

is bent if π is a permutation and $h: \mathbb{F}_2^m \to \mathbb{F}_2$ arbitrary.

- There are constructions of bent function of the type Maiorana-McFarland (MM).
- Let n = 2m and $f : \mathbb{F}_2^m \times \mathbb{F}_2^m \to \mathbb{F}_2$ such that $f(x, y) = x \cdot \pi(y) + h(y)$

is bent if π is a permutation and $h: \mathbb{F}_2^m \to \mathbb{F}_2$ arbitrary.

Assume that image of π has s elements having 2 preimage, r elements having 1 preimage and | π(0) |= 1. Assume h is a zero function.

- There are constructions of bent function of the type Maiorana-McFarland (MM).
- ► Let n = 2m and $f : \mathbb{F}_2^m \times \mathbb{F}_2^m \to \mathbb{F}_2$ such that $f(x, y) = x \cdot \pi(y) + h(y)$

is bent if π is a permutation and $h: \mathbb{F}_2^m \to \mathbb{F}_2$ arbitrary.

- Assume that image of π has s elements having 2 preimage, r elements having 1 preimage and | π(0) |= 1. Assume h is a zero function.
- ► The Boolean function f belong to MM class is non-affine on $\frac{1}{24}\left[-\frac{1}{2^{n+1}}\left(2^{5m}r+2^{5m+3}s+2^{8m}\right)+2^{6m}\right]$ of all 2-dimensional affine subspaces.

- There are constructions of bent function of the type Maiorana-McFarland (MM).
- ► Let n = 2m and $f : \mathbb{F}_2^m \times \mathbb{F}_2^m \to \mathbb{F}_2$ such that $f(x, y) = x \cdot \pi(y) + h(y)$

is bent if π is a permutation and $h: \mathbb{F}_2^m \to \mathbb{F}_2$ arbitrary.

- Assume that image of π has s elements having 2 preimage, r elements having 1 preimage and | π(0) |= 1. Assume h is a zero function.
- ► The Boolean function f belong to MM class is non-affine on $\frac{1}{24}\left[-\frac{1}{2^{n+1}}\left(2^{5m}r+2^{5m+3}s+2^{8m}\right)+2^{6m}\right]$ of all 2-dimensional affine subspaces.

For s = 0, $r = 2^m$, we have bent function. For

 $s = 1, r = 2^m - 2$, the MM Boolean function is non-affine on

$$\frac{1}{3} \left[2^{6m-4} - 2^{4m-4} - 3 \cdot 2^{3m-3} \right]$$

of all 2-dimensional affine subspaces.

Bent function are the best candidate for construction of APN functions by using coordinate function approach.

- Bent function are the best candidate for construction of APN functions by using coordinate function approach.
- For some values of k, t, k-spread Boolean functions are better than t-plateaued Boolean functions.

- Bent function are the best candidate for construction of APN functions by using coordinate function approach.
- For some values of k, t, k-spread Boolean functions are better than t-plateaued Boolean functions.
- For some values of s, t, r, MM Boolean functions are better than t-plateaued Boolean functions.

- Bent function are the best candidate for construction of APN functions by using coordinate function approach.
- For some values of k, t, k-spread Boolean functions are better than t-plateaued Boolean functions.
- For some values of s, t, r, MM Boolean functions are better than t-plateaued Boolean functions.
- k-spread and MM Boolean functions may be good candidate for the construction of new APN functions by using coordinate function approach.

Thanks for your attention!