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Notational framework

Let G be a group of order v written additively, but not necessarily abelian.
We use 0 to denote the identity in G .
For any S ⊆ G , we adopt the following conventions:

S? for the non-zero elements of S .

−S for the set of all inverses of elements of S .

If S ∩ −S = ∅, then we say S is skew.

By a “difference in S” we mean s − t where s, t ∈ S .
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Sets with regularity of difference?

Definition
Let S ,D be two subsets of our group G , and set |D| = k , |S | = s.

If there exist non-negative integers λ and µ such that every element
of S? can be written in precisely λ ways as a difference in D while
every element of G ? \ S can be written in precisely µ ways as a
difference in D, then D is a (v , s, k , λ, µ) generalised difference set
(GDS) related to S .

If S = D, then D is a (v , k, λ, µ) partial difference set (PDS).

If S = D and λ = µ, then D is a (v , k , λ) difference set (DS).

One point to note immediately about these objects is that if D is any of
these objects, then so is the complement G \ D.
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Examples DS and PDS

There are some easy and some not-so-easy examples. It is possible for a
multiplicative subgroup of a finite field to form a DS or PDS in the
additive group of a finite field.

Take the non-zero elements of any subfield of a finite field and you
will obtain a PDS.

(That was the easy example. . . )

Perhaps the most famous examples are those of Paley (1933): let D
be the set of all non-zero squares in Fq, q odd.

I If q ≡ 1 mod 4, then D is a (q, q−1
2 , q−5

4 , q−1
4 )-PDS in the additive

group of Fq.
I If q ≡ 3 mod 4, then D is a (q, q−1

2 , q−3
4 )-DS in the additive group of

Fq. In this case, D is necessarily skew.

There are other such examples, though they are somewhat rare.
Lehmer (1953) showed that if D is the set of all non-zero 4th powers
in Fp with p a prime of the form 1 + 4t2, t odd, then D is a DS in
the additive group of Fp.

Robert Coulter (UD) Image sets with regularity of differences June 2018 9 / 390625



Examples DS and PDS

There are some easy and some not-so-easy examples. It is possible for a
multiplicative subgroup of a finite field to form a DS or PDS in the
additive group of a finite field.

Take the non-zero elements of any subfield of a finite field and you
will obtain a PDS.

(That was the easy example. . . )

Perhaps the most famous examples are those of Paley (1933): let D
be the set of all non-zero squares in Fq, q odd.

I If q ≡ 1 mod 4, then D is a (q, q−1
2 , q−5

4 , q−1
4 )-PDS in the additive

group of Fq.
I If q ≡ 3 mod 4, then D is a (q, q−1

2 , q−3
4 )-DS in the additive group of

Fq. In this case, D is necessarily skew.

There are other such examples, though they are somewhat rare.
Lehmer (1953) showed that if D is the set of all non-zero 4th powers
in Fp with p a prime of the form 1 + 4t2, t odd, then D is a DS in
the additive group of Fp.

Robert Coulter (UD) Image sets with regularity of differences June 2018 9 / 390625



Examples DS and PDS

There are some easy and some not-so-easy examples. It is possible for a
multiplicative subgroup of a finite field to form a DS or PDS in the
additive group of a finite field.

Take the non-zero elements of any subfield of a finite field and you
will obtain a PDS. (That was the easy example. . . )

Perhaps the most famous examples are those of Paley (1933): let D
be the set of all non-zero squares in Fq, q odd.

I If q ≡ 1 mod 4, then D is a (q, q−1
2 , q−5

4 , q−1
4 )-PDS in the additive

group of Fq.
I If q ≡ 3 mod 4, then D is a (q, q−1

2 , q−3
4 )-DS in the additive group of

Fq. In this case, D is necessarily skew.

There are other such examples, though they are somewhat rare.
Lehmer (1953) showed that if D is the set of all non-zero 4th powers
in Fp with p a prime of the form 1 + 4t2, t odd, then D is a DS in
the additive group of Fp.

Robert Coulter (UD) Image sets with regularity of differences June 2018 9 / 390625



Examples DS and PDS

There are some easy and some not-so-easy examples. It is possible for a
multiplicative subgroup of a finite field to form a DS or PDS in the
additive group of a finite field.

Take the non-zero elements of any subfield of a finite field and you
will obtain a PDS. (That was the easy example. . . )

Perhaps the most famous examples are those of Paley (1933): let D
be the set of all non-zero squares in Fq, q odd.

