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Notations and definitions

PN and APN functions:

Let F : Fn
2 → Fm

2 be a Vectorial Boolean function. We define

δF (a, b) = |{x ∈ Fn
2 : F (x + a)− F (x) = b}.

The differential uniformity of F is

δ(F ) = max
a∈Fn

2\{0}, b∈Fm
2

δF (a, b).

If δ(F ) = 2n−m then F is said Perfect Nonlinear (PN) or Bent.
Best resistance to differential attack.



K. Nyberg: Bent functions exist only when n is even and m ≤ n/2.

If m = n, then δ(F ) ≥ 2.

If δ(F ) = 2, then F is called almost perfect nonlinear (APN).



AB functions:

The nonlinearity of a vectorial Boolean function F is the minimum
Hamming distance between

I all component functions v · F (x), v 6= 0 and

I all affine functions u · x + ε, u ∈ Fn
2 ε ∈ F2.

The nonlinearity can be given in terms of the Walsh transform of F

WF (a, b) =
∑
x∈Fn

2

(−1)a·x+b·F (x).

The nonlinearity equals:

N `(F ) = 2n−1 − 1

2
max
a∈Fn

2,
b∈Fm

2 \{0}

|WF (a, b)|.



Bounds on nonlinearity

N `(F ) ≤ 2n−1 − 2n/2−1.

The equality holds iff F is bent (best resistance to linear attack).
If n = m the Sidelnikov-Chabaud-Vaudenay bound states

N `(F ) ≤ 2n−1 − 2
n−1
2 .

In case of equality (n necessarily odd) F is called almost bent (AB).

AB ⇒ APN

From now on, we assume that m = n. In this case we can identify Fn
2 with

F2n and then we can take x · y = tr(xy).



Table: Known APN power functions xd over F2n

Functions Exponents d Conditions Degree

Gold 2i + 1 gcd(i , n)=1 2

Kasami 22i − 2i + 1 gcd(i , n)=1 i+1

Welch 2t + 3 n = 2t + 1 3

Niho 2t + 2
t
2 − 1, t even n = 2t + 1 t+2

2

2t + 2
3t+1
2 − 1, t odd t+1

Inverse 22t − 1 n = 2t + 1 n − 1

Dobbertin 24i + 23i + 22i + 2i − 1 n = 5i i + 3

Gold, Kasami, Welch and Niho functions are AB for n odd
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Equivalence relations

Two functions F ,G : F2n → F2n are EA-equivalent iff

G = A2 ◦ F ◦ A1(x) + A(x),

with A,A1 and A2 affine maps and A1 and A2 permutations.

Let Γf = {(x , f (x)) | x ∈ F2n}.
Two functions F ,G : F2n → F2n are CCZ-equivalent if and only if ΓF and
ΓG are affine-equivalent, i.e. let L an affine permutation on (F2n)2,
L(ΓF ) = ΓG .
EA and CCZ-equivalence preserve the nonlinearity and the differential
uniformity.



CCZ-equivalence

Let L be a linear permutation of (F2n)2 such that L(ΓF ) = ΓG .
L = (L1, L2) for some linear L1, L2 : (F2n)2 → F2n . Then

L(x ,F (x)) = (F1(x),F2(x)),

where F1(x) = L1(x ,F (x)) and F2(x) = L2(x ,F (x)).

L(ΓF ) = {(F1(x),F2(x)) : x ∈ F2n}.

L(ΓF ) is the graph of G iff the function F1 is a permutation and
G = F2 ◦ F−11



EA-equivalence ⊂ CCZ-equivalence

EA⇒ CCZ:

I If (L1(x , y), L2(x , y)) = (x ,A(x) + y) then
L(x ,F (x)) = (x ,F (x) + A(x)) and G (x) = F (x) + A(x).

I If (L1(x , y), L2(x , y)) = (A(x), y) then L(x ,F (x)) = (A(x),F (x))
and G (x) = F ◦ A−1(x).

I If (L1(x , y), L2(x , y)) = (x ,A(y)) then L(x ,F (x)) = (x ,A ◦ F (x))
and G (x) = A ◦ F (x).

inversion is a particular case of CCZ:

I (L1(x , y), L2(x , y)) = (y , x) then L(x ,F (x)) = (F (x), x) and
G (x) = F−1(x).



