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Correlation immune functions in the framework of
stream ciphers

Synchronous stream ciphers :

Pseudo-random generator

K
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keystream

public
channel
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keystream

⊕ plain text
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Every pseudo-random generator (PRG) consists in a linear part

(for efficiency) and a nonlinear part (for robustness).

Boolean functions f : Fn2 → F2 are often used in the nonlinear

part.

A classical model for their use combines the outputs of several

Linear Feedback Shift Registers (LFSR) is the combiner model :
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LFSR n

LFSR 2

LFSR 1

...
f

x1

xn

x2 keystream si

Several attacks exist on this model, among which a divide and

conquer attack called the Siegenthaler correlation attack.

To withstand it, f must have no correlation with any subset of at

most m variables, where m is as high as possible.
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• Equivalent definition : the output distribution of f should not

change when at most m input variables are fixed.

We say then that f is correlation-immune of order m (m-CI).

• Characterization by the Walsh transform (Xiao-Massey) :

∀a ∈ Fn2 , 1 ≤ wH(a) ≤ m⇒Wf(a) =
∑
x∈Fn2

(−1)f(x)+a·x = 0,

where wH is the Hamming weight and “·” the usual inner product in

Fn2 .
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• Characterization by the Fourier-Hadamard transform :

∀a ∈ Fn2 , 1 ≤ wH(a) ≤ m⇒ f̂(a) =
∑
x∈Fn2

f(x)(−1)a·x = 0,

since Wf(a) = −2f̂(a).

• Characterization by (nonlinear) codes : the code C equal to the

support {(x ∈ Fn2 | f(x) = 1} of f has dual distance at least m+ 1.

Recall : given a code C ⊆ Fn2 , the distance enumerator of C is

DC(X,Y ) =
1

|C|
∑

(u,v)∈C2

Xn−dH(u,v)Y dH(u,v).
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The dual distance of C is the minimal nonzero degree of Y in the

monomials with nonzero coefficients in DC(X + Y,X − Y ).

• Characterization by orthogonal arrays : the |C| × n array of all

elements of C is an orthogonal array (with no repetition) of strength

m.

In practice, functions for the combiner model need to be m-CI and

balanced (that is, m-resilient) for sufficiently large m and also highly

nonlinear with algebraic degree as high as possible.

The nonlinearity nl(f) of a function f is the minimum Hamming

distance between f and affine functions.
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Its algebraic degree dalg(f) is the degree of its Algebraic Normal

Form (ANF)

f(x1, · · · , xn) =
⊕

I⊆{1,...,n}

aI

(∏
i∈I

xi

)
.

In 2003 came algebraic attacks and more problematic fast algebraic

attacks (FAA).

To resist FAA, there should not exist g 6= 0 such that dalg(g) is

small and dalg(fg) is not large.
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Then, if dalg(f) is not large, f does not resist FAA (since the

attacker can take g = 1).

Weakness of CI functions for stream ciphers :

Correlation immune functions have low algebraic degrees :

dalg(f) ≤ n−m.

Correlation immune functions are then weak against :

- the Berlekamp-Massey attack, whose complexity is nowadays

slightly more than linear in Ldalg(f), where L is the average size of

the LFSRs,
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- the Ronjom-Helleseth attack, whose complexity is linear in(
nL

dalg(f)

)
,

- the fast algebraic attack, whose complexity can be also very low

when f has not high algebraic degree.

Consequence : another model is preferred which does not need

high order correlation immunity : the filter model.
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Filter model

LFSR

⊕⊕⊕

x1 x2 · · · xn

f

keystream si

End of the story for correlation-immune functions ?
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Side Channel Attacks and their counter-measures

The implementation of cryptographic algorithms in devices like

smart cards (mainly software), FPGA or ASIC (hardware) leaks

information on the data manipulated by the algorithm, leading to

side channel attacks (SCA).

The attacker model is then not a black box but a greay box.

This information can be traces of electromagnetic emanations,

power consumption, photonic emission...
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SCA are very powerful on block ciphers if countermeasures are

not included in the implementation of the cryptosystems, since they

can use information on the data manipulated during the first round

(which has not reached good diffusion).

A sensitive variable is chosen in the algorithm, whose value is

stored in a register and depends on the plaintext and a few key bits.

The register leaks.

The emanations from the register are measured. They disclose a

noisy version of a real-valued function L of the sensitive variable.

For instance, in the so-called Hamming weight leakage model,

L(Z) equals the Hamming weight of Z.
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A statistical method finds then the value of the key bits which

optimizes the correlation between the traces and a modeled leakage.

The original implementation of the AES can be attacked this way

in a few seconds with a few traces.

Counter-measures fortunately exist.

Most common : mask each sensitive variable Z by splitting it.

