On relations between CCZ and EA-equivalences

Marco Calderini (joint work with Lilya Budaghyan and Irene Villa)

University of Bergen

Boolean Functions and their Applications June 17-22, 2018

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

Notations and definitions

PN and APN functions:

Let $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ be a Vectorial Boolean function. We define $\delta_F(a, b) = |\{x \in \mathbb{F}_2^n : F(x + a) - F(x) = b\}.$

The differential uniformity of F is

$$\delta(F) = \max_{a \in \mathbb{F}_2^n \setminus \{0\}, \ b \in \mathbb{F}_2^m} \delta_F(a, b).$$

If $\delta(F) = 2^{n-m}$ then F is said **Perfect Nonlinear** (PN) or **Bent**. Best resistance to differential attack. K. Nyberg: Bent functions exist only when n is even and $m \le n/2$. If m = n, then $\delta(F) \ge 2$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

If $\delta(F) = 2$, then F is called **almost perfect nonlinear** (APN).

AB functions:

The **nonlinearity** of a vectorial Boolean function F is the minimum Hamming distance between

- ▶ all component functions $v \cdot F(x)$, $v \neq 0$ and
- ▶ all affine functions $u \cdot x + \varepsilon$, $u \in \mathbb{F}_2^n \ \varepsilon \in \mathbb{F}_2$.

The nonlinearity can be given in terms of the Walsh transform of F

$$\mathcal{W}_F(a,b) = \sum_{x\in \mathbb{F}_2^n} (-1)^{a\cdot x + b\cdot F(x)}.$$

The nonlinearity equals:

$$\mathcal{N}\ell(\mathcal{F})=2^{n-1}-rac{1}{2}\max_{\substack{a\in\mathbb{F}_2^n,\b\in\mathbb{F}_2^m\setminus\{0\}}}|\mathcal{W}_\mathcal{F}(a,b)|.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへぐ

Bounds on nonlinearity

$$\mathcal{N}\ell(F) \leq 2^{n-1} - 2^{n/2-1}.$$

The equality holds iff F is bent (best resistance to linear attack). If n = m the Sidelnikov-Chabaud-Vaudenay bound states

$$\mathcal{N}\ell(F) \leq 2^{n-1} - 2^{\frac{n-1}{2}}$$

In case of equality (n necessarily odd) F is called almost bent (AB).

 $\mathsf{AB} \Rightarrow \mathsf{APN}$

From now on, we assume that m = n. In this case we can identify \mathbb{F}_2^n with \mathbb{F}_{2^n} and then we can take $x \cdot y = tr(xy)$.

Functions	Exponents d	Conditions	Degree
Gold	$2^{i} + 1$	gcd(i, n) = 1	2
Kasami	$2^{2i} - 2^i + 1$	gcd(i, n) = 1	i+1
Welch	$2^{t} + 3$	n = 2t + 1	3
Niho	$2^t + 2^{rac{t}{2}} - 1$, t even	n = 2t + 1	$\frac{t+2}{2}$
	$2^t + 2^{rac{3t+1}{2}} - 1$, t odd		$t{+}1$
Inverse	$2^{2t} - 1$	n=2t+1	n-1
Dobbertin	$2^{4i} + 2^{3i} + 2^{2i} + 2^i - 1$	n = 5 <i>i</i>	<i>i</i> + 3

Table: Known APN power functions x^d over \mathbb{F}_{2^n}

Functions	Exponents d	Conditions	Degree
Gold	$2^i + 1$	gcd(i, n) = 1	2
Kasami	$2^{2i} - 2^i + 1$	gcd(i, n) = 1	i+1
Welch	$2^{t} + 3$	n = 2t + 1	3
Niho	$2^t+2^{rac{t}{2}}-1$, t even	n = 2t + 1	$\frac{t+2}{2}$
	$2^t + 2^{rac{3t+1}{2}} - 1$, t odd		$t{+}1$
Inverse	$2^{2t} - 1$	n = 2t + 1	n-1
Dobbertin	$2^{4i} + 2^{3i} + 2^{2i} + 2^i - 1$	n = 5 <i>i</i>	<i>i</i> + 3

Table: Known APN power functions x^d over \mathbb{F}_{2^n}

Gold, Kasami, Welch and Niho functions are AB for n odd

Equivalence relations

Two functions $F, G : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ are **EA-equivalent** iff

$$G = A_2 \circ F \circ A_1(x) + A(x),$$

with A, A_1 and A_2 affine maps and A_1 and A_2 permutations.

Let $\Gamma_f = \{(x, f(x)) \mid x \in \mathbb{F}_{2^n}\}.$ Two functions $F, G : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ are **CCZ-equivalent** if and only if Γ_F and Γ_G are affine-equivalent, i.e. let \mathcal{L} an affine permutation on $(\mathbb{F}_{2^n})^2$, $\mathcal{L}(\Gamma_F) = \Gamma_G$. EA and CCZ-equivalence preserve the nonlinearity and the differential uniformity.