Relation between CCZ- and EA-equivalences
Cases when CCZ-equivalence coincides with EA-equivalence:

I Boolean functions, m = 1. (Budaghyan and Carlet)

I Bent functions. (Budaghyan and Carlet)

I Two quadratic APN functions. (Yoshiara)

I A power function F is CCZ-equivalent to a power function F ′ iff F is
EA-equivalent to F ′ or F ′−1. (for APN and p = 2 Yoshiara, any p
and any power Dempwolff)

I A quadratic APN function is CCZ-equivalent to a power function iff it
is EA-equivalent to one of the Gold functions. (Yoshiara)

I If n is even, a plateaued APN function is CCZ-equivalent to a power
function iff it is EA-equivalent to it. (Yoshiara)

Cases when CCZ-equivalence differs from EA-equivalence:

I For functions from Fn
2 to Fm

2 with m ≥ 2.

EA-equivalence preserves algebraic degree while inverse and
CCZ-equivalence do not.



Relation between CCZ and EA-equivalence + Inverse

Proposition (L. Budaghyan, C. Carlet, A. Pott)

G is EA-equivalent to the function F or to F−1 (if it exists) iff there exists
a linear permutation L = (L1, L2) on (F2n)2 such that L(ΓF ) = ΓG and
L1(x , y) = L(x) or L1(x , y) = L(y).

If we want to construct G which cannot be constructed from F via
EA-equivalence and inverse transformation:

I To find a permutation L1(x ,F (x)) = L(x) + R ◦ F (x) where L,R 6= 0
are linear.

I Then find linear function L2(x , y) = L′(x) + R ′(y)such that L is a
permutation. (Found L1 then there always exists suitable L2)

Fixed L1 , differents L′ and R ′ produce EA-equivalent functions.
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The condition that L1 depends on both variables is necessary but not
sufficient.

Example: Let n = 2m + 1 and s = m mod 2. Then

L(x , y) = (x + tr(x) +
m−s∑
i=0

y2
2j+s , y + tr(x))

is a linear permutation and maps the graph of F (x) = x3 to the graph of
G which is EA-equivalent to F−1.



CCZ-equivalence more general than EA-equivalence with inverse
transformation

APN functions CCZ-equivalent to Gold functions and EA-inequivalent to
power functions on F2n

Function conditions

x2
i+1 + (x2

i

+ x + tr(1) + 1)tr(x2
i

+ 1 + xtr(1)) n ≥ 4,

gcd(n, i) = 1

[x + trn3 (x2(2
i+1) + x4(2

i+1)) + tr(x)trn3 (x2
i+1 + x2

2i (2i+1))]2
i+1 6 | n,

gcd(n, i) = 1

x2
i+1 + trnm(x2

i+1) + x2
i

trnm(x) + xtrnm(x)2
i

n odd,

+[trnm(x)2
i+1 + trnm(x2

i+1) + trnm(x)]1/(2
i+1)](x2

i

+ trnm(x2
i

) + 1) m | n
+[trnm(x)2

i+1 + trnm(x2
i+1) + trnm(x)]2

i/(2i+1)](x + trnm(x)+) gcd(n, i) = 1

Only for Gold functions it is known that CCZ>EA+inverse. For the rest of
power functions it is an open problem.



A procedure for investigating if CCZ
?
= EA + Inv

Let L1(x , y) = L(x) + R(y). F1(x) = L(x) + R(F (x)) is a permutation iff
any of its component is balanced.
In terms of Walsh coefficients

WF1(0, λ) =
∑
x∈F2n

(−1)tr(λL(x)+λR◦F (x)) = 0, for all λ ∈ F∗2n .

⇓

WF1(0, λ) =
∑
x∈F2n

(−1)tr(L
∗(λ)x+R∗(λ)F (x)) =WF (L∗(λ),R∗(λ)).

(L∗ is the adjoint operator)



We want to construct L∗ and R∗ so that F1 is a permutation.
Let ZW(b) = {a | WF (a, b) = 0} for any b ∈ F2n and consider

SF = {b : ZW(b) 6= ∅}.

Note: if F1 is a permutation then Im(R∗) ⊆ SF .
For constructing F1 we need to consider the possible vector subspaces
contained in SF .