I If q ≡ 1 mod 4, then D is a (q, q−1
2 , q−5

4 , q−1
4 )-PDS in the additive

group of Fq.
I If q ≡ 3 mod 4, then D is a (q, q−1

2 , q−3
4 )-DS in the additive group of

Fq. In this case, D is necessarily skew.

There are other such examples, though they are somewhat rare.
Lehmer (1953) showed that if D is the set of all non-zero 4th powers
in Fp with p a prime of the form 1 + 4t2, t odd, then D is a DS in
the additive group of Fp.

Robert Coulter (UD) Image sets with regularity of differences June 2018 9 / 390625



Another definition

Definition

A polynomial f ∈ Fq[X ] is r -to-1 over Fq if every non-zero y ∈ f (Fq) has
precisely r pre-images.

Note that this definition is only concerned about non-zero images.
I don’t care about how many roots the polynomial has, only about the
regularity on its non-zero images.
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More examples

Theorem (Qiu, Wang, Weng, Xiang, 2007)
Let f ∈ Fq[X ] be a 2-to-1 planar polynomial over Fq and set
D = f (Fq) \ {0}.

If q ≡ 1 mod 4, then D is a (q, q−1
2 , q−5

4 , q−1
4 )-PDS in the additive

group of Fq.

If q ≡ 3 mod 4, then D is a (q, q−1
2 , q−3

4 )-DS in the additive group of
Fq. In this case, D is necessarily skew.

Yes, this should look familiar!
The examples of Paley do fit this criteria: it is easy to prove X 2 is a 2-to-1
planar polynomial over any finite field of odd order.
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There are many more examples. . .

Most of us are familiar with bent functions in characteristic 2 being those
boolean functions whose supports are non-trivial difference sets in
elementary abelian 2-groups – we get (2n, 2n−1 ± 2

n
2
−1, 2n−2 ± 2

n
2
−1)-DS

in such cases.

And there are many other constructions – perhaps the most spectacular
result is that of Muzychuk, who constructed exponentially many
inequivalent skew Hadamard difference sets in elementary abelian groups
of order q3.
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An initial query on the planar result

Theorem (Qiu, Wang, Weng, Xiang, 2007)
Let f ∈ Fq[X ] be a 2-to-1 planar polynomial over Fq and set
D = f (Fq) \ {0}.

If q ≡ 1 mod 4, then D is a (q, q−1
2 , q−5

4 , q−1
4 )-PDS in the additive

group of Fq.

If q ≡ 3 mod 4, then D is a (q, q−1
2 , q−3

4 )-DS in the additive group of
Fq. In this case, D is necessarily skew.

Question: How close is this relationship between 2-to-1 planar polynomials
and image sets of polynomials being DS or PDS?
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Initial query and answer

Question: How close is this relationship between 2-to-1 planar polynomials
and image sets of polynomials being DS or PDS?

Perhaps not that close?
Even for monomials we can see an immediate difference.

A necessary condition for X n to be planar over Fq is gcd(n, q − 1) = 2,
but this is not sufficient.
But to generate the Paley PDS/DS examples, gcd(n, q − 1) = 2 is a
necessary and sufficient condition.
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Potential idea?

The relationship between Paley’s examples and those of planar functions
might not be quite as close as one might like, but the planar examples and
those examples coming from a subgroup of a multiplicative group of the
finite field do have one common point:

The condition on planar polynomials to construct DS/PDS is that they be
2-to-1, and we then take D to be the non-zero images of the polynomial.

A subgroup of order d in the multiplicative group of Fq can be written as
the set of non-zero images of the polynomial X k where q − 1 = kd , and
what is more, X k is a k-to-1 polynomial. Again the non-zero images of
the monomial are the potential DS/PDS.
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Bent functions?

Even the DS coming from bent functions are not too far removed from
being described by the image set of a polynomial.

In the single variable representation of a bent function, if you have a
polynomial f ∈ F22n [X ] for which Tr(f (x)) = 1 whenever f (x) 6= 0 and
Tr(f (x)) is a bent function, then the non-zero images of f are precisely
those elements of the support of the bent function, i.e. they are the DS.