CCZ-equivalence

Let \mathcal{L} be a linear permutation of $(\mathbb{F}_{2^n})^2$ such that $\mathcal{L}(\Gamma_F) = \Gamma_G$. $\mathcal{L} = (L_1, L_2)$ for some linear $L_1, L_2 : (\mathbb{F}_{2^n})^2 \to \mathbb{F}_{2^n}$. Then

 $\mathcal{L}(x,F(x))=(F_1(x),F_2(x)),$

where $F_1(x) = L_1(x, F(x))$ and $F_2(x) = L_2(x, F(x))$.

$$\mathcal{L}(\Gamma_F) = \{(F_1(x), F_2(x)) : x \in \mathbb{F}_{2^n}\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

 $\mathcal{L}(\Gamma_F)$ is the graph of G iff the function F_1 is a permutation and $G = F_2 \circ F_1^{-1}$

$\mathsf{EA}\text{-equivalence} \subset \mathsf{CCZ}\text{-equivalence}$

$\textbf{EA}{\Rightarrow}\textbf{CCZ}{:}$

• If
$$(L_1(x, y), L_2(x, y)) = (x, A(x) + y)$$
 then
 $\mathcal{L}(x, F(x)) = (x, F(x) + A(x))$ and $G(x) = F(x) + A(x)$.

- ▶ If $(L_1(x, y), L_2(x, y)) = (A(x), y)$ then $\mathcal{L}(x, F(x)) = (A(x), F(x))$ and $G(x) = F \circ A^{-1}(x)$.
- ▶ If $(L_1(x, y), L_2(x, y)) = (x, A(y))$ then $\mathcal{L}(x, F(x)) = (x, A \circ F(x))$ and $G(x) = A \circ F(x)$.

inversion is a particular case of CCZ:

•
$$(L_1(x, y), L_2(x, y)) = (y, x)$$
 then $\mathcal{L}(x, F(x)) = (F(x), x)$ and $G(x) = F^{-1}(x)$.

Relation between CCZ- and EA-equivalences

Cases when CCZ-equivalence coincides with EA-equivalence:

- Boolean functions, m = 1. (Budaghyan and Carlet)
- Bent functions. (Budaghyan and Carlet)
- Two quadratic APN functions. (Yoshiara)
- ► A power function F is CCZ-equivalent to a power function F' iff F is EA-equivalent to F' or F'⁻¹. (for APN and p = 2 Yoshiara, any p and any power Dempwolff)
- A quadratic APN function is CCZ-equivalent to a power function iff it is EA-equivalent to one of the Gold functions. (Yoshiara)
- If n is even, a plateaued APN function is CCZ-equivalent to a power function iff it is EA-equivalent to it. (Yoshiara)

Cases when CCZ-equivalence differs from EA-equivalence:

• For functions from \mathbb{F}_2^n to \mathbb{F}_2^m with $m \ge 2$.

EA-equivalence preserves algebraic degree while inverse and CCZ-equivalence do not.

Relation between CCZ and EA-equivalence + Inverse

Proposition (L. Budaghyan, C. Carlet, A. Pott)

G is *EA*-equivalent to the function *F* or to F^{-1} (if it exists) iff there exists a linear permutation $\mathcal{L} = (L_1, L_2)$ on $(\mathbb{F}_{2^n})^2$ such that $\mathcal{L}(\Gamma_F) = \Gamma_G$ and $L_1(x, y) = L(x)$ or $L_1(x, y) = L(y)$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Relation between CCZ and EA-equivalence + Inverse

Proposition (L. Budaghyan, C. Carlet, A. Pott)

G is *EA*-equivalent to the function *F* or to F^{-1} (if it exists) iff there exists a linear permutation $\mathcal{L} = (L_1, L_2)$ on $(\mathbb{F}_{2^n})^2$ such that $\mathcal{L}(\Gamma_F) = \Gamma_G$ and $L_1(x, y) = L(x)$ or $L_1(x, y) = L(y)$.

If we want to construct G which cannot be constructed from F via EA-equivalence and inverse transformation:

- ▶ To find a permutation $L_1(x, F(x)) = L(x) + R \circ F(x)$ where $L, R \neq 0$ are linear.
- ► Then find linear function L₂(x, y) = L'(x) + R'(y) such that L is a permutation. (Found L₁ then there always exists suitable L₂)

Fixed L_1 , differents L' and R' produce EA-equivalent functions.

The condition that L_1 depends on both variables is necessary but not sufficient.