Construction of R∗

Let U ⊆ SF be a vector subspace. Fixed any basis {u1, . . . , uk} of U, we
can suppose that R∗(ei ) = ui for i = 1, ..., k and
Ker(R∗) = Span(ek+1, ..., en).
(ei is the canonical vector.)

Fixed any basis {u1, . . . , uk} of U we can suppose that

R∗ =



u1
...
uk
0
...
0





Construction of L∗

For any a1, ..., ak with a1 ∈ ZW(u1), ..., ak ∈ ZW(uk) we need to check if

(P1)
∑k

i=1 λiai ∈ ZW(
∑k

i=1 λiui ) with λi ∈ F2 not all zero.

and if there exist ak+1, ..., an satisfying

(P2) ak+1, ..., an are linear independent;

(P3) for any a ∈ Span(ak+1, ..., an), a +
∑k

i=1 λiai ∈ ZW(
∑k

i=1 λiui ), for
any λ1, . . . , λk ∈ F2.

Then,

L∗ =

 a1
...
an





Proposition

Let U be a subspace contained in SF . Then, there exists a permutation of
F2n F1(x) = L(x) + R ◦ F (x), with L and R linear and Im(R∗) = U iff the
procedure above is successful.

Proposition

Let F be a a function from F2n to itself. If for any vector subspace
U 6= {0} in SF is not possible to construct any matrix L∗ 6= 0 with the
previous procedure, then any function F ′ CCZ-equivalent to F can be
obtained from F applying only the EA-equivalence and inverse
transformation iteratively.
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Application to non-quadratic functions

Let n = 6, and F : F2n → F2n be

F (x) =x3 + u17(x17 + x18 + x20 + x24)

+ u14((u52x3 + u6x5 + u19x7 + u28x11 + u2x13)+

(u52x3 + u6x5 + u19x7 + u28x11 + u2x13)2

+ (u52x3 + u6x5 + u19x7 + u28x11 + u2x13)4+

(u52x3 + u6x5 + u19x7 + u28x11 + u2x13)8

+ (u52x3 + u6x5 + u19x7 + u28x11 + u2x13)16+

(u52x3 + u6x5 + u19x7 + u28x11 + u2x13)32

+ (u2x)9 + (u2x)18 + (u2x)36 + x21 + x42),

where u is a primitive element of F2n .
F is the first example of APN function CCZ-inequivalent to a quadratic
function.



Using the procedure it is possible to construct the functions L and R given
by

L(x) = u50x32 + u51x16 + u43x8 + ux4 + u26x2 + u26x

and
R(x) = u26x32 + u17x16 + u56x8 + u9x4 + u54x2 + u46x ,

Considering the function F2(x) = L2(x ,F (x)) = F (x)
we have

F ′(x) =u41x60 + u29x58 + u46x57 + u3x56 + u39x54 + u47x53

+ u3x52 + u62x51 + u54x50 + u62x49 + u53x48 + u14x46

+ u39x45 + u20x44 + u26x43 + u11x42 + u31x41 + u53x40

+ u59x39 + u53x38 + u41x37 + u19x36 + u58x35 + u2x34+

u7x33 + u39x32 + u15x30 + u17x29 + u45x28 + u39x27

+ u57x26 + u33x25 + u61x24 + u41x23 + u50x22 + u58x21

+ u55x20 + u26x19 + u17x18 + u37x17 + u30x16 + ux15

+ u46x14 + u21x13 + u13x12 + u61x11 + u20x10 + x9 + u61x8

+ u32x7 + u44x6 + u62x5 + u16x4 + u48x3 + u58x2 + u37x



The function F ′ cannot be constructed from F via EA-equivalence and
inverse transformation.
F has algebraic degree equals to 3 and F ′ equals to 4.
Moreover to apply the inverse transformation at least once we need
F ∼EA G with G permutation, but since F has quadratic components this
cannot be possible.

Then we have that CCZ>EA+inversion also for APN functions
inequivalent to quadratic functions

Note: F has quadratics components, that may be useful to crate the
function F1.