• 2 shares : Z ⊕M ‖ M , where M is drawn at random.
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Z ⊕ M M

! Joint leakage L

! !

For going through boxes

In hardware (FPGA, ASIC, ...) :
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In software (smart cards) : transform every function x 7→ F (x) in

the algorithm into a function F ′ : (m0,m1) 7→ (m′0,m
′
1) such that :

m′0 +m′1 = F (m0 +m1)

(i.e. F ′ is a function on shares of x providing shares of F (x)) and the

knowledge of one intermediate variable does not give any information

on x.

Such F ′ is called a masked version of F .

Masking linear functions is costless but masking S-boxes has a

cost.
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In software applications (smart cards), masking the algorithm can

multiply by more than 20 the execution time.

An AES runs in 3629 cycles without masking and in 100 000 with

masking.

The program executable file size is also increased because all the rest

of the computations on Z needs to be modified into computations

on shares.

In hardware applications (ASIC, FPGA), the implementation area

is roughly tripled.
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Higher order attacks : The counter-measure of masking with

a single mask (i.e. two shares) cannot resist Higher order SCA

(HO-SCA) :

- The attacker starts with a first order attack, exploiting the

leakage L(Z). This is successful if E(L|Z = z) depends on z.

- if E(L|Z = z) does not depend on z, then the attacker can try

a second order attack, on L2 (or on the product of two leakages,

which is more difficult in hardware but possible in software),

- if E(L2|Z = z) does not depend on z, then the attacker can

increase the order of the attack until it is successful.
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Higher order masking : d-th order masking allows resisting d-th

order SCA :

d+ 1 shares : M1, . . . ,Md are chosen at random and

Md+1 = Z ⊕M1, · · · ⊕Md.

The complexity of the HO-SCA attack (in time and in the number

of traces) is exponential in the order : O(V d), where V is the variance

of the noise (indeed, raising the leakage at the d-th power raises the

noise at the d-th power).

The cost in terms of running time and of memory is quadratic in

d.
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Hence, theoretically, the designer can take advantage over the

attacker.

However, an advantage of the attacker over the designer is that

the implementation must be efficient today while the SCA can be

performed in the future.

Hence it is very important to be able to reduce the cost of

counter-measures against SCA.

22



How Boolean functions play a new role in this
framework

I Leakage squeezing (hardware)

At first order, the pair (M0,M1) such that M0 +M1 = Z is not

processed as is in the device, but in the form of (M0, F (M1)).

Efficiency of leakage-squeezing for first-order :

Theorem The first-order leakage squeezing counter-measure with

a permutation F resists the attack of order d if and only if :

∀a, b ∈ Fn2 , 1 ≤ wH(a) + wH(b) ≤ d⇒
∑
x∈Fn2

(−1)b·F (x)+a·x = 0,
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that is, the indicator (characteristic function) of the graph GF =

{(x, F (x), x ∈ Fn2} of F is d-CI.

Equivalently, the code GF = {(x, F (x), x ∈ Fn2} has dual distance

at least d+ 1.

This code is in general nonlinear ; it is linear when F is linear.

Such a code GF = {(x, F (x), x ∈ Fn2}, where F is a permutation,

admits {1, . . . , n} and {n+ 1, . . . , 2n} as information sets.

Recall : an information set for a code is a set I of indices such

that every possible tuple of length |I| occurs in exactly one codeword

within the specified coordinates xi; i ∈ I.

Every linear code is systematic.
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A [n = 2k, k] code having two information sets complementary of

each other is called a Complementary Information Set (CIS) code.

The CIS codes with best dual distances have been investigated in

2012 for n ≤ 65 by C.C., P. Gaborit, J.-L. Kim, and P. Solé.

Some CIS codes with best dual distance are linear, some are not :

for n = 4 the best dual distance is 4, achieved by a linear code

for n = 8 (AES) the best dual distance is 6, achieved by a

nonlinear code : the Nordstrom-Robinson code, that is, the Kerdock

code of length 16 (the best linear code gives 5).
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Efficiency of leakage squeezing for second order :

Z =M0 +M1 +M2 and (M0, F1(M1), F2(M2)) is processed.

Theorem The second-order leakage squeezing counter-measure

with permutations F1, F2 resists the SCA of order d if and only if :

∀(a, b, c), a 6= 0, (wH(a) + wH(b) + wH(c) ≤ d)⇒∑
x∈Fn2

(−1)b·F1(x)+a·x = 0 or
∑
x∈Fn2

(−1)b·F2(x)+a·x = 0.

Equivalently, the code GF1,F2 = {(x+y, F1(x), F2(y))|x, y ∈ Fn2}
has dual distance at least d+ 1.
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Such codes have been studied by C.C., F. Freibert, S. Guilley, M.