Example: Let n = 2m + 1 and $s = m \mod 2$. Then

$$\mathcal{L}(x,y) = (x + tr(x) + \sum_{i=0}^{m-s} y^{2^{2j}+s}, y + tr(x))$$

is a linear permutation and maps the graph of $F(x) = x^3$ to the graph of G which is EA-equivalent to F^{-1} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへぐ

CCZ-equivalence more general than EA-equivalence with inverse transformation

APN functions CCZ-equivalent to Gold functions and EA-inequivalent to power functions on \mathbb{F}_{2^n}

Function	conditions
$x^{2^{i}+1}+(x^{2^{i}}+x+tr(1)+1)tr(x^{2^{i}}+1+xtr(1))$	$n \ge 4$,
	gcd(n,i) = 1
$[x + tr_3^n(x^{2(2^i+1)} + x^{4(2^i+1)}) + tr(x)tr_3^n(x^{2^i+1} + x^{2^{2^i}(2^i+1)})]^{2^i+1}$	6 <i>n</i> ,
	gcd(n,i) = 1
$x^{2^{i}+1} + tr_m^n(x^{2^{i}+1}) + x^{2^i}tr_m^n(x) + xtr_m^n(x)^{2^i}$	<i>n</i> odd,
$+[tr_m^n(x)^{2^i+1}+tr_m^n(x^{2^i+1})+tr_m^n(x)]^{1/(2^i+1)}](x^{2^i}+tr_m^n(x^{2^i})+1)$	m n
$+[tr_m^n(x)^{2^i+1}+tr_m^n(x^{2^i+1})+tr_m^n(x)]^{2^i/(2^i+1)}](x+tr_m^n(x)+)$	gcd(n,i) = 1

Only for Gold functions it is known that CCZ>EA+inverse. For the rest of power functions it is an open problem.

A procedure for investigating if $CCZ \stackrel{?}{=} EA + Inv$

Let $L_1(x, y) = L(x) + R(y)$. $F_1(x) = L(x) + R(F(x))$ is a permutation iff any of its component is balanced. In terms of Walsh coefficients

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

(L^* is the adjoint operator)

We want to construct L^* and R^* so that F_1 is a permutation. Let $\mathcal{ZW}(b) = \{a \mid W_F(a, b) = 0\}$ for any $b \in \mathbb{F}_{2^n}$ and consider

$$S_F = \{b : \mathcal{ZW}(b) \neq \emptyset\}.$$

Note: if F_1 is a permutation then $Im(R^*) \subseteq S_F$. For constructing F_1 we need to consider the possible vector subspaces contained in S_F .

Construction of R^*

Let $U \subseteq S_F$ be a vector subspace. Fixed any basis $\{u_1, \ldots, u_k\}$ of U, we can suppose that $R^*(e_i) = u_i$ for i = 1, ..., k and $\operatorname{Ker}(R^*) = \operatorname{Span}(e_{k+1}, ..., e_n)$. (e_i is the canonical vector.)

Fixed any basis $\{u_1, \ldots, u_k\}$ of U we can suppose that

$$R^* = \begin{bmatrix} u_1 \\ \vdots \\ u_k \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Construction of L^*

For any $a_1, ..., a_k$ with $a_1 \in \mathcal{ZW}(u_1), ..., a_k \in \mathcal{ZW}(u_k)$ we need to check if

(P1) ∑_{i=1}^k λ_ia_i ∈ ZW(∑_{i=1}^k λ_iu_i) with λ_i ∈ 𝔽₂ not all zero. and if there exist a_{k+1},..., a_n satisfying
(P2) a_{k+1},..., a_n are linear independent;
(P3) for any a ∈ Span(a_{k+1},..., a_n), a + ∑_{i=1}^k λ_ia_i ∈ ZW(∑_{i=1}^k λ_iu_i), for any λ₁,..., λ_k ∈ 𝔽₂.

Then,

$$L^* = \left[\begin{array}{c} a_1 \\ \vdots \\ a_n \end{array} \right]$$

Proposition

Let U be a subspace contained in S_F . Then, there exists a permutation of $\mathbb{F}_{2^n} F_1(x) = L(x) + R \circ F(x)$, with L and R linear and $\operatorname{Im}(R^*) = U$ iff the procedure above is successful.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

Proposition

Let U be a subspace contained in S_F . Then, there exists a permutation of $\mathbb{F}_{2^n} F_1(x) = L(x) + R \circ F(x)$, with L and R linear and $\operatorname{Im}(R^*) = U$ iff the procedure above is successful.

Proposition

Let F be a a function from \mathbb{F}_{2^n} to itself. If for any vector subspace $U \neq \{0\}$ in S_F is not possible to construct any matrix $L^* \neq 0$ with the previous procedure, then any function F' CCZ-equivalent to F can be obtained from F applying only the EA-equivalence and inverse transformation iteratively.