APN power functions

Power functions

Let n = 7 and F (x) = xd with d not a Gold exponent, i,e,
d = 11, 13, 39, 57, 126. Then, in these cases the CCZ-equivalence coincide
with the EA-equivalence and the inverse transformation.

Let n = 8 and F (x) = x57 (Kasami). Then in this case the
CCZ-equivalence coincide with the EA-equivalence and the inverse
transformation.



EA-equivalence to a permutation

If SF = F2n we can check if F is EA-equivalent to a permutation.

Theorem (Y. Li, M. Wang)

Suppose F (x) = x2
i+1, with gcd(i , n) = 1 and L(x) is a linearized

polynomial on F2n . Then F (x) + L(x) is a permutation polynomial iff n is

odd and L(x) = α2i x + αx2
i

for someα 6= 0.

Theorem (Y. Li, M. Wang)

x−1 + L(x) is not a permutation on F2n whenever L 6= 0 when n ≥ 5.



Proposition

All known APN functions, except the Gold cases, for n = 7, 9, 11 are such
that F (x) + L(x) is not a permutation on F2n whenever L 6= 0. Moreover,
F (x) = x3 + Tr(x9) is not CCZ-equivalent to a permutation over F27 .



Classification of APN functions
APN polynomial families CCZ-inequivalent to power functions

N◦ Functions Conditions
n = pk , gcd(k, p)=gcd(s, pk)=1,

C1-C2 x2
s+1 + u2

k−1x2
ik+2mk+s

p ∈ {3, 4}, i = sk mod p, m = p − i ,
n ≥ 12, u primitive in F∗2n

q = 2m, n = 2m, gcd(i ,m)=1,

C3 x2
2i+2i + cxq+1 + dxq(2

2i+2i ) gcd(2i + 1, q + 1) 6= 1, dcq + c 6= 0,

d 6∈ {λ(2i+1)(q−1), λ ∈ F2n}, dq+1 = 1
q = 2m, n = 2m, gcd(i ,m)=1,

C4 x(x2
i

+ xq + cx2
iq) c ∈ F2n , s ∈ F2n \ Fq,

+x2
i

(cqxq + sx2
iq) + x (2

i+1)q X 2i+1 + cX 2i + cqX + 1
is irreducible over F2n

C5 x3 + a−1Tr(a3x9) a 6= 0

C6 x3 + a−1Tr3n(a3x9 + a6x18) 3|n, a 6= 0

C7 x3 + a−1Tr3n(a6x18 + a12x36) 3|n, a 6= 0



Classification of APN functions

n = 3k, gcd(k, 3)=gcd(s, 3k)=1,

C8-C10 ux2
s+1 + u2

k

x2
−k+2k+s

+ v ,w ∈ F2k , vw 6= 1,

vx2
−k+1 + wu2

k+1x2
s+2k+s

3|(k + s) u primitive in F∗2n
n = 2k, gcd(s, k)=1, s, k odd,

C11 dx2
s+1 + d2k x2

k+s+2k + c 6∈ F2k , γi ∈ F2k ,

cx2
k+1 +

∑k−1
i+1 γix

2k+i+2i d not a cube

(x + x2
m

)2
k+1+ n = 2m, m ≥ 2 even,

C12 u′(ux + u2
m

x2
m

)(2
k+1)2i + gcd(k,m) = 1 and i even

u(x + x2
m

)(ux + u2
m

x2
m

) u primitive in F∗2n , u′ ∈ F2m not cube

C13 x2
k+1 + trnm(x)2

k+1 n = 2m = 4t, gcd(k, n) = 1

C14 a2x2
2m+1+1 + b2x2

m+1+1 + ax2
2m+2 n = 3m, m odd

+bx2
m+2 + (c2 + c)x3 Irene Villa’s talk

C13 is equivalent to x2
m−k+1 (L. Budaghyan, T. Helleseth, N. Li, B. Sun)
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C3, C4 and C11

q = 2m, n = 2m, gcd(i ,m)=1,

C3 x2
2i+2i + cxq+1 + dxq(2

2i+2i ) gcd(2i + 1, q + 1) 6= 1, dcq + c 6= 0,
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C4 x(x2
i

+ xq + cx2
iq) c ∈ F2n , s ∈ F2n \ Fq,

+x2
i

(cqxq + sx2
iq) + x (2

i+1)q X 2i+1 + cX 2i + cqX + 1
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cx2
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∑k−1
i=1 γix

2k+i+2i d not a cube



C3⊆C11

n = 2k, q = 2k

F (x) = cxq+1 + x2
2i+2i + dxq(2

2i+2i )

dq+1 = 1⇒ ∃d ′ s.t. d = d ′q−1

dcq + c 6= 0⇒ d ′c /∈ F2k , so
F2n = d ′cFq ⊕ Fq. We can apply a linear permutation which is the

identity on d ′cFq and x1/2
i

on Fq.