Kiermaier, J.-L. Kim and P. Solé.

I Rotating S-boxes Masking (RSM, hardware)

To avoid the joint leakage :

Z ⊕ M M

! Joint leakage L

! !

which allows high-order SCA, the mask M is not processed at all.
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Instead, the computation for the next S-box is done with a Look-

Up-Table (LUT) of the masked S-box S′(x) = S(x⊕M)⊕M ′.
This allows a perfect protection against SCA.

But having a LUT for each masked version of each S-box is not

possible for reasons of memory.

A small number of S-boxes (e.g. w = 16 for the AES) are then

embedded already masked in the implementation and evaluated in

parallel (especially relevant for the ciphers that use many instances

of the same S-box, e.g. AES or PRESENT).

At every encryption, the allocation of the S-box for each of the 16

plaintext bytes is done randomly.
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This counter-measure can then be attacked by a high order SCA.

Theorem The countermeasure resists the d-th order attack if and

only if the indicator f of the mask set satisfies

∀a ∈ Fn2 , 1 ≤ wH(a) ≤ d⇒
∑
x∈Fn2

(−1)f(x)+a·x = 0,

that is, the indicator of M is a d-CI function.

Equivalently, the mask set is a code of dual distance at least d+1.

For d as large as possible, we look for such functions of minimum

nonzero Hamming weight, since the lower the weight of this function,

the cheaper the countermeasure.
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Why this poses new questions on
correlation-immune Boolean functions

Known constructions allow constructing balanced CI (resilient)

functions but not low weight CI-functions. For instance :

1. With Maiorana McFarland construction :

f(x, y) = x · φ(y)⊕ g(y) ; x ∈ Fr2, y ∈ Fn−r2 ,

we have

Wf(a, b) =
∑

y∈φ−1(a)

(−1)g(y)⊕b·x,

and for φ−1(0) 6= ∅, it is hard handling a = 0 and wH(b) ≤ m.

30



2. With indirect sum :

h(x, y) = f1(x)⊕ g1(y)⊕ (f1(x)⊕ f2(x))(g1(y)⊕ g2(y)),

we have

Wh(a, b) =
1

2
Wf1(a) [Wg1(b) +Wg2(b)] +

1

2
Wf2(a) [Wg1(b)−Wg2(b)] ,

and handling a = 0 and wH(b) ≤ m is hard too, as well as

b = 0 and wH(a) ≤ m.
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What is known on minimum weight CI functions

ωn,d : minimum weight of CI functions of order d.

2d divides ωn,d.

If n ≥ d ≥ 1, then

ωn+1,d ≤ 2ωn,d ≤ ωn+1,d+1.

Sketch of proof :

g(x, xn+1) = f(x) ;

f(x) = g(x, 0).
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Table 1: Lower bound on ωn,d by the Delsarte LP bound

n

d
1 2 3 4 5 6 7 8 9 10 11 12 13

1 2

2 2 4

3 2 4 8

4 2 6 8 16

5 2 8 12 16 32

6 2 8 16 32 32 64

7 2 8 16 48 64 64 128

8 2 10 16 64 88 112 128 256

9 2 12 20 96 128 192 224 256 512

10 2 12 24 96 192 320 384 512 512 1024

11 2 12 24 96 192 512 640 1024 1024 1024 2048

12 2 14 24 112 176 768 1024 1536 1792 2048 2048 4096

13 2 16 28 128 224 1024 1536 2560 3072 3584 4096 4096 8192
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n
d

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2
2 2 4
3 2 4 8
4 2 8 8 16
5 2 8 16 16 32
6 2 8 16 32 32 64
7 2 8 16 64 64 64 128
8 2 12 16 64 128 128 128 256
9 2 12 24 128 128 256 256 256 512
10 2 12 24 128 256 512 512 512 512 1024

11 2 12 24 ? ? 512 1024 1024 1024 1024 2048
12 2 16 24 ? ? ? 1024 2048 2048 2048 2048 4096

13 2 16 32 ? ? ? ? 4096 4096 4096 4096 4096 8192

Minimal value ωn,d of the cardinal of supp(f), where f : Fn2 → F2 is

d-CI.
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The entries in bold have been obtained by using Satisfiability

Modulo Theory (SMT) tools.

The entries in italic are obtained thanks to mathematical bounds.

For the entries with ? we have only upper and lower bounds.

Open question : the columns are they non-decreasing ?

Consequence : A byte-oriented block cipher (AES) can be pro-

tected with only 16 mask values against attacks of orders 1, 2 and

3.
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Constructions of low weight CI Boolean functions

It is enough to deal with d even :

Proposition Let d be an even integer such that 2 ≤ d ≤ n. Then :

ωn+1,d+1 = 2ωn,d.