Application to non-quadratic functions

Let
$$n = 6$$
, and $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ be

$$F(x) = x^3 + u^{17}(x^{17} + x^{18} + x^{20} + x^{24}) + u^{14}((u^{52}x^3 + u^6x^5 + u^{19}x^7 + u^{28}x^{11} + u^2x^{13}) + (u^{52}x^3 + u^6x^5 + u^{19}x^7 + u^{28}x^{11} + u^2x^{13})^2 + (u^{52}x^3 + u^6x^5 + u^{19}x^7 + u^{28}x^{11} + u^2x^{13})^4 + (u^{52}x^3 + u^6x^5 + u^{19}x^7 + u^{28}x^{11} + u^2x^{13})^8 + (u^{52}x^3 + u^6x^5 + u^{19}x^7 + u^{28}x^{11} + u^2x^{13})^{16} + (u^{52}x^3 + u^6x^5 + u^{19}x^7 + u^{28}x^{11} + u^2x^{13})^{16} + (u^{52}x^3 + u^6x^5 + u^{19}x^7 + u^{28}x^{11} + u^2x^{13})^{32} + (u^2x)^9 + (u^2x)^{18} + (u^2x)^{36} + x^{21} + x^{42}),$$

where u is a primitive element of \mathbb{F}_{2^n} .

F is the first example of APN function CCZ-inequivalent to a quadratic function.

Using the procedure it is possible to construct the functions L and R given by

$$L(x) = u^{50}x^{32} + u^{51}x^{16} + u^{43}x^8 + ux^4 + u^{26}x^2 + u^{26}x^4$$

and

$$\mathsf{R}(x) = u^{26}x^{32} + u^{17}x^{16} + u^{56}x^8 + u^9x^4 + u^{54}x^2 + u^{46}x,$$

Considering the function $F_2(x) = L_2(x, F(x)) = F(x)$ we have

$$\begin{split} F'(x) = & u^{41}x^{60} + u^{29}x^{58} + u^{46}x^{57} + u^3x^{56} + u^{39}x^{54} + u^{47}x^{53} \\ & + u^3x^{52} + u^{62}x^{51} + u^{54}x^{50} + u^{62}x^{49} + u^{53}x^{48} + u^{14}x^{46} \\ & + u^{39}x^{45} + u^{20}x^{44} + u^{26}x^{43} + u^{11}x^{42} + u^{31}x^{41} + u^{53}x^{40} \\ & + u^{59}x^{39} + u^{53}x^{38} + u^{41}x^{37} + u^{19}x^{36} + u^{58}x^{35} + u^2x^{34} + \\ & u^7x^{33} + u^{39}x^{32} + u^{15}x^{30} + u^{17}x^{29} + u^{45}x^{28} + u^{39}x^{27} \\ & + u^{57}x^{26} + u^{33}x^{25} + u^{61}x^{24} + u^{41}x^{23} + u^{50}x^{22} + u^{58}x^{21} \\ & + u^{55}x^{20} + u^{26}x^{19} + u^{17}x^{18} + u^{37}x^{17} + u^{30}x^{16} + ux^{15} \\ & + u^{46}x^{14} + u^{21}x^{13} + u^{13}x^{12} + u^{61}x^{11} + u^{20}x^{10} + x^{9} + u^{61}x^{8} \end{split}$$

æ

The function F' cannot be constructed from F via EA-equivalence and inverse transformation.

F has algebraic degree equals to 3 and F' equals to 4.

Moreover to apply the inverse transformation at least once we need $F \sim_{EA} G$ with G permutation, but since F has quadratic components this cannot be possible.

Then we have that CCZ>EA+inversion also for APN functions inequivalent to quadratic functions

Note: F has quadratics components, that may be useful to crate the function F_1 .

APN power functions

Power functions

Let n = 7 and $F(x) = x^d$ with d not a Gold exponent, i.e., d = 11, 13, 39, 57, 126. Then, in these cases the CCZ-equivalence coincide with the EA-equivalence and the inverse transformation.

Let n = 8 and $F(x) = x^{57}$ (Kasami). Then in this case the CCZ-equivalence coincide with the EA-equivalence and the inverse transformation.

EA-equivalence to a permutation

If $S_F = \mathbb{F}_{2^n}$ we can check if F is EA-equivalent to a permutation.

Theorem (Y. Li, M. Wang)

Suppose $F(x) = x^{2^{i+1}}$, with gcd(i, n) = 1 and L(x) is a linearized polynomial on \mathbb{F}_{2^n} . Then F(x) + L(x) is a permutation polynomial iff n is odd and $L(x) = \alpha^{2^i}x + \alpha x^{2^i}$ for some $\alpha \neq 0$.

Theorem (Y. Li, M. Wang)

 $x^{-1} + L(x)$ is not a permutation on \mathbb{F}_{2^n} whenever $L \neq 0$ when $n \geq 5$.

