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Notations and definitions

PN and APN functions:

Let F : F5 — 7" be a Vectorial Boolean function. We define
dr(a,b) =|{x € F5 : F(x+ a) — F(x) = b}.
The differential uniformity of F is

O(F) = 1) b).
(F) ang\TOa}),(bEFg’ F(a,b)

If §(F) = 2"~™ then F is said Perfect Nonlinear (PN) or Bent.
Best resistance to differential attack.



K. Nyberg: Bent functions exist only when n is even and m < n/2.
If m=n, then §(F) > 2.

If §(F) = 2, then F is called almost perfect nonlinear (APN).



AB functions:

The nonlinearity of a vectorial Boolean function F is the minimum
Hamming distance between

» all component functions v - F(x), v # 0 and

» all affine functions u-x +¢, u € F5 ¢ € F>.

The nonlinearity can be given in terms of the Walsh transform of F

WF(a, b) — Z(_l)a~x+b-F(x).

x€Fj
The nonlinearity equals:

1
__on—=1_ =
NIUF)=2 5 angIaF; |\We(a, b)|.
beF\{0}



Bounds on nonlinearity

N(F) < 2m=t —on/2-1,

The equality holds iff F is bent (best resistance to linear attack).
If n = m the Sidelnikov-Chabaud-Vaudenay bound states

n—1

NUF) <2t —27%,

In case of equality (n necessarily odd) F is called almost bent (AB).
AB = APN

From now on, we assume that m = n. In this case we can identify F] with
Fan and then we can take x - y = tr(xy).



Table: Known APN power functions x? over Fan
Functions Exponents d Conditions | Degree
Gold 20 +1 ged(i, n)=1 2
Kasami 221 2l 41 ged(i,n)=1| i+1
Welch 2t +3 n=2t+1 3
Niho 2t 123 — 1, t even n=2t+1 “5—2

2t +2°%° — 1, t odd t+1
Inverse 2%t 1 n=2t+1 ]| n-1
Dobbertin | 2% + 23 + 2% 4+ 21— 1| p=5j i+3




Table: Known APN power functions x? over Fan
Functions Exponents d Conditions | Degree
Gold 20 +1 ged(i, n)=1 2
Kasami 221 2l 41 ged(i,n)=1| i+1
Welch 2t +3 n=2t+1 3
Niho 2t425 —1,teven | n=2t41| H2

2t +2°%° — 1, t odd t+1
Inverse PR | n=2t+1 ]| n-1
Dobbertin | 2% + 23 + 2% 4+ 21— 1| p=5j i+3

Gold, Kasami, Welch and Niho functions are AB for n odd




Equivalence relations

Two functions F, G : Fon — Fon are EA-equivalent iff
G = Azo FoAi(x)+ A(x),

with A, A; and A affine maps and A; and A, permutations.

Let T'r = {(x,f(x)) | x € Fan}.

Two functions F, G : Fon — Fan are CCZ-equivalent if and only if ['F and
¢ are affine-equivalent, i.e. let £ an affine permutation on (Ian)z,
L(Te)=Tg.

EA and CCZ-equivalence preserve the nonlinearity and the differential
uniformity.



CCZ-equivalence

Let £ be a linear permutation of (F2n)? such that £(Tf) = Ig.
L = (L1, Ly) for some linear Ly, Ly : (Fan)? — Fan. Then

L(x, F(x)) = (F1(x), F2(x)),
where Fi(x) = Li(x, F(x)) and Fa(x) = La(x, F(x)).

L(Te) ={(F1(x), Fa(x)) : x € Fan}.

L(Tg) is the graph of G iff the function Fj is a permutation and
G=Fof!



EA-equivalence C CCZ-equivalence

inversion is a particular case of CCZ:

> (Li(x,y), La(x,y)) = (v, x) then L(x, F(x)) = (F(x),x) and
G(x) = F71(x).



Relation between CCZ- and EA-equivalences
Cases when CCZ-equivalence coincides with EA-equivalence:

>

>

>

Boolean functions, m = 1. (Budaghyan and Carlet)

Bent functions. (Budaghyan and Carlet)

Two quadratic APN functions. (Yoshiara)

A power function F is CCZ-equivalent to a power function F’ iff F is
EA-equivalent to F’ or F'~1. (for APN and p = 2 Yoshiara, any p
and any power Dempwolff)

A quadratic APN function is CCZ-equivalent to a power function iff it
is EA-equivalent to one of the Gold functions. (Yoshiara)

If nis even, a plateaued APN function is CCZ-equivalent to a power
function iff it is EA-equivalent to it. (Yoshiara)

Cases when CCZ-equivalence differs from EA-equivalence:

>

For functions from FJ to FJ" with m > 2.

