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The associated Boolean function

Let F be a vectorial Boolean function from Fn
2 to itself.

Definition 1 ([1])
The associated Boolean function γF (a, b) in 2n variables of F is defined as
follows: it takes value 1 iff a 6= 0 and F (x) + F (x + a) = b has solutions.

Why this function is of interest?

F is almost perfect nonlinear (APN) iff wt(γF) = 22n−1 − 2n−1;
F is almost bent (AB) iff γ is a bent function.

[1] Carlet C., Charpin P., Zinoviev V.: Codes, bent functions and permutations suitable
for DES-like cryptosystems. Des. Codes Cryptogr. 15, 125–156 (1998).
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The differential equivalence: definition

We introduce the following notation.

Definition 2 ([2])
Two functions F ,G from Fn

2 to itself are called differentially equivalent if
γF = γG . Denote the differential equivalence class of F by DEF .

Further we will focus only on APN functions.

Proposition 1

Let F : Fn
2 → Fn

2 be an APN function, n > 1. Then Fc,d (x) = F (x + c) + d
is differentially equivalent to F for all c, d ∈ Fn

2 and all the functions Fc,d
are pairwise distinct.

We call functions Fc,d as trivially differentially equivalent functions to F .

[2] Gorodilova A.A.: On a remarkable property of APN Gold functions // Cryptology
ePrint Archive, Report 2016/286 (2016).
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General open problem on the differential equivalence

Problem 1 ([3])
Is it possible to find a systematic way, given an APN function F , to build
another function G such that γF = γG?

Problem 1 (modified)
Is it possible to describe the differential equivalence class of a given
APN function?
Do there exist functions which are not trivially differentially equivalent
to a given APN function?

[3] Carlet C.: Open Questions on Nonlinearity and on APN Functions. Arithmetic of
Finite Fields, Lecture Notes in Computer Science. 9061, 83–107 (2015).
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EA-invariant

Definition 3
F and G are called extended affine equivalent (EA-equivalent) if
G = A′ ◦ F ◦ A′′ + A, where A′,A′′ are affine permutations and A is affine.

Proposition 2
Let F ,G be EA-equivalent functions. Then |DEF | = |DEG |.

So, we can study the differential equivalence classes of EA-representatives.
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Open problem on CCZ-invariant

Definition 4 ([1])
Two functions F and G are said to be Carlet-Charpin-Zinoviev equivalent
(CCZ-equivalent) if their graphs GF = {(x ,F (x)) : x ∈ Fn

2} and
GG = {(x ,G (x)) : x ∈ Fn

2} are affine equivalent.

Problem 2
Is the cardinality of the differential equivalence class of an APN function a
CCZ-equivalence invariant?

As stated in [4] the answer to this question is positive.

[4] Canteaut A., Boura C., Jean J. and Suder V.: On Sboxes sharing the same DDT.
Abstracts of BFA-2018.
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Open problem on connection between the differential
equivalence and EA- (CCZ-) equivalence

Problem 3
Do there exist two differentially equivalent APN functions which are not
EA- (CCZ-) equivalent?

By now such two APN functions have not been found.
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The differential equivalence of quadratic APN functions
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Quadratic APN functions

Definition 5
F is quadratic if degree of its algebraic normal form is 2.

Let
Ba(F ) = {F (x) + F (x + a) : x ∈ Fn

2}

for a vector a ∈ Fn
2.

F is APN iff |Ba(F )| = 2n−1 for all nonzero a.

if F is quadratic, then Ba(F ) is an affine hyperplane for all nonzero a.
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Quadratic APN functions and crooked functions

In [5] definition of the crooked functions was introduced and it was
generalized to the following:

Definition 6
F is called generalized crooked if Ba(F ) is an affine hyperplane for all a 6= 0.

Problem 4 ([6])
Are all crooked functions quadratic?

If “yes”, then there are no nonquadratic functions differentially equivalent to
a given quadratic APN function.