Proposition

All known APN functions, except the Gold cases, for n = 7, 9, 11 are such that F(x) + L(x) is not a permutation on \mathbb{F}_{2^n} whenever $L \neq 0$. Moreover, $F(x) = x^3 + Tr(x^9)$ is not CCZ-equivalent to a permutation over \mathbb{F}_{2^7} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Classification of APN functions

APN polynomial families CCZ-inequivalent to power functions

N°	Functions	Conditions
		n = pk, $gcd(k, p) = gcd(s, pk) = 1$,
C1-C2	$x^{2^{s}+1} + u^{2^{k}-1}x^{2^{ik}+2^{mk+s}}$	$p \in \{3,4\}, i = sk \mod p, m = p - i,$
		$n\geq 12$, u primitive in $\mathbb{F}_{2^n}^*$
		$q=2^m$, $n=2m$, $\gcd(i,m){=}1$,
C3	$x^{2^{2'}+2'}+cx^{q+1}+dx^{q(2^{2'}+2')}$	$\gcd(2^i+1,q+1) eq 1,\ dc^q+c eq 0,$
		$d ot\in\{\lambda^{(2^i+1)(q-1)},\lambda\in\mathbb{F}_{2^n}\}$, $d^{q+1}=1$
		$q=2^m$, $n=2m$, $\gcd(i,m)=1$,
C4	$x(x^{2^i} + x^q + cx^{2^iq})$	$c\in \mathbb{F}_{2^n}$, $s\in \mathbb{F}_{2^n}\setminus \mathbb{F}_q$,
	$+x^{2^{i}}(c^{q}x^{q}+sx^{2^{i}q})+x^{(2^{i}+1)q}$	$X^{2^{i}+1} + cX^{2^{i}} + c^{q}X + 1$
		is irreducible over \mathbb{F}_{2^n}
C5	$x^3 + a^{-1} Tr(a^3 x^9)$	a eq 0
C6	$x^3 + a^{-1} Tr_n^3 (a^3 x^9 + a^6 x^{18})$	$3 n, a \neq 0$
C7	$x^3 + a^{-1} Tr_n^3 (a^6 x^{18} + a^{12} x^{36})$	$3 n, a \neq 0$

Classification of APN functions

		n = 3k, $gcd(k, 3) = gcd(s, 3k) = 1$,	
C8-C10	$ux^{2^{s}+1} + u^{2^{k}}x^{2^{-k}+2^{k+s}} +$	$\mathbf{v},\mathbf{w}\in\mathbb{F}_{2^{k}}$, $\mathbf{v}\mathbf{w} eq1$,	
	$vx^{2^{-k}+1} + wu^{2^k+1}x^{2^s+2^{k+s}}$	$3 (k+s)$ u primitive in $\mathbb{F}_{2^n}^*$	
		n=2k, $gcd(s,k)=1$, s,k odd,	
C11	$dx^{2^s+1} + d^{2^k}x^{2^{k+s}+2^k} +$	$c ot\in \mathbb{F}_{2^k}$, $\gamma_i \in \mathbb{F}_{2^k}$,	
	$cx^{2^k+1} + \sum_{i+1}^{k-1} \gamma_i x^{2^{k+i}+2^i}$	d not a cube	
C12	$(x + x^{2^m})^{2^k + 1} +$	$n=2m,\ m\geq 2$ even,	
	$u'(ux + u^{2^m}x^{2^m})^{(2^k+1)2^i} +$	gcd(k,m)=1 and i even	
	$u(x+x^{2^m})(ux+u^{2^m}x^{2^m})$	u primitive in $\mathbb{F}_{2^n}^*$, $u'\in\mathbb{F}_{2^m}$ not cube	
C13	$x^{2^{k}+1} + tr_{m}^{n}(x)^{2^{k}+1}$	$(x)^{2^{k}+1}$ $n=2m=4t, \ \gcd(k,n)=1$	
C14	$a^2 x^{2^{2m+1}+1} + b^2 x^{2^{m+1}+1} + a x^{2^{2m}+2}$	n = 3m, m odd	
	$+bx^{2^{m}+2}+(c^{2}+c)x^{3}$	Irene Villa's talk	