EA-equivalence preserves algebraic degree while inverse and
CCZ-equivalence do not.



Relation between CCZ and EA-equivalence + Inverse

Proposition (L. Budaghyan, C. Carlet, A. Pott)

G is EA-equivalent to the function F or to F~1 (if it exists) iff there exists
a linear permutation £ = (L1, L) on (Fan)? such that L(I'f) = g and
Ll(X7y) = L(X) or Ll(Xay) = L(y)



Relation between CCZ and EA-equivalence + Inverse

Proposition (L. Budaghyan, C. Carlet, A. Pott)

G is EA-equivalent to the function F or to F~1 (if it exists) iff there exists
a linear permutation £ = (L1, L) on (Fan)? such that L(I'f) = g and
Li(x,y) = L(x) or Li(x,y) = L(y).

If we want to construct G which cannot be constructed from F via
EA-equivalence and inverse transformation:

» To find a permutation Li(x, F(x)) = L(x) + R o F(x) where L,R # 0
are linear.

» Then find linear function La(x,y) = L'(x) + R'(y)such that £ is a
permutation. (Found L; then there always exists suitable L)

Fixed L , differents L’ and R’ produce EA-equivalent functions.



The condition that L; depends on both variables is necessary but not
sufficient.

Example: Let n=2m+ 1 and s=m mod 2. Then

m—s

L(x,y) = (x+tr(x) + >y T,y + tr(x))
i=0

is a linear permutation and maps the graph of F(x) = x3 to the graph of
G which is EA-equivalent to F1.



CCZ-equivalence more general than EA-equivalence with inverse
transformation

APN functions CCZ-equivalent to Gold functions and EA-inequivalent to
power functions on [Fan

Function conditions
X2 (X2 x + tr(1) + D)tr(x® 4+ 1+ xtr(1)) n>4,
ged(n, i) =1
[x + tr3n(xz(2'+1) JrX4(2'+1)) + tr(x)trg(x?*l JrX22'(2'+1))]2'+1 6| n,
ged(n, i) =1
XZHL ot (x2 ) 4 X2 1 (x) 4 xtr! (x)? n odd,
Herm(x)7 1+t () + e (O] EED] (¢ e (6F) + 1) m | n
Htrp () T+ () 4 g (PO (x + trp(x)+) || ged(n, i) =1

Only for Gold functions it is known that CCZ>EA+inverse. For the rest of
power functions it is an open problem.



A procedure for investigating if CCZ L EA+ Inv

Let L1(x,y) = L(x) + R(y). Fi(x) = L(x) + R(F(x)) is a permutation iff
any of its component is balanced.
In terms of Walsh coefficients

Wr(0,0) = > (~1)rOLITARFED — 0 for all A € Fsa.

XE]F2!1
I
Wi (0,A) = Y (~1)rEOFRIOFED = Wi (L7(2), R*(V))-
xEFon

(L* is the adjoint operator)



We want to construct L* and R* so that F; is a permutation.
Let ZW(b) = {a | Wk(a, b) = 0} for any b € Fan and consider

Se={b: ZW(b) # 0}.

Note: if 7 is a permutation then Im(R*) C Sf.

For constructing F; we need to consider the possible vector subspaces
contained in Sf.



Construction of R*

Let U C Sr be a vector subspace. Fixed any basis {u1, ..., ux} of U, we
can suppose that R*(e;) = uj for i =1,...,k and

Ker(R*) = Span(ex+1, ..., €n)-

(ei is the canonical vector.)

Fixed any basis {u1, ..., ux} of U we can suppose that
]
* ug
R* =
0
- 0 -




Construction of L*

For any aj, ..., ax with a1 € Z2W(u1), ..., ax € ZW(uk) we need to check if

(P1) K, Nai € ZW(SK, Aiu;) with A; € 2 not all zero.
and if there exist ax.11, ..., a, satisfying
(P2) axi1,...,an are linear independent;
(P3) for any a € Span(ak+1,-..,an), @+ Zf-;l Ajaj € ZW(Zf;l Aiu;), for
any A1,..., A\x € Fo.

Then,
ai

L* =

an



Proposition

Let U be a subspace contained in Sg. Then, there exists a permutation of
Fon Fi(x) = L(x) + R o F(x), with L and R linear and Im(R*) = U iff the
procedure above is successful.



Proposition

Let U be a subspace contained in Sg. Then, there exists a permutation of
Fon Fi(x) = L(x) + R o F(x), with L and R linear and Im(R*) = U iff the
procedure above is successful.