There is no mention of regularity of images here, but that is not to say
that bent function examples wouldn’t occur this way.
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Basic questions

1 Given a finite field Fq, is there a general form for a polynomial that
has t zeros and is r -to-1?

2 For such polynomials, when, if ever, is D = f (Fq) \ {0} a
DS/PDS/GDS? That is, when does the image set of a r -to-1
polynomial exhibit a regularity of differences?

3 More generally, do those polynomials which exhibit a regularity of
images often produce image sets that exhibit a regularity of
differences?
Here, by a regularity of images I mean something potentially looser
than a r -to-1 polynomial, say a polynomial that has some certain
number of zeros, and is r -to-1 on some part of its image set, and
s-to-1 on the remainder of its image set – can such f produce image
sets which exhibit a regularity of differences?
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Basic answers – #1

Robert Coulter (UD) Image sets with regularity of differences June 2018 256 / 390625

1 Given a finite field Fq, is there a general form for a polynomial
that has t zeros and is r -to-1?

The general form of such an f ∈ Fq[X ] is going to be

f (x) = z(X ) c(X ),

where z(X ) is a degree t polynomial that splits completely over Fq,
while c(X ) is, in a sense, the controlling polynomial that forces f to
be r -to-1.

An obvious first point is that the way in which c(X ) controls the
images occurring is dependent on the set of roots of z(X ).



Basic answers – #1

Robert Coulter (UD) Image sets with regularity of differences June 2018 256 / 390625

1 Given a finite field Fq, is there a general form for a polynomial
that has t zeros and is r -to-1?

The general form of such an f ∈ Fq[X ] is going to be

f (x) = z(X ) c(X ),

where z(X ) is a degree t polynomial that splits completely over Fq,
while c(X ) is, in a sense, the controlling polynomial that forces f to
be r -to-1.

An obvious first point is that the way in which c(X ) controls the
images occurring is dependent on the set of roots of z(X ).



Basic answers – #1

Robert Coulter (UD) Image sets with regularity of differences June 2018 512 / 390625

1 Given a finite field Fq, is there a general form for a polynomial
that has t zeros and is r -to-1?

We have not investigated this much further.

One initial idea, and one we will use later, is to confine the roots of f
to be zero and a subgroup of the multiplicative group, so that

z(X ) = X t − X ,

with (t − 1)|(q − 1).
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Basic answers – #2
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2 Can the image set of a r -to-1 polynomial exhibit a regularity of
differences?

The obvious answer is yes – since the basis of the idea comes from
observing certain objects do.

But if we are to make some real progress here, we need to first
formulate a simplistic answer to our previous question, and for this
reason we chose to either make z(X ) = X (only to deal with
monomials) or X t − X .
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Basic answers – #2; Monomial case
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2 Can the image set of a r -to-1 polynomial exhibit a regularity of
differences?

First let us revisit the monomial case.

We have f (X ) = X n = X X n−1.

This has been well studied for DS and PDS, with Paley and Lehmer
the key early results.

But even here, in the simplest possible object, there is no
classification result.

You can view this as an advance warning that we’re probably
approaching a difficult problem, and that maybe we can’t expect to
get a nice working theory to come out of this.
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Basic answers – #2; Binomial case
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2 Can the image set of a r -to-1 polynomial exhibit a regularity of
differences?

Next simplest form is the binomial case.

With f (X ) = z(X )c(X ), and z(X ) = X t − X , we set d = t − 1 and
write

f (X ) = X i (X d − 1), with i ≥ 1.

And what now? The only thing for it is to compute and see if there is
anything potentially going on here in general.

What we find is, perhaps a little surprisingly, they occur in reasonable
numbers.
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Some results – q = 16 with f (X ) = X i(X d − 1)

Parameters d i Type Comments
[16,10,6] 1 {2, 6, 8, 12} DS 1-to-1 on 8 images, 3-to-1 on rest

5 {1, 3, 4, 6, 7, 9} DS 1-to-1 on non-zero images
[16,12,8,12] 3 {2,4,5,7,8,10} PDS Fq \ F4

[16,9,4,6] 1 {4,10} PDS 2-to-1 on 6 images, 1-to-1 on rest
[16,5,11,6,8] 1 {3,11} GDS
[16,6,7,4,2] 1 7 GDS

Note that these immediately answer Question #3 also – we have polynomials showing a
“dual-regularity” on their image sets producing a DS and a PDS.
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[16,9,4,6] 1 {4,10} PDS 2-to-1 on 6 images, 1-to-1 on rest
[16,5,11,6,8] 1 {3,11} GDS
[16,6,7,4,2] 1 7 GDS