Classification of APN functions

		n = 3k, $gcd(k, 3) = gcd(s, 3k) = 1$,
C8-C10	$ux^{2^{s}+1} + u^{2^{k}}x^{2^{-k}+2^{k+s}} +$	$\mathbf{v},\mathbf{w}\in\mathbb{F}_{2^{k}}$, $\mathbf{v}\mathbf{w} eq1$,
	$vx^{2^{-k}+1} + wu^{2^k+1}x^{2^k+2^{k+s}}$	$3 (k+s) \; u$ primitive in $\mathbb{F}_{2^n}^*$
		$n=2k$, $\gcd(s,k){=}1$, s,k odd,
C11	$dx^{2^s+1} + d^{2^k}x^{2^{k+s}+2^k} +$	$c ot\in \mathbb{F}_{2^k}$, $\gamma_i\in \mathbb{F}_{2^k}$,
	$cx^{2^k+1} + \sum_{i+1}^{k-1} \gamma_i x^{2^{k+i}+2^i}$	d not a cube
	$(x + x^{2^m})^{2^k + 1} +$	$n=2m,\ m\geq 2$ even,
C12	$u'(ux + u^{2^m}x^{2^m})^{(2^k+1)2^i} +$	gcd(k,m)=1 and i even
	$u(x+x^{2^m})(ux+u^{2^m}x^{2^m})$	u primitive in $\mathbb{F}_{2^n}^*$, $u'\in\mathbb{F}_{2^m}$ not cube
C13	$x^{2^{k}+1} + tr_{m}^{n}(x)^{2^{k}+1}$	$n=2m=4t, \operatorname{gcd}(k,n)=1$
C14	$a^2 x^{2^{2m+1}+1} + b^2 x^{2^{m+1}+1} + a x^{2^{2m}+2}$	n = 3m, m odd
	$+bx^{2^{m}+2}+(c^{2}+c)x^{3}$	Irene Villa's talk

C13 is equivalent to $x^{2^{m-k}+1}$ (L. Budaghyan, T. Helleseth, N. Li, B. Sun)

C3, C4 and C11

		$q = 2^m$, $n = 2m$, $gcd(i, m) = 1$,
C3	$x^{2^{2^{i}}+2^{i}}+cx^{q+1}+dx^{q(2^{2^{i}}+2^{i})}$	$\gcd(2^i+1,q+1) eq 1,\ dc^q+c eq 0,$
		$d ot\in\{\lambda^{(2^i+1)(q-1)},\lambda\in\mathbb{F}_{2^n}\}$, $d^{q+1}=1$
		$q=2^m$, $n=2m$, $\gcd(i,m){=}1$,
C4	$x(x^{2^i} + x^q + cx^{2^iq})$	$oldsymbol{c}\in\mathbb{F}_{2^n}$, $oldsymbol{s}\in\mathbb{F}_{2^n}\setminus\mathbb{F}_{oldsymbol{q}}$,
	$+x^{2^{i}}(c^{q}x^{q}+sx^{2^{i}q})+x^{(2^{i}+1)q}$	$X^{2^i+1} + cX^{2^i} + c^qX + 1$
		is irreducible over \mathbb{F}_{2^n}
		n = 2k, $gcd(s, k) = 1$, s, k odd,
C11	$dx^{2^{s}+1} + d^{2^{k}}x^{2^{k+s}+2^{k}} +$	$c ot\in \mathbb{F}_{2^k}$, $\gamma_i \in \mathbb{F}_{2^k}$,
	$cx^{2^{k}+1} + \sum_{i=1}^{k-1} \gamma_i x^{2^{k+i}+2^{i}}$	d not a cube

$$n = 2k, q = 2^k$$

$$F(x) = cx^{q+1} + x^{2^{2i}+2^{i}} + dx^{q(2^{2i}+2^{i})}$$

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ の Q @

 $n = 2k, q = 2^k$

$$F(x) = cx^{q+1} + x^{2^{2i}+2^{i}} + dx^{q(2^{2i}+2^{i})}$$
$$d^{q+1} = 1 \Rightarrow \exists d' \text{ s.t. } d = d'^{q-1}$$
$$F'(x) = d'F(x) = d'cx^{q+1} + d'x^{2^{2i}+2^{i}} + d'^{q}x^{q(2^{2i}+2^{i})}$$

$$n = 2k, q = 2^k$$

$$F(x) = cx^{q+1} + x^{2^{2i}+2^{i}} + dx^{q(2^{2i}+2^{i})}$$
$$d^{q+1} = 1 \Rightarrow \exists d' \text{ s.t. } d = d'^{q-1}$$
$$F'(x) = d'F(x) = \underbrace{d'cx^{q+1}}_{d'c\mathbb{F}_{q}} + \underbrace{d'x^{2^{2i}+2^{i}} + d'^{q}x^{q(2^{2i}+2^{i})}}_{\mathbb{F}_{q}}$$

 $dc^q + c
eq 0 \Rightarrow d'c \notin \mathbb{F}_{2^k}$, so $\mathbb{F}_{2^n} = d'c\mathbb{F}_q \oplus \mathbb{F}_q$.

$$n = 2k, q = 2^k$$

$$F(x) = cx^{q+1} + x^{2^{2i}+2^{i}} + dx^{q(2^{2i}+2^{i})}$$
$$d^{q+1} = 1 \Rightarrow \exists d' \text{ s.t. } d = d'^{q-1}$$
$$F'(x) = d'F(x) = \underbrace{d'cx^{q+1}}_{d'c\mathbb{F}_{q}} + \underbrace{d'x^{2^{2i}+2^{i}}}_{\mathbb{F}_{q}} + \underbrace{d'qx^{q(2^{2i}+2^{i})}}_{\mathbb{F}_{q}}$$