Proposition

Let F be a a function from Fan to itself. If for any vector subspace

U # {0} in Sg is not possible to construct any matrix L* # 0 with the
previous procedure, then any function F' CCZ-equivalent to F can be
obtained from F applying only the EA-equivalence and inverse
transformation iteratively.



Application to non-quadratic functions
Let n =06, and F : Fon — Fon be

F(X) :X3 + u17(X17 +X18 —|—X20 —|—X24)
+ u14((u52X3 + U6X5 + u19X7 + u28X11 + U2X13)+
(U52X3+ U6X5 + u19x7+ U28X11—|— u2X13)2

1 4

(U523 4 u8x5 T X+ X134
(152x3 + uBx® + 17 + uBx11 + 12x13)8
(6923 4 uBx5 4 1% + 0Bk 4 ux13)16 1
(u52x3 + uBx5 + ulOx7 + uBx11 + 12x13)2
+ (1%%)° 4 (1%%) "8 + (12x)30 + X + x*?),
where u is a primitive element of Fon.

F is the first example of APN function CCZ-inequivalent to a quadratic
function.



Using the procedure it is possible to construct the functions L and R given
by
L(x) = u%0x32 + u51x18 4 4358 1 ux® 4 X2 4 y®6x

and

R(x) = u®x32 4 ulx16 4 1658 1 19%* 1+ u54x2 1+ %,
Considering the function Fy(x) = La(x, F(x)) = F(x)
we have

F’(X) :u41X60 + u29X58 + u46X57 + U3X56 + u39X54 + U47X53
+ U3X52 + u62X51 + u54X50 + u62X49 + u53X48 + u14x46
+ u39X45 + u20X44 + u26X43 + u11X42 + u31X41 + u53X40
+ u59X39 + u53X38 + u41X37 + u19X36 + u58X35 + U2X34—|—
u7X33 + u39X32 + u15X30 + u17X29 + u45X28 + u39X27
+ u57X26 + u33X25 + u61X24 + u41X23 + u50X22 + u58X21
+ u55X2O + u26X19 + u17X18 + u37X17 + u30X16 + UX15

+ u46X14 + u21X13 + u13X12 + u61X11 + u20X10 +X9 + U61X8



The function F’ cannot be constructed from F via EA-equivalence and
inverse transformation.

F has algebraic degree equals to 3 and F’ equals to 4.

Moreover to apply the inverse transformation at least once we need

F ~ga G with G permutation, but since F has quadratic components this
cannot be possible.

Then we have that CCZ>EA+inversion also for APN functions
inequivalent to quadratic functions

Note: F has quadratics components, that may be useful to crate the
function F;.



APN power functions

Power functions

Let n=7 and F(x) = x? with d not a Gold exponent, i,e,

d =11,13,39,57,126. Then, in these cases the CCZ-equivalence coincide
with the EA-equivalence and the inverse transformation.

Let n =8 and F(x) = x°" (Kasami). Then in this case the
CCZ-equivalence coincide with the EA-equivalence and the inverse
transformation.



EA-equivalence to a permutation

If S; = Fon we can check if F is EA-equivalent to a permutation.

Theorem (Y. Li, M. Wang)

Suppose F(x) = x2 1, with ged(i,n) = 1 and L(x) is a linearized
polynomial on Fan. Then F(x) + L(x) is a permutation polynomial iff n is
odd and L(x) = a® x + ax?® for somea # 0.

Theorem (Y. Li, M. Wang)

x~Y 4+ L(x) is not a permutation on Fan whenever L # 0 when n > 5.



Proposition

All known APN functions, except the Gold cases, for n = 7,9, 11 are such
that F(x) + L(x) is not a permutation on Fan whenever L # 0. Moreover,
F(x) = x3 4+ Tr(x%) is not CCZ-equivalent to a permutation over Fy.



Classification of APN functions

APN polynomial families CCZ-inequivalent to power functions

N° Functions Conditions
n = pk, ged(k, p)=gcd(s, pk)=1,
C1-C2 x2HL g 2Rt pe{3,4}, i=skmod p, m=p—i,
n > 12, u primitive in F3,
qg=2",n=2m, gcd(i, m)=1,
C3 | X2 f x4 dx9@H2) | ged(21 4 1,g+1) £ 1, de¥ 4 ¢ # 0,
d ¢ {A\CHE=) X € Fpn}, d9H1 =1
g=2" n=2m, gcd(i,m)=1,
C4 x(x% + x9 + cx?9) c €Fan, s € Fon \ Fy,
+x2 (c9x9 + sx?9) + x(2+Da X2+ eX? 4 cIX 11
is irreducible over [Fyn
c5 x3 + a7 1Tr(a%x%) a#0
C6 x3 4+ a7 177 (a3x% + a°x18) 3ln,a#0
cr x3 + a1 Tr(a%x™8 4 al2x3%) 3In,a#0