Note that these immediately answer Question #3 also – we have polynomials showing a
“dual-regularity” on their image sets producing a DS and a PDS.
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Some results – q = 64 with f (X ) = X i(X d − 1)

Parameters d i Type Comments
[64,36,20] 9 ±{1, 4, 8, 11, 22, 25} mod 54 DS 1-to-1 and 3-to-1
[64,56,48,56] 7 32 in [2..54] PDS Fq \ F8

[64,42,26,30] 21 gcd(i , 63) = 1 PDS [64,21,8,6]c

[64,35,18,20] 1 {8, 54} PDS 2-to-1 and 1-to-1
[64,27,10,12] 9 ±{2, 10, 16, 17, 23} mod 54 PDS 2-to-1
[64,21,8,6] 7 ±{4, 13, 16, 22, 25, 31} mod 65 PDS [64,42,26,30]c

3-to-1 and 2-to-1
[64,14,6,2] 21 3k with k 6≡ 1 mod 3 PDS 3-to-1
[64,21,42,30,26] 3 ±{2, 16, 23} mod 60 GDS
[64,18,18,2,6] 9 ±{12, 21} mod 54 GDS
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Some results – q = 256 with f (X ) = X i(X d − 1)

Parameters d i Type Comments
[256,240,224,240] 15 many PDS Fq \ F16

[256,204,164,156] 51 many PDS [256,51,2,12]c

[256,170,114,110] 5 many PDS
85 many PDS [256,85,24,30]c

[256,135,70,72] 1 {16,238} PDS
[256,119,54,56] 17 30 in range 2 ≤ i ≤ 236 PDS
[256,85,24,30] 85 PDS [256,170,114,110]c

[256,68,12,20] 51 26, all of form 3k PDS
[256,51,2,12] 51 many PDS [256,204,164,156]c

[256,119,239,222,224] 1 15,239 GDS
[256,82,238,220,222] 17 30 in range 2 ≤ i ≤ 236 GDS
[256,75,180,132,124] 3 ±{40, 112, 125} mod 252 GDS

3 55,197 GDS
[256,27,48,16,8] 15 ±{20, 50} mod 240 GDS

15 ±{40, 115} mod 240 GDS

The two [256,170,114,110] PDS are inequivalent.
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This is not just a characteristic two thing

– sorry!

Parameters d i Type Comments
[243,121,60] 11 22k + 12, 0 ≤ k ≤ 9 DS D1

11 22k + 21, 0 ≤ k ≤ 9 DS −D1

121 gcd(i , 11) = 1 DS ±D2 6= D1

[243,220,199,220] 22 many PDS
[243,110,37,60] 22 many PDS
[243,110,176,125,130] 11 22k + 2, 0 ≤ k ≤ 10 GDS D3

11 22k + 2, 0 ≤ k ≤ 10 GDS D4 6= ±D3

[243,110,66,9,25] 22 22k + 10, 0 ≤ k ≤ 9 GDS D5

22 22k + 12, 0 ≤ k ≤ 9 GDS −D5

We have equivalent DS and inequivalent DS from this construction.

This [243,110,37,60] PDS is known, but to my knowledge it is still not known to be part of an
infinite family.

An open parameter for strongly regular graphs is (or was) [243,66,9,21], so this is remarkably
close. We, and others, have since proved that it cannot exist in abelian groups, so we can’t hope
to manipulate this GDS into a PDS of this type.
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Some results – q = 35 = 243 with f (X ) = X i(X d − 1)
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Some results – q = 36 = 729 with f (X ) = X i(X d − 1)
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Parameters d i Type Comments
[729,676,625,650] 52 odd & more PDS
[729,624,531,552] 104 odd & more PDS [729,104,31,12]c

[729,364,181,182] 26 4k + 3, k ≥ 0+more PDS
182 4k + 1, k ≥ 0+more PDS
364 as for d = 26 PDS

[729,312,135,132] 104 4k + 2 & more PDS
[729,182,55,42] 26 4k + 1 & more PDS

52 4k + 2 & more PDS
182 4k + 3 & more PDS
364 4k + 2 & more PDS

[729,156,45,30] 104 8k + 4 & more PDS
[729,104,31,12] 26 14k + 8+more PDS [729,624,531,552]c

