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Introduction Preliminaries

Preliminaries

consider F : F2n → F2n ;

derivative DaF (x) = F (x) + F (a + x);
∆F (a, b) = #{x ∈ F2n : DaF (x) = b};
differential uniformity ∆F = maxa∈F∗2n ,b∈F2n ∆F (a, b);
measures resistance to differential cryptanalysis;
always even;
F is Almost Perfect Nonlinear (APN) if ∆F = 2.
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Introduction Preliminaries

Preliminaries (2)

unique univariate representation of any (n, n)-function as

F (x) =
2n−1∑
i=0

ci x i , ci ∈ F2n .

algebraic degree of F is

deg(F ) = max
i :ci 6=0

w2(i)

where w2(i) is the two-weight of i .
Walsh Transform of F is the function W : F2

2n → Z defined as

W (a, b) =
∑

x∈F2n

(−1)Tr(bF (x)+ax)

where Tr : F2n → F2 is the absolute trace function.
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Introduction Preliminaries

Preliminaries (3)

Fb : F2n → F2 defined as Fb(x) = Tr(bF (x)) for b ∈ F2n are the
component functions of F ;

the Hamming distance between two functions F and G is
d(F ,G) = #{x : F (x) 6= G(x)};
the nonlinearity of F is

NL(F ) = max
b∈F∗2n

min
a∈F2n

d(Fb, a)

with the last minimum over all affine a : F2n → F2;
Useful formula:

NL(F ) = 2n−1 − 1
2 max

b∈F∗2n ,a∈F2n
|WF (a, b)|.
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Introduction Changing One Point

Changing a Single Point in a Function

research on constructions of i.a. APN functions is ongoing;

maximum algebraic degree of APN function is an open problem:
is it possible to have deg(F ) = n for F over F2n APN?
“On upper bounds for algebraic degrees of APN functions”
(Budaghyan, Carlet, Helleseth, Li, Sun): changing one point in a
given function F by

G(x) = F (x) + (1 + (x + u)2n−1)v =
{

F (x) x 6= u
F (u) + v x = u.
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Introduction Changing Multiple Points

Changing Multiple Points in a Function

Given natural K ≥ 1 and F : F2n → F2n , construct G by changing K
points:

select u1, u2, . . . , uk from F2n with #{u1, u2, . . . , uK} = K ;
select v1, v2, . . . , vk from F∗

2n ;
define G as

G(x) = F (x) +
K∑

i=1
(1 + (x + u1)2n−1)vi

=
{

F (x) x /∈ U
F (ui ) + vi x = ui , i ∈ {1, 2, . . . ,K}.

What can be said about the properties of F and G?
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Introduction General Observations

General Observations (Algebraic Degree)

F (x) + G(x) has coefficient
∑K

i=1 vi uk−1
i in front of x2n−k ;

assume
∑K

i=1 vi = 0, otherwise reduces to deg(G) = n;
G has a term cx2n−2 unless F has a term c ′x2n−2 with c ′ =

∑K
i=0 vi ui ;

hence min{deg(F ), deg(G)} ≥ n − 1;
bounds on algebraic degree now imply non-existence results:

if F is Almost Bent (AB), then G is not AB for n > 3;
if F is plateaued, then G is not plateaued for n > 4;
same if deg(F ) < n − 1.
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Introduction Walsh Transform

General Observations (Walsh Transform)

by mechanical computations:

WG(a, b) = WF (a, b) +
K∑

i=1
(−1)Tr(bF (ui )+aui )

(
(−1)Tr(bvi ) − 1

)
;

hence −2K ≤WG(a, b)−WF (a, b) ≤ 2K ;
hence −K ≤ NL(G)−NL(F ) ≤ K .
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Analysis Derivative Analysis

Derivative Analysis

let 1a,b(x) = 1 if x ∈ {a, b} and 1a,b(x) = 0 otherwise;

DaG and DaF differ on the points in U ∪ (a + U):

DaG(x) = DaF (x) +
K∑

i=1
1ui ,a+ui (x)vi ;

for a ∈ F∗2n , let aU = {ui ∈ U : ui + a ∈ U} and denote by i the index
j for which ui + a = uj ;
G is not APN if and only if DaF (x) = DaF (y) for some a, x , y ∈ F2n

with a 6= 0, x 6= y , x 6= a + y ;
several cases need to be treated depending on whether x and y are in
U and aU;
finally, we obtain the following characterization:
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Analysis Derivative Analysis

Derivative Analysis (2)

Theorem
G is APN if and only if every a ∈ F∗2n satisfies:

DaF is 2-to-1 on F2n \ (U ∪ a + U);
DaF (ui ) + DaF (uj) 6= vi + vj + vpa(i) + vpa(j) for i , j ∈ All(pa) unless
ui = uj or ui + uj = a;
DaF (ui ) + DaF (uj) 6= vi + vj + vpa(i) for i ∈ All(pa), j /∈ All(pa);
DaF (ui ) + DaF (uj) 6= vi + vj for i , j /∈ All(pa) unless ui = uj ;
DaF (ui ) + DaF (x) 6= vi + vpa(i) for i ∈ All(pa), x /∈ (U ∪ a + U);
DaF (ui ) + DaF (x) 6= vi for i /∈ All(pa), x /∈ (U ∪ a + U).
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Analysis Filtering Procedure