Classification of APN functions

n = 3k, ged(k, 3)=gcd(s, 3k)=1,
C8-C10 ux® L 2 2Ty v,w € For, vw # 1,
vx2 T pp L Z 2 3|(k +s) u primitive in F5,
n =2k, gcd(s, k)=1, s, k odd,
C11 dxZHL g2 X2y c & Fo, i € Fox,
o4 Zf-:ll yix? 2 d not a cube
(x + x2m)2k+1—|— n=2m, m> 2 even,
C12 u'(ux + u2mx2m)(2k+1)2i+ ged(k,m) =1 and i even
u(x + x*")(ux + u*" x?") u primitive in F3,, v’ € Fam not cube
C13 xZH 4ot (x)2 1 n=2m=4t, gcd(k,n) =1
Cl4 | a7 4 27T 4 gx 22 n=3m, modd
+bx2" 2 4 (2 + o)X Irene Villa's talk




Classification of APN functions

n = 3k, gcd(k, 3)=gcd(s, 3k)=1,
C8-C10 ux® L 2 2T v,w € For, vw # 1,
vx? L o L2 3|(k + s) u primitive in F5,
n =2k, ged(s, k)=1, s, k odd,
C11 dx? 1 g2 22 c & Fox, vi € Fyx,
o4 Zﬁ__ll yix? 2 d not a cube
(x+ x2m)2k+1+ n=2m, m> 2 even,
C12 o (ux + v X2 D2 ged(k,m) =1 and i even
u(x + x¥")(ux + u*" x?") u primitive in F3,, v’ € Fam not cube
C13 xZHL 0 ()21 n=2m=4t, gcd(k,n) =1
Cl4 22x2TTHL L P22 L g 9, 22 n=23m, modd
+bx2" 2 4 (2 + )x3 Irene Villa's talk

C13 is equivalent to x2" +1 (L. Budaghyan, T. Helleseth, N. Li, B. Sun)




C3, C4 and C11

qg=2",n=2m, gcd(i, m)=1,
C3 | X x4 x| ged(2 4+ 1,g+ 1) £ 1, de + ¢ #0,
d g (A1) N e Fo}, d9t1 =1
qg=2",n=2m, gcd(i, m)=1,
C4 x(x¥ + x9 + ox?'9) c €Fan, s € Fon \ Fy,
+x2 (%9 + 5x29) + x(2+1)a X2H 4 eX? 4 cIX 41
is irreducible over [Fon
n =2k, gcd(s, k)=1, s, k odd,
C11 dx? 1 4 g2 22y c & Fa, 7; € Fa,
XL SRy d not a cube




C3CC11

n =2k, q=2k

F(x) = cx9T 4 X272 4 gya(2+2)



C3CC(l1

n:2k,q:2k

F(x) = ox9t1 + X222 4 gy a(22+2")

d9l =1= 3d' st. d = d'7?

F/(X) = le(X) — d/CXCH‘l + d/X22i+2i 4 d/qu(22i+2i)



C3CC(l1

n:2k,q:2k

F(x) = x99t + X222 4 gy a(22+2")

di*l = 1= 3d st. d = d'91

F/(X) = le(X) — d/CXCH‘l + d/X22i+2i + d,qxq(22i+2i)
d’cFq IE;

dc? 4+ c#0=d'c ¢ Fok, so Fon = d'cFq @ F,.



C3CC(C11

n=2k, qg=2k

F(x) = ex9t1 4 X22"+2" + dxq(22"+2f)

ditl =1=3d st. d =d'97!

F/(X) — le(X) — d/CXCH‘l + d/X22i+2i + d,qxq(22i+2i)
d’clFy IE;

dci+c#0=d'c ¢ Fpk, 50 Fon = d'cFqg ®Fq.  We can apply a linear
permutation which is the identity on d’cF4 and x1/? on F,.

Lo F/(X) _ d/CXqul + d/IX2i+1 + d//qu(2i+1) e C11

d" = '1/?