Sketch of proof :

g(x, xn+1) =

{
f(x), when xn+1 = 0;

f(x+ 1n), when xn+1 = 1.
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Constructions by product :

The Walsh transform of a direct sum equals the product of the

Walsh transforms. This allows mainly to build resilient functions.

The Fourier-Hadamard transform of a direct product equals the

product of the Fourier-Hadamard transforms :∑
x∈Fn2 ,y∈F

m
2

f(x)g(y)(−1)a·x⊕b·y =

∑
x∈Fn2

f(x)(−1)a·x
∑

y∈Fm2

g(y)(−1)b·y
 .
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Multiplying Boolean functions produces unbalanced functions.

Proposition Let fj be dj-CI for any 1 ≤ j ≤ t.
For x(1), x(2), . . . , x(t) ∈ Fn2 , let :

h(x(1), x(2), . . . , x(t)) =

t∏
j=1

fj

( t∑
i=1

(
x(i) ×M (i,j)

))
,

where M = (M (i,j))1≤i,j≤t is an nt× nt nonsingular binary matrix.

M ′ : transposed of M−1.

Assume that, if 1 ≤ wH(u
(1), u(2), . . . , u(t)) ≤ d, then there exists

1 ≤ j ≤ t such that 1 ≤ wH
(

t∑
i=1

u(i) ×M ′(i,j)
)
≤ dj.
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Then h is d-CI and has Hamming weight
t∏

j=1

wH(fj).

Corollary Let d ≤ n and t ≥ 2.

Let f1 be d-CI and f2 . . . , ft be
⌊
d
2

⌋
-CI, and let :

h(x(1), x(2), . . . , x(t)) = f1(x
(1))

t∏
j=2

fj(x
(j) + x(1)).

Then h is d-CI and has Hamming weight
t∏

j=1

wH(fj).

This implies :

ωnt,d ≤ (ωn,bd2c)
t−1 ωn,d.

39



Constructions by Kronecker sum :

The Kronecker sum of two vectors is defined as

(x(1), x(2)) ∈ Fn22 × Fn12 → (x
(1)
i2

+ x
(2)
i1

)1≤i1≤n1,1≤i2≤n2 ∈ Fn1n22 .

Generalization : for any I = (i1, · · · , it) ∈
∏t
i=1{1, . . . ni},

let us denote I(r) = (i1, · · · , ir−1, ir+1, · · · , it), then define :

(x(1), x(2), . . . , x(t)) ∈ F
∑t
i=2 ni

2 × · · · × F
∑t−1
i=1 ni

2 →

x(1) � · · ·� x(t) =
( t∑
r=1

x
(r)

I(r)

)
I∈

∏t
i=1{1,...ni}

∈ Fn1n2···nt2 .
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Proposition Assume that 2t > d and :

- f1(x
(1)) is d-CI,

- f2(x
(2)) is 2bd2c-CI,

- for any r = 3, 4, . . . , t, fr(x
(r)) is such that, if 1 ≤ wH(v

(r)) ≤ d

with wH(v
(r)) even, then Wfr(v

(r)) = 0. Then h defined by :

Supp(h) =

{(
x(1) � · · ·� x(t), x(1)

)∣∣∣∣;
x(1) ∈ Supp(f1), x

(2) ∈ Supp(f2), . . . , x
(t) ∈ Supp(ft)

}
,

is d-CI and has Hamming weight
t∏

r=1
wH(fr).
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In particular, if f1 is d-CI and if fr is 2bd2c-CI for r = 2, . . . , t, then

h is d-CI of Hamming weight
t∏

r=1
wH(fr).

Corollary Let n1 ≥ 2, n2 ≥ 3 and let f1 be 3-CI and f2 2-CI.

Then, h defined by :

Supp(h) = {
(
x(1) � x(2), x(1)

)
|x(1) ∈ Supp(f1), x

(2) ∈ Supp(f2)}.

is 3-CI of Hamming weight wH(f1)wH(f2).
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Proposition Assume 2t > d and let f1(x
(1)) be d-CI and for

any r = 2, 3, . . . , t, let fr(x
(r)) be such that, for every v(r) ∈

Fnr2 satisfying 1 ≤ wH(v
(r)) ≤ d with wH(v

(r)) even, we have

Wfr(v
(r)) = 0. Then h defined by :

Supp(h) = {x(1) � · · ·� x(t)|
x(1) ∈ Supp(f1), x

(2) ∈ Supp(f2), . . . , x
(t) ∈ Supp(ft)},

is d-CI of Hamming weight
t∏

r=1
wH(fr).

More constructions of low-weight d-CI functions can be designed

by making additional restrictions on the supports.
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I Conclusion :

If people tell you that Boolean functions are of no use

anymore for some domain of cryptography, do not worry !

Thank you for attention !
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