L ◦ F ′(x) = d ′cxq+1 + d ′′x2
i+1 + d ′′qxq(2

i+1) ∈ C11

d ′′ = d ′1/2
i
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Fq
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Fq
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i
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i+1) ∈ C11

d ′′ = d ′1/2
i



It is possible to prove also that C11⊆C3

Lemma

C3=C11



C11⊆C4

F (x) = dx2
i+1 + dqxq(2

i+1) + cxq+1 +
k−1∑
s=1

γsx
(q+1)2s

Let L(x) = (x + xq)2
t

+ w(x + xq) + (c + cq)2
t
x

w ∈ Fq ⇒ L(x) permutation

L ◦ F (x)
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Similarly

H(x) = d̄x2
i (q+1) + x (q+1) + (x2

i+1 + xq(2
i+1) + c̄xq2

i+1 + c̄qx2
i+q)

is equivalent to

H ′(x) = d̄ ′x (q+1) + (x2
i+1 + xq(2

i+1) + c̄xq2
i+1 + c̄qx2

i+q)

We want to prove that F (x) = dx2
i+1 + dqxq(2

i+1) + cxq+1 + x (q+1)2i is
equivalent to H ′(x)
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Consider a permutation x + γxq with γq+1 6= 1,

F (x + γxq) =(c + cγq+1)xq+1 + (1 + γ2
i (q+1))x2

i (q+1)

+ (d + d2mγq(2
i+1))x2

i+1 + (d2m + dγ2
i+1)xq(2

i+1)

+ (dγ2
i

+ d2mγq)xq2
i+1 + (d2mγq2

i
+ dγ)x2

i+q

+ terms of deg ≤ 1

Which is EA-equivalent to

F ′(x) = c ′xq+1 + (ax2
i+1 + aqxq(2

i+1) + bxq2
i+1 + bqx2

i+q).

a = (d + dqγq(2
i+1)) and b = (dγ2

i
+ dqγq)
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Lemma

There exist γ ∈ Fq2 and δ ∈ Fq such that γq+1 6= 1 and δdγ2
i

+ δdqγq is
a 2i + 1th power.

⇓
up to multiply F ′ by some δ ∈ Fq, there exist γ and λ 6= 0 such that

λ2
i+1 = (d + dqγq(2

i+1)) and substituting x 7→ λ−1x we obtain

F̄ (x) = c ′′xq+1 + x2
i+1 + xq(2

i+1) + b′′xq2
i+1 + b′′qx2

i+q.
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Now, c ′′ /∈ Fq and F̄ APN imply that

x2
i+1 + b′′x2

i
+ b′′qx + 1 = 0

has no solution x such that xq+1 = 1.

Theorem

C3 = C11 ⊆ C4.
Moreover we can rewrite the family of the hexanomials as:

H(x) = dx (q+1) + (x2
i+1 + xq(2

i+1) + cxq2
i+1 + cqx2

i+q).



Now, c ′′ /∈ Fq and F̄ APN imply that

x2
i+1 + b′′x2

i
+ b′′qx + 1 = 0

has no solution x such that xq+1 = 1.

Theorem

C3 = C11 ⊆ C4.
Moreover we can rewrite the family of the hexanomials as:

H(x) = dx (q+1) + (x2
i+1 + xq(2

i+1) + cxq2
i+1 + cqx2

i+q).



Particular case: C12 with i = 0

When i = 0 for the family C12 we have that

F (x) = (x + xq)2
k+1 + u′(ux + uqxq)2

k+1 + u(x + xq)(ux + uqxq),

and it is possible to prove in a similar way that F is EA equivalent to H(x)
in the previous theorem.



Thanks for your attention!