It is possible to prove also that C11CC3

Lemma
C3=Cl11



Cl1CC4

k—1
F(x) = dx? 1 + dIx92HY) 4 exatl 4 Z yex (9T

s=1



Cl1CC4

k—1
F(x) = dx* ! + dIx92HY) 4 exatl 4 Z yex (9T

s=1

Let L(x) = (x 4+ x9)% + w(x + x9) + (c + c9)?'x



Cl1CC4

k—1
F(x) = dx? L 4 qxa@ D) 4 et 4 Z yex (9T
s=1
Let L(x) = (x 4+ x9)% + w(x + x9) + (c + c9)?'x
w € Fy = L(x) permutation

Lo F(x) 241, 4quq(2+1) | 1og+l -— (g+1)28
m = dX =+ d X +cx + Z YsX
p;

¢ =w(c+c?)? ¢



Cl1CC4

k—1
F(x) = dx? L 4 qxa@ D) 4 et 4 Z yex (9T
s=1
Let L(x) = (x 4+ x9)% + w(x + x9) + (c + c9)?'x
w € Fy = L(x) permutation

Lo F(x) 241, 4quq(2+1) | 1og+l -— (g+1)28
m = dX =+ d X +cx + Z YsX
p;

¢ =w(c+c?)? ¢
Wlog . ' ,
F(x) = dx* 1 + dIxICHD) 4 oxatl 4 (e +D)2



Similarly
H(x) = dx? (0D (@) 4 (21 4 a1 gy@2'+1 | 70, 2+a)
is equivalent to

H/(X) = d'x(a+D) + (X2i+1 + xq(2i+1) + Exq2i+1 + EqX2’+Q)



Similarly
H(x) = c;Xz"(q+1) JrX(q+1) + (X2f+1 Jrxq(z"+1) + EXq2"+1 + EqX2f+q)
is equivalent to
H’(x) — g'x(at+D) Jr(Xz"+1 Jrxq(z'ﬁrl) JFEXq2"+1 Jrquzurq)

We want to prove that F(x) = dx? 1 4 d9x9@+1) 4 exa+1 4 x(a+1)2' g
equivalent to H'(x)



Consider a permutation x 4+ yx9 with 49+ £ 1,

F(x +7x9) =(c + cyTT)x9tL 4 (14 42 (@), 2 (a+1)
+ (d 4 d?"9@FD)NH L (27 4 dy? )X H)
+ (d’Y2[ + d2m’yq)xq2i+l + (d2mryq2i + d’}/)X2i+q
+ terms of deg <1



Consider a permutation x + yx9 with y9+1 £ 1,
F(x +7x9) =(c + cyTT)x9tL 4 (14 42 (@), 2 (a+1)
+ (d 4 d?"79CHD) 2 HL (2" 4 g2 T2 )
+ (d’Yz[ + d2m’yq)xq21+l + (d2m7q2' + d,y)X2’+q
+ terms of deg <1

Which is EA-equivalent to



Consider a permutation x 4+ yx9 with 49+ £ 1,

F(x +7x9) =(c + cyTT)x9tL 4 (14 42 (@), 2 (a+1)
+ (d 4 d?"9@FD)NH L (27 4 dy? )X H)
+ (d’Yz[ + d2m’yq)xq2i+l + (d2m7q2' + d,y)X2’+q
+ terms of deg <1

Which is EA-equivalent to
F,(X) = /x4 (axzi"‘l + aqXQ‘(2"+1) + quZ"-&-l + quZI—‘,—q)‘

a=(d+ d79*)) and b = (d? + d9,9)



Lemma

There exist v € F2 and § € Fq such that v9t1 % 1 and §dv? + 6d9y9 s
a 2/ + 1th power.



Lemma

There exist v € F2 and § € Fq such that v9t1 % 1 and 5d~? + 6d9y9 is
a2' + 1th power.

up to multiply F’ by some ¢ € [Fg, there exist v and X # 0 such that
A2'H1 = (d 4 d999(' 1) and substituting x — A~!x we obtain

F(X) — 'xat+1 +X2I+1 _|_Xq(2’+1) + b//Xq2’+1 + b//qX2I+q.



Now, c” ¢ F, and F APN imply that
X 4 x4+ 1 =0

has no solution x such that x9t1 = 1.



Now, ¢” ¢ F, and F APN imply that
q
x2i 1y b"x2i +b'9%+1=0

has no solution x such that x9t1 = 1.

Theorem

C3=C11 C (4.
Moreover we can rewrite the family of the hexanomials as:

H(x) = dx(tD) 4 (x2+1 4 x9(@+1) 4 a2+ 4 (a4, 2+a),



Particular case: C12 with i =0

When i = 0 for the family C12 we have that
F(x) = (x +x9)2 T 4 o/ (ux + u9x9)2 ! 4 u(x + x9) (ux + u9x9),

and it is possible to prove in a similar way that F is EA equivalent to H(x)
in the previous theorem.



Thanks for your attention!



