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Almost Perfect Nonlinear Function

Example:
F (x) = x3

defined on F2n

F (x + a) + F (x) = x2a + a2x + a3

is 2 to 1 for all a 6= 0.

Goal:
Find the functions F such that F (x + a) + F (x) are 2 to 1
mapping for all a 6= 0.
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Almost Perfect Nonlinear Function

A function
F : Fn

2 −→ Fn
2

is Almost Perfect Nonlinear (APN) if

x −→ F (x + a) + F (x)

is 2 to 1 mapping for all a 6= 0.

Equivalently, F is non-affine on all 2-dimensional affine subspaces
of Fn

2, that is,

F (a) + F (x + a) + F (y + a) + F (x + y + a) 6= 0,

∀ distinct a, x , y .
In the example x3, the vectorspace Fn

2 has been realized by using
the finite field F2n .
Note: We need only additive properties.
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A complete list of known infinite families in univariate form
(from Budaghyan, Helleseth, Li, Sun)
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A possible systematic approach

I Most constructions of APN functions use finite field. Is there
any possible alternative approach?

I We are interested in the construction of APN functions by
using coordinate functions:

F (x) =

 f1(x)
...

fn(x)

 .

I Find the Boolean functions where the number of affine
2-dimensional subspaces which are non-affine is large. Use
these to build APN functions.
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A possible systematic approach

Step 1: Find a Boolean function f1(x) and determine the affine
2-dimensional which are affine on f1:

f1(a) + f1(x + a) + f1(y + a) + f1(x + y + a) = 0.

Step 2: Find a Boolean function f2 which is non-affine on many of
the affine 2-dimensional which are survived in Steps 1.

...

Step i+1: Find a Boolean function fi+1 which is non-affine on
many of the affine 2-dimensional which are survived in Steps
1, . . . , i .
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Number of affine subspaces

Theorem
Let F : Fn

2 → Fm
2 , m ≤ n. Then F is affine on

1

24

 1

2n+m

 ∑
a∈Fn

2,b∈Fm
2 ,

b 6=0

W 4
F (a, b) + 24n

− 3 · 22n + 2n+1


of 2-dimensional affine subspaces of Fn

2, where
WF (a, b) =

∑
x∈Fn

2
(−1)b·F (x)+a·x .

I Which functions can be used?

I f : Fn
2 → F2 is plateaued (t-plateaued) function if

Wf (a) =
∑
x∈Fn

2

(−1)f (x)+a·x ∈ {0,±2
n+t
2 },

for some fixed t, 0 ≤ t ≤ n, n + t even,∀ a ∈ Fn
2.
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Example
Let F : F28 −→ F28

defined as
F (x) = x3

Table: Reduction in the number of affine subspaces

Total number of 2-dimensional affine subspaces = 690880

Component function Number of affine subspaces

1 342720

2 168640

3 81600

4 39616

5 18624

6 8128

7 2880

8 0
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Which functions can be used?

I The best functions that can be used are bent functions: They
are non-affine on

23n−4 − 22n−4

3

of
23n−3 − 3 · 22n−3 + 2n−2

3

2-dimensional affine subspaces, i.e., approximately half of
them.

I Quadratic functions of full rank are bent functions. what
about functions of smaller rank, for instance x1x2?

I Quadratic functions of rank n − t are non-affine on

23n−4 − 22n+t−4

3

of all 2-dimensional affine subspaces.
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k-spread Boolean functions

I There are constructions of bent function of the type partial
spread.

I Starting point: look for (partial) spread Boolean functions.

I Let n = 2m, a spread of order k in Fn
2 is a set of k

m-dimensional subspaces H1, ...,Hk of Fn
2 such that

Hi ∩ Hj = {0} for all i 6= j .

I k-spread Boolean function is an indicator function of
H∗ = ∪ki=1Hi \ {0} which is non-affine on
1
24 [− 1

22m+1 [(22m − 2m+1k + 2k)4+(2k)4(22m − 2mk + k − 1))+
(2k−2m+1)4(2mk − k)] + 26m] of all 2-dimensional affine
subspaces.