[5] Bending T. D., Fon-Der-Flaass D.: Crooked functions, bent functions, and distance
regular graphs. Electron. J. Combin. 5 (1) (1998) R34.
[6] Kyureghyan G.: Crooked maps in Fn

2. Finite Fields Their Appl. 13(3), 713–726 (2007)

Anastasiya Gorodilova (SIM, NSU) Differential equivalence of APN functions BFA-2018 11 / 25



Open problem on adding affine functions

There always exist 22n trivially differentially equivalent functions to a given
APN function. Do there exist other?

If F is quadratic, then all these 22n trivial functions are obtained by
adding to F affine functions Ac,d (x) = F (x) + F (x + c) + d .

Problem 5
What affine functions do not change the associated Boolean function γF
when adding to a quadratic APN function F?
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APN Gold functions

Theorem 1

Let F : F2n → F2n be a Gold function F (x) = x2k+1, where gcd(k , n) = 1.
Then the following statements hold:

if n = 4t for some t and k = n/2± 1, then there exist exactly 22n+n/2

distinct affine functions A such that F and F + A are differentially
equivalent; all of them are of the form A(x) = α+ λ2k

x + λx2k
+ δx2j

,
where α, λ, δ ∈ F2n , δ = δ2

n/2
, and j = k − 1 for k = n/2 + 1 and

j = n − 1 for k = n/2− 1;
otherwise there exist exactly 22n distinct affine functions A such that F
and F + A are differentially equivalent; all of them are of the form
A(x) = α + λ2k

x + λx2k
, where α, λ ∈ F2n .
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Total numbers of affine functions A on Fn
2 such that F and

F + A are differentially equivalent

n # EA classes # affine functions A: F + A ∈ DEF

2 1 24

3 1 26

4 1 [7] 210

5 2 [7] for all 2 classes: 210

6 13 [8,9] for 12 classes: 212; for 1 class: 213

7 ≥ 487 [10] for all known 487 classes: 214

8 ≥ 8179 [10] for 1 class from known 8179: 220

for other 8178 classes: 216

[7] Brinkman M., Leander G.: On the classification of APN functions up to dimension five. Proc. of the International
Workshop on Coding and Cryptography 2007 dedicated to the memory of Hans Dobbertin. Versailles, France, 39–48
(2007).
[8] Browning K. A., Dillon J. F., Kibler R. E., McQuistan M. T.: APN Polynomials and Related Codes. Journal of
Combinatorics, Information and System Science, Special Issue in honor of Prof. D.K Ray-Chaudhuri on the occasion
of his 75th birthday, vol. 34, no. 1-4, pp. 135–159 (2009).
[9] Edel Y.: Quadratic APN functions as subspaces of alternating bilinear forms. Contact Forum Coding Theory and
Cryptography III, Belgium (2009), pp. 11–24 (2011).
[10] Yu Y., Wang M., Li Y.: A matrix approach for constructing quadratic APN functions. Des. Codes Cryptogr. 73,
587–600 (2014).
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Properties of the associated Boolean function of a quadratic APN function
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The associated function of a quadratic APN function

Let F be a quadratic APN function on Fn
2.

Then γF is of the form

γF (a, b) = ΦF (a) · b + ϕF (a) + 1,

where ΦF : Fn
2 → Fn

2, ϕF : Fn
2 → F2 are uniquely defined from

Ba(F ) = {y ∈ Fn
2 : ΦF (a) · y = ϕF (a)}

for all a 6= 0 and ΦF (0) = 0, ϕF (0) = 1.

Note that Ba(F ) is a linear subspace iff ϕF (a) = 0.
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ΦF — what is this?

Let us denote AF
v = {a ∈ Fn

2 : ΦF (a) = v} for v ∈ Fn
2.

Proposition 3 ([1])
Let F be a quadratic APN function in n variables, n is odd. Then ΦF is a
permutation; therefore, γF is a bent function of Maiorana–McFarland type.

Thus, when n is odd, all AF
v , v ∈ Fn

2, are pairwise distinct and each of them
consists of one element. We prove the following theorem for even n.