 $dc^q + c \neq 0 \Rightarrow d'c \notin \mathbb{F}_{2^k}$, so $\mathbb{F}_{2^n} = d'c\mathbb{F}_q \oplus \mathbb{F}_q$. We can apply a linear permutation which is the identity on $d'c\mathbb{F}_q$ and $x^{1/2^i}$ on \mathbb{F}_q .

$$L \circ F'(x) = d'cx^{q+1} + d''x^{2^i+1} + d''^q x^{q(2^i+1)} \in C11$$

 $d''=d'^{1/2^i}$

It is possible to prove also that C11 \subseteq C3

Lemma

C3=C11

 $C11{\subseteq}C4$

$$F(x) = dx^{2^{i}+1} + d^{q}x^{q(2^{i}+1)} + cx^{q+1} + \sum_{s=1}^{k-1} \gamma_{s}x^{(q+1)2^{s}}$$

◆□ > ◆□ > ◆三 > ◆三 > ○ ○ ○

$C11{\subseteq}C4$

$$F(x) = dx^{2^{i}+1} + d^{q}x^{q(2^{i}+1)} + cx^{q+1} + \sum_{s=1}^{k-1} \gamma_{s}x^{(q+1)2^{s}}$$

Let $L(x) = (x + x^q)^{2^t} + w(x + x^q) + (c + c^q)^{2^t}x$

C11⊆C4

$$F(x) = dx^{2^{i}+1} + d^{q}x^{q(2^{i}+1)} + cx^{q+1} + \sum_{s=1}^{k-1} \gamma_{s}x^{(q+1)2^{s}}$$

Let $L(x) = (x + x^q)^{2^t} + w(x + x^q) + (c + c^q)^{2^t} x$ $w \in \mathbb{F}_q \Rightarrow L(x)$ permutation

$$\frac{L \circ F(x)}{(c+c^q)^{2^t}} = dx^{2^i+1} + d^q x^{q(2^i+1)} + c' x^{q+1} + \sum_{\substack{s=1\\s \neq t}}^{k-1} \gamma_s x^{(q+1)2^s}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

 $c' = w(c + c^q)^{1-2^t} + c.$

C11⊆C4

$$F(x) = dx^{2^{i}+1} + d^{q}x^{q(2^{i}+1)} + cx^{q+1} + \sum_{s=1}^{k-1} \gamma_{s}x^{(q+1)2^{s}}$$

Let $L(x) = (x + x^q)^{2^t} + w(x + x^q) + (c + c^q)^{2^t} x$ $w \in \mathbb{F}_q \Rightarrow L(x)$ permutation

$$\frac{L \circ F(x)}{(c+c^q)^{2^t}} = dx^{2^i+1} + d^q x^{q(2^i+1)} + c' x^{q+1} + \sum_{\substack{s=1\\s \neq t}}^{k-1} \gamma_s x^{(q+1)2^s}$$

 $c' = w(c + c^q)^{1-2^t} + c.$ Wlog

 $F(x) = dx^{2^{i}+1} + d^{q}x^{q(2^{i}+1)} + cx^{q+1} + x^{(q+1)2^{i}}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

Similarly

$$H(x) = \bar{d}x^{2^{i}(q+1)} + x^{(q+1)} + (x^{2^{i}+1} + x^{q(2^{i}+1)} + \bar{c}x^{q2^{i}+1} + \bar{c}^{q}x^{2^{i}+q})$$

is equivalent to

$$H'(x) = \bar{d}'x^{(q+1)} + (x^{2^{i}+1} + x^{q(2^{i}+1)} + \bar{c}x^{q2^{i}+1} + \bar{c}^{q}x^{2^{i}+q})$$

Similarly

$$H(x) = \bar{d}x^{2^{i}(q+1)} + x^{(q+1)} + (x^{2^{i}+1} + x^{q(2^{i}+1)} + \bar{c}x^{q2^{i}+1} + \bar{c}^{q}x^{2^{i}+q})$$

is equivalent to

$$H'(x) = \bar{d}'x^{(q+1)} + (x^{2^{i}+1} + x^{q(2^{i}+1)} + \bar{c}x^{q2^{i}+1} + \bar{c}^{q}x^{2^{i}+q})$$

We want to prove that $F(x) = dx^{2^i+1} + d^q x^{q(2^i+1)} + cx^{q+1} + x^{(q+1)2^i}$ is equivalent to H'(x)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