52 14k + 9+more PDS [729,624,531,552]c

104 PDS [729,624,531,552]c

[729,52,25,2] 26 28k + 15 & more PDS
52 28k + 16 & more PDS

104 28k + 18 & more PDS
182 28k + 21 & more PDS
364 14k + 7 & more PDS

[729,546,364,181,183] 91 gcd(8k + 2, 91) = 1 GDS
91 gcd(8k + 3, 91) = 1 GDS

[729,702,351,162,351] 26 GDS
26 GDS



Nor is this a small characteristic thing

Parameters d i Type Comments
[2209,1104,551,552] 46,138,1104 many PDS two equivalent examples
[2209,1012,465,462] 184 many PDS
[2209,920,387,380] 368 many PDS
[2209,828,317,306] 552 many PDS
[2209,736,255,240] many many PDS and complements of
[2209,644,201,182] 276 many PDS
[2209,552,155,132] many many PDS and complements of
[2209,460,117,90] 368 many PDS
[2209,368,87,56] many many PDS and complements of
[2209,276,65,30] many many PDS and complements of
[2209,184,51,12] many many PDS and complements of
[2209,138,47,6] many many PDS
[2209,92,45,2] many many PDS and complements of
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Some results – q = 472 = 2209 with f (X ) = X i(X d − 1)

Parameters d i Type Comments
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With so much data. . . what to do?!

Our general strategy from here has been to

Sift through the data and try to identify some infinite families.

Look to prove any such families theoretically.

Categorise them against known examples.

Develop, as much as possible, a general framework which
encapsulates the approaches used in establishing any infinite families.

Ideally, we want new infinite families, but at this early stage we’re more
concerned with showing that the approach can produce infinite families;
i.e. that the construction method can actually work.
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Established infinite families using this approach

We have so far theoretically established the following infinite families.

1 Fix q = 2n.
Set f (X ) = X 2(X q−1 − 1) ∈ Fq2 [X ].
f is 2-to-1 and f (Fq2)? is a
[q2, 1

2 (q + 1)(q − 2), 1
4 (q + 2)(q − 1), 1

4q(q − 2)]-PDS.

2 Fix q = 2n and Tr be the trace mapping from Fq2 to Fq.
Set f (X ) = X (X q − 1) ∈ Fq2 [X ].
f is 1-to-1 on those images a ∈ Fq2 for which Tr(a) = 1 and 2-to-1
on all other images, and f (Fq2)? is a
[q2, 1

2 (q − 1)(q + 2), 1
4 (q − 2)(q + 1), 1

4q(q + 2)]-PDS.

3 Fix q to be any prime power and let αβ = q + 1.
Set f (X ) = Xα(1− α

∑β−1
i=0 X iα(q−1)) ∈ Fq2 [X ].

f is α-to-1 and f (Fq2)? is a
[q2, (q − 1)(β − 1), q − 3(β − 1) + (β − 1)2, (β − 1)(β − 2)]-PDS.
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Comparison against known example

All of the three families established fall into known general examples.

Classes I and II are the complements of Maiorana-McFarland bent
functions – this can be shown directly with a little bit of work.

Class III turns out to be connected to orthogonal arrays – details are still
to be typed up in full.

I want to highlight that the methods we’ve used to establish these are
roughly uniform and rely on the regularity of our polynomials to reduce the
character theory approach we use.
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Initial steps

Proving any of our classes falls into two basic steps.

1 Applying a general theory for counting images of differences using
character theory and Gauss sums that uses the regularity of the
polynomial.

2 Specialising to the specific polynomial in question. Here you rely on
the form of the polynomial, the type of images it produces, and its
regularity.

This second step has so far been fairly intensive and as it is case specific,
we don’t really envisage being able to make this part into a general theory.
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Outline of the general theory component

One fact so far hidden in our approach is that we are only looking to
construct cyclotomic PDS, which are those that are the union of cosets of
some subgroup C of F?q. We rely on this quite a bit in the theory I’m
about to outline.
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Outline of the general theory component

The main technique we use in order to determine if D is a PDS is to
evaluate a particular character sum.

For any y ∈ F?q, set

λy = |{(d1, d2) : d1, d2 ∈ D ∧ d1 − d2 = y}|.