10 / 14



k-spread Boolean functions

I There are constructions of bent function of the type partial
spread.

I Starting point: look for (partial) spread Boolean functions.

I Let n = 2m, a spread of order k in Fn
2 is a set of k

m-dimensional subspaces H1, ...,Hk of Fn
2 such that

Hi ∩ Hj = {0} for all i 6= j .

I k-spread Boolean function is an indicator function of
H∗ = ∪ki=1Hi \ {0} which is non-affine on
1
24 [− 1

22m+1 [(22m − 2m+1k + 2k)4+(2k)4(22m − 2mk + k − 1))+
(2k−2m+1)4(2mk − k)] + 26m] of all 2-dimensional affine
subspaces.

10 / 14



k-spread Boolean functions

I There are constructions of bent function of the type partial
spread.

I Starting point: look for (partial) spread Boolean functions.

I Let n = 2m, a spread of order k in Fn
2 is a set of k

m-dimensional subspaces H1, ...,Hk of Fn
2 such that

Hi ∩ Hj = {0} for all i 6= j .

I k-spread Boolean function is an indicator function of
H∗ = ∪ki=1Hi \ {0} which is non-affine on
1
24 [− 1

22m+1 [(22m − 2m+1k + 2k)4+(2k)4(22m − 2mk + k − 1))+
(2k−2m+1)4(2mk − k)] + 26m] of all 2-dimensional affine
subspaces.

10 / 14



k-spread Boolean functions

I There are constructions of bent function of the type partial
spread.

I Starting point: look for (partial) spread Boolean functions.

I Let n = 2m, a spread of order k in Fn
2 is a set of k

m-dimensional subspaces H1, ...,Hk of Fn
2 such that

Hi ∩ Hj = {0} for all i 6= j .

I k-spread Boolean function is an indicator function of
H∗ = ∪ki=1Hi \ {0} which is non-affine on
1
24 [− 1

22m+1 [(22m − 2m+1k + 2k)4+(2k)4(22m − 2mk + k − 1))+
(2k−2m+1)4(2mk − k)] + 26m] of all 2-dimensional affine
subspaces.

10 / 14



k-spread Boolean functions

I For k = 2m−1, we have bent function. For k = 2m−1 − 1, the
k-spread Boolean function is non-affine on

1

3

[
26m−4 − 24m−4 − 5 · 22m + 3 · 2m+2 − 7

]
of all 2-dimensional affine subspaces.

I For k = 2m−1 + 1, the k-spread Boolean function is non-affine
on

1

3

[
26m−4 − 24m−4 − 22m + 1

]
of all 2-dimensional affine subspaces.

I The quadratic Boolean function of rank n − 2 is non-affine on

1

3

[
26m−4 − 24m−2

]
of all 2-dimensional affine subspaces.
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Maiorana-McFarland Boolean functions
I There are constructions of bent function of the type

Maiorana-McFarland (MM).

I Let n = 2m and f : Fm
2 × Fm

2 → F2 such that
f (x , y) = x · π(y) + h(y)
is bent if π is a permutation and h : Fm

2 → F2 arbitrary.
I Assume that image of π has s elements having 2 preimage, r

elements having 1 preimage and | π(0) |= 1. Assume h is a
zero function.

I The Boolean function f belong to MM class is non-affine on
1
24 [− 1

2n+1 (25mr + 25m+3s + 28m) + 26m] of all 2-dimensional
affine subspaces.

I For s = 0, r = 2m, we have bent function. For
s = 1, r = 2m − 2, the MM Boolean function is non-affine on

1

3

[
26m−4 − 24m−4 − 3 · 23m−3

]
of all 2-dimensional affine subspaces.
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Conclusion

I Bent function are the best candidate for construction of APN
functions by using coordinate function approach.

I For some values of k , t, k-spread Boolean functions are better
than t-plateaued Boolean functions.

I For some values of s, t, r , MM Boolean functions are better
than t-plateaued Boolean functions.

I k-spread and MM Boolean functions may be good candidate
for the construction of new APN functions by using
coordinate function approach.
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Thanks for your attention!
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