Consider a permutation $x + \gamma x^q$ with $\gamma^{q+1} \neq 1$,

$$\begin{aligned} F(x + \gamma x^{q}) = & (c + c\gamma^{q+1})x^{q+1} + (1 + \gamma^{2^{i}(q+1)})x^{2^{i}(q+1)} \\ & + (d + d^{2^{m}}\gamma^{q(2^{i}+1)})x^{2^{i}+1} + (d^{2^{m}} + d\gamma^{2^{i}+1})x^{q(2^{i}+1)} \\ & + (d\gamma^{2^{i}} + d^{2^{m}}\gamma^{q})x^{q2^{i}+1} + (d^{2^{m}}\gamma^{q2^{i}} + d\gamma)x^{2^{i}+q} \\ & + \text{terms of } \deg \leq 1 \end{aligned}$$

▲□▶▲□▶▲□▶▲□▶ □ の��

Consider a permutation $x + \gamma x^q$ with $\gamma^{q+1} \neq 1$,

$$F(x + \gamma x^{q}) = (c + c\gamma^{q+1})x^{q+1} + (1 + \gamma^{2^{i}(q+1)})x^{2^{i}(q+1)} + (d + d^{2^{m}}\gamma^{q(2^{i}+1)})x^{2^{i}+1} + (d^{2^{m}} + d\gamma^{2^{i}+1})x^{q(2^{i}+1)} + (d\gamma^{2^{i}} + d^{2^{m}}\gamma^{q})x^{q2^{i}+1} + (d^{2^{m}}\gamma^{q2^{i}} + d\gamma)x^{2^{i}+q} + \text{terms of deg} \le 1$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Which is EA-equivalent to

Consider a permutation $x + \gamma x^q$ with $\gamma^{q+1} \neq 1$,

$$F(x + \gamma x^{q}) = (c + c\gamma^{q+1})x^{q+1} + (1 + \gamma^{2^{i}(q+1)})x^{2^{i}(q+1)} + (d + d^{2^{m}}\gamma^{q(2^{i}+1)})x^{2^{i}+1} + (d^{2^{m}} + d\gamma^{2^{i}+1})x^{q(2^{i}+1)} + (d\gamma^{2^{i}} + d^{2^{m}}\gamma^{q})x^{q2^{i}+1} + (d^{2^{m}}\gamma^{q2^{i}} + d\gamma)x^{2^{i}+q} + \text{terms of deg} \le 1$$

Which is EA-equivalent to

$$F'(x) = c'x^{q+1} + (ax^{2^i+1} + a^q x^{q(2^i+1)} + bx^{q2^i+1} + b^q x^{2^i+q}).$$

 $a = (d + d^q \gamma^{q(2^i+1)}) ext{ and } b = (d\gamma^{2^i} + d^q \gamma^q)$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Lemma

There exist $\gamma \in \mathbb{F}_{q^2}$ and $\delta \in \mathbb{F}_q$ such that $\gamma^{q+1} \neq 1$ and $\delta d\gamma^{2^i} + \delta d^q \gamma^q$ is a $2^i + 1$ th power.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Lemma

There exist $\gamma \in \mathbb{F}_{q^2}$ and $\delta \in \mathbb{F}_q$ such that $\gamma^{q+1} \neq 1$ and $\delta d\gamma^{2^i} + \delta d^q \gamma^q$ is a $2^i + 1$ th power.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

up to multiply
$$F'$$
 by some $\delta \in \mathbb{F}_q$, there exist γ and $\lambda \neq 0$ such that $\lambda^{2^i+1} = (d + d^q \gamma^{q(2^i+1)})$ and substituting $x \mapsto \lambda^{-1}x$ we obtain
$$\bar{F}(x) = c'' x^{q+1} + x^{2^i+1} + x^{q(2^i+1)} + b'' x^{q2^i+1} + b''^q x^{2^i+q}.$$

Now, $c'' \notin \mathbb{F}_q$ and \overline{F} APN imply that

$$x^{2^{i}+1} + b^{\prime\prime}x^{2^{i}} + b^{\prime\prime q}x + 1 = 0$$

has no solution x such that $x^{q+1} = 1$.

Now, $c'' \notin \mathbb{F}_q$ and \overline{F} APN imply that

$$x^{2^{i}+1} + b^{\prime\prime}x^{2^{i}} + b^{\prime\prime q}x + 1 = 0$$

has no solution x such that $x^{q+1} = 1$.

Theorem

 $C3 = C11 \subseteq C4$. Moreover we can rewrite the family of the hexanomials as:

$$H(x) = dx^{(q+1)} + (x^{2^{i}+1} + x^{q(2^{i}+1)} + cx^{q2^{i}+1} + c^{q}x^{2^{i}+q}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

Particular case: C12 with i = 0

When i = 0 for the family C12 we have that

$$F(x) = (x + x^q)^{2^k + 1} + u'(ux + u^q x^q)^{2^k + 1} + u(x + x^q)(ux + u^q x^q),$$

and it is possible to prove in a similar way that F is EA equivalent to H(x) in the previous theorem.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Thanks for your attention!