Clearly we wish to count λy , for if D is a PDS, then λy will only be
dependent on whether or not y ∈ D.
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Outline of the general theory component

Let q be a power of the prime p and let χ be the canonical additive
character on Fq – that is χ(x) = ωTr(x), where ω is a primitive pth root of
unity and Tr is the trace mapping from Fq into Fp.

Classical character theory techniques give us the following formula for λy :

λy =
1

q

∑
t∈Fq

χ(ty) |χ(tD)|2

Robert Coulter (UD) Image sets with regularity of differences June 2018 32768 / 390625



Outline of the general theory component

λy =
1

q

∑
t∈Fq

χ(ty) |χ(tD)|2

Now let C = 〈gα〉, α|(q − 1), a subgroup of the multiplicative group
F?q = 〈g〉 and let D be a union of cosets of C – so D = ∪a∈IaC for some
I ⊂ Fq.

Setting Xi = χ(g iC ) and Yi = χ(g iD) (note these are still character
sums!) we can rewrite this equation (after some work!) to

qλy − k2 =
α−1∑
i=0

|Yi |2Xm+i ,

where |D| = k and where y ∈ gmC .
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Outline of the general theory component

So, with Xi = χ(g iC ) and Yi = χ(g iD), and with |D| = k and y ∈ gmC ,
we have

qλy − k2 =
α−1∑
i=0

|Yi |2Xm+i .

Note that the formula is only dependent on which coset of C the element
y lies in, and this greatly reduces the calculations necessary for testing if D
is a PDS.

However, we still need to calculate Xi and Yi , and it is in computing these
that different classes require drastically different methods.

Also, at this point, we’ve not seen anything about the regularity of the
polynomial (or indeed any polynomial!) being utilised.
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The impact of the polynomial’s regularity

Say our potential PDS D is also the non-zero image set of a polynomial
f ∈ Fq[X ] which has z zeros and is r -to-1.

Then we have k = |D| = (q − z)/r .

Setting St(f ) =
∑

x∈Fq
χ(tf (x)), we have the identity

χ(tD) =
1

r
(St(f )− z) .

Thus, calculating all of the Yi in our equation on λy is directly related to
calculating absolute values of Weil sums related to our polynomial f .

This impact is fairly significant, as now much of our problem is reduced to
calculating these Weil sums for (presumably!) nicely behaving polynomials.
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From the general framework to specifics

At this stage, individual cases take different paths.

How the polynomial behaves, its shape, any additional structure about its
image set, all of these and more can impact the remaining parts of the
proof.

The essential tasks are to compute the partial sums Xi and Yi , and also to
understand the interaction of the Yi term with Xm+i term for elements in
the gmC coset – it is not enough to be able to evaluate each of Xi and Yi

separately; we need to know how they evaluate together.

Patrick likes to describe the completion of these remaining difficulties as
“a matter of using linear functionals and double-counting arguments”.

I’m just going to say that “it is easy to see” and let you fill in the gaps.
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Future work
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Future work – short version

Lots to do!
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Future work

The search data is just the tip of the iceberg, and already we have
enormous numbers of examples.

In the smaller orders, we can categorise (with some guess work) many of
the DS and PDS we’re finding against known examples.

However, as we get into slightly larger orders, or larger degree extensions,
the number of examples explodes and then things become much less clear.

Additionally, we have situations where we get inequivalent DS with the
same parameters. We have not yet tackled these cases theoretically.
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Future work

All of the computational data we have so far is only for binomials.

We have not yet even begun to look at more general forms of polynomial.

To reasonably extend the search, however, we would need to have a much
better understanding of how to construct r -to-1 polynomials with z roots.

I think this is probably hard.
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Future work

Most of our efforts so far have been directed at establishing infinite classes
of PDS as a “proof of concept” type thing.

However, we also have what we believe is an infinite class of new GDS, but
we’re still trying to complete a proof for them.

Indeed, the data we have so far contains many examples of GDS, and
most of them I suspect to be new.

With all of the computational side of this its clear that presently we have
way too many questions and way too few answers.
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Future work

There is also the not-so-small matter of finding a better general theory.

I think it is fairly clear that there is no hope of having an all-encompassing
theory here, but I still hope that there is at least some main theory that
will cover some reasonably large set of examples of DS/PDS/GDS.

Additionally, the classification of the monomial examples remains, and this
is a problem dating back at least 60 years now.
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There are a lot more problems I could list here
but I think that’s enough for today.

You probably do too!

Thanks for listening.
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