Applications of the Theorem

if u1, u2, . . . , uK are known, the theorem can be used to filter the
domains of v1, v2, . . . , vK ;

for F (x) = x3 over F25 and U = {αi : i ∈ {0, 1, . . . , 5}}, where α is
primitive in F25 , no choice for v1, . . . , v6 produces an APN function;
checking all possibilities by hand requires about 75 hours; filtering
according to the theorem requires less than a second;
various iterative filtering procedures can be applied if some ui and vi
are known;
even if nothing is known, a lower bound on the distance to the
“closest” APN function can be computed from point (vi) of the
theorem.
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Analysis Distance Between APN Functions

Lower Bound on Distance to Closest APN Function

by condition (vi), any derivative DaF having DaF (ui ) + vi in its image
must satisfy either a + ui ∈ U or DaF (uj) = DaF (ui ) + vi for j 6= i ;

let mβ
F (b) = #{a ∈ F2n : (∃x ∈ F2n )(DaF (x) = b + F (a + β))};

to count the number of a ∈ F∗2n for which DaF maps to DaF (ui ) + vi
for arbitrary values of ui and vi we need to find the maximum value of
mβ

F (b) through all b, β ∈ F2n ;
as an “intermediate step” we let mβ

F = max{mβ
F (b) : b ∈ F2n};

finally, denote mF = max{mβ
F (b) : b, β ∈ F2n} = max{mβ

F : β ∈ F2n};
then for any APN function G we have

d(F ,G) ≥
⌈mF

3

⌉
+ 1.
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Analysis Distance Between APN Functions

Invariance Properties

Proposition
Let F and F ′ be CCZ-equivalent functions via L = (L1, L2). Then

mβ
F (b) = mL1(β,b)

F (L2(β, b)).

Hence, mF is invariant under CCZ-equivalence.

Proposition

Let F be a quadratic function over F2n . Then mβ
F = mβ′

F holds for any
β, β′ ∈ F2n .

Hence only e.g. m0
F has to be computed for quadratic functions.
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Analysis Distance Between APN Functions

Values of mF for all Switching Class Representatives
Dimension F mF Distance Dimension F mF Distance

4 x3 3 2 8 1.3 111 38
5 x3 15 6 8 1.4 111 38
5 x5 15 6 8 1.5 111 38
5 x15 9 4 8 1.6 111 38
6 1.1 27 10 8 1.7 111 38
6 1.2 27 10 8 1.8 111 38
6 2.1 15 6 8 1.9 111 38
6 2.2 27 10 8 1.10 111 38
6 2.3 27 10 8 1.11 111 38
6 2.4 15 6 8 1.12 111 38
6 2.5 15 6 8 1.13 111 38
6 2.6 15 6 8 1.14 99 34
6 2.7 15 6 8 1.15 111 38
6 2.8 15 6 8 1.16 111 38
6 2.9 21 8 8 1.17 111 38
6 2.10 21 8 8 2.1 111 38
6 2.11 15 6 8 3.1 111 38
6 2.12 15 6 8 4.1 99 34
7 all 63 22 8 5.1 105 36
8 1.1 111 38 8 6.1 105 36
8 1.2 111 38 8 7.1 111 38
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Analysis Constant Shift

The Case of Constant Shift

if v1 = v2 = · · · = vK = v 6= 0, the APN-ness of G can be
characterized by solving a system of linear equations;

for (a, x , y) ∈ F3
2n , count the number Na,x ,y of elements from the set

{x , y , a + x , a + y} that are in U;
DaG(x) = b can have more than two solutions if and only if

DaF (x) + DaF (y) = vNa,x ,y

for some x , y ∈ F2n with x + y 6= a;
a system of linear equations with the unknowns ua can be constructed
that prevents this from happening;
here any a ∈ F2n , let ua be an indicator variable such that
ua = 1 ⇐⇒ a ∈ U.
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Analysis Constant Shift

The Case of Constant Shift

find all (x , y , a) such that DaF (x) + DaF (y) = v ;

consider the equation ux + uy + ua+x + ua+y = 0;
find also all (x , y , a) such that DaF (x) + DaF (y) = 0;
consider the equation ux + uy + ua+x + ua+y = 1;
solve this system of equations, e.g. by constructing an e × (2n)
matrix over F2, where e is the number of tuples that we consider;
the solutions give precisely those sets U ⊆ F2n for which G is APN.
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Conclusion

Directions of Research

improve the lower bound on the distance between APN functions or
show that it is tight;

investigate the structure of sets u1, u2, . . . , uK for which G can be
APN;
investigate similar relations between functions other than APN, e.g.
AB, plateaued, differentially 4-uniform;
derive efficient search procedures for constructing one APN function
from another.
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