Theorem 2

Let F be a quadratic APN function in n variables, n is even. Then AF
v ∪ {0}

is a linear subspace of even dimension for any v ∈ Fn
2.
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ΦF — what is this?

Value distribution of ΦF for even n.

n # EA classes
# {v ∈ Fn

2 : |AF
v | = k}

k = 3 k = 15

4 1 5 –

6 13
for 12 classes: 21 –
for 1 class: 16 1

8 ≥ 8179
for 7680 classes: 85 –
for 487 classes: 80 1
for 12 classes: 75 2
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ΦF — what is this?

Theorem 3

Let F be a quadratic APN function in n variables, n is odd, n ≥ 3. Then
deg(ΦF ) ≤ n − 2.

The bound of theorem 4 is tight for all known quadratic APN functions in
not more than 8 variables (including also even numbers).

Moreover, it holds that all their component functions are of degree n − 2.

For example, for an APN Gold function we have ΦF (a) = (a2k+1)−1,
ΦF (0) = 0, and deg(ΦF ) = n − 2.
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The linear spectrum of quadratic APN functions
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The linear spectrum: definition

Let F , L : Fn
2 → Fn

2, where F is a quadratic APN function and L is linear.

Then Ba(F + L) equals Ba(F ) or Fn
2 \ Ba(F ) for all a ∈ Fn

2.

Let us denote kF
L = |{a ∈ Fn

2 \ {0} : Ba(F ) = Ba(F + L)}|.

Definition 7
The linear spectrum of a quadratic APN function F in n variables is the
vector ΛF = (λF

0 , . . . , λ
F
2n−1), where λF

k is the number of linear functions L
such that kF

L = k.

It is easy to see that
∑2n−1

k=0 λF
k = 2n2 .
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The linear spectrum: invariant

Proposition 4

The linear spectrum of a quadratic APN function is
a differential equivalence invariant;
a EA-equivalence invariant.

Let F be a quadratic APN function in n variables. Then

n = 3 ΛF = (0, 56, 0, 280, 0, 168, 0, 8)
n = 4 ΛF = (0, 0, 0, 0, 0, 15552, 0, 25920, 0, 17280, 0, 5760, 0, 960, 0, 64)
n = 5 2 classes with distinct spectra
n = 6 13 classes with pairwise distinct spectra except one pair having equal spectrum

Anastasiya Gorodilova (SIM, NSU) Differential equivalence of APN functions BFA-2018 22 / 25



The linear spectrum: zero values

Theorem 4

Let F be a quadratic APN function in n variables, n > 1. Then the
following statements hold:

λF
k = 0 for all even k, 0 ≤ k ≤ 2n − 2;

if n is even, then λF
k = 0 for all 0 ≤ k < (2n − 1)/3.

Let F be a quadratic APN function in n variables. Then

n = 3 ΛF = (0, 56, 0, 280, 0, 168, 0, 8)
n = 4 ΛF = (0, 0, 0, 0, 0, 15552, 0, 25920, 0, 17280, 0, 5760, 0, 960, 0, 64)
n = 5 2 classes with distinct spectra
n = 6 13 classes with pairwise distinct spectra except one pair having equal spectra
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Differential equivalent functions in small number of variables

Based on results about the linear spectra, properties of γF , we
computationally obtained a classification of differentially nonequivalent
quadratic APN functions up to 6 variables.

Theorem 5

Let F be a quadratic APN function in n variables, n = 2, 3, 4, 5, 6. Then
each differentially equivalent to F quadratic APN function G is represented
as follows: G = F + A, where A is an affine function. Moreover, the number
K of such functions A equals 22n for all functions except functions from two
EA-equivalence classes with the following representatives:

n = 4: APN Gold function F (x) = x3, K = 210;
n = 6: APN function
F (x) = α7x3 + x5 + α3x9 + α4x10 + x17 + α6x18, K = 213.
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Thank you for your attention!
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