Changing Points in APN Functions

Nikolay S. Kaleyski (joint work with Lilya Budaghyan, Claude Carlet and Tor Helleseth)

University of Bergen

June 18, 2018

• consider $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$;

A D N A B N A B N A B N

- consider $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$;
- derivative $D_aF(x) = F(x) + F(a+x)$;

A D N A B N A B N A B N

- consider $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$;
- derivative $D_aF(x) = F(x) + F(a+x)$;
- $\Delta_F(a,b) = \#\{x \in \mathbb{F}_{2^n} : D_aF(x) = b\};$

< □ > < 同 > < 回 > < 回 > < 回 >

- consider $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$;
- derivative $D_aF(x) = F(x) + F(a+x)$;
- $\Delta_F(a,b) = \#\{x \in \mathbb{F}_{2^n} : D_aF(x) = b\};$
- differential uniformity $\Delta_F = \max_{a \in \mathbb{F}_{2^n}^*, b \in \mathbb{F}_{2^n}} \Delta_F(a, b)$;

・ 何 ト ・ ヨ ト ・ ヨ ト

- consider $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$:
- derivative $D_aF(x) = F(x) + F(a+x)$;
- $\Delta_F(a,b) = \#\{x \in \mathbb{F}_{2^n} : D_aF(x) = b\};$
- differential uniformity $\Delta_F = \max_{a \in \mathbb{F}_{2^n}^*, b \in \mathbb{F}_{2^n}} \Delta_F(a, b)$;
- measures resistance to differential cryptanalysis;

- consider $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$;
- derivative $D_aF(x) = F(x) + F(a+x)$;
- $\Delta_F(a,b) = \#\{x \in \mathbb{F}_{2^n} : D_aF(x) = b\};$
- differential uniformity $\Delta_F = \max_{a \in \mathbb{F}_{2^n}^*, b \in \mathbb{F}_{2^n}} \Delta_F(a, b)$;
- measures resistance to differential cryptanalysis;
- always even;

• • = • • = •

- consider $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$;
- derivative $D_aF(x) = F(x) + F(a+x)$;
- $\Delta_F(a,b) = \#\{x \in \mathbb{F}_{2^n} : D_aF(x) = b\};$
- differential uniformity $\Delta_F = \max_{a \in \mathbb{F}_{2^n}^*, b \in \mathbb{F}_{2^n}} \Delta_F(a, b)$;
- measures resistance to differential cryptanalysis;
- always even;
- F is Almost Perfect Nonlinear (APN) if $\Delta_F = 2$.

• • = • • = •

Preliminaries (2)

• unique univariate representation of any (n, n)-function as

$$F(x) = \sum_{i=0}^{2^n-1} c_i x^i, c_i \in \mathbb{F}_{2^n}$$

A (1) > A (2) > A

Preliminaries (2)

• unique univariate representation of any (n, n)-function as

$$F(x)=\sum_{i=0}^{2^n-1}c_ix^i, c_i\in\mathbb{F}_{2^n}.$$

• algebraic degree of F is

$$\deg(F) = \max_{i:c_i \neq 0} w_2(i)$$

where $w_2(i)$ is the two-weight of *i*.

Preliminaries (2)

• unique univariate representation of any (n, n)-function as

$$F(x)=\sum_{i=0}^{2^n-1}c_ix^i, c_i\in\mathbb{F}_{2^n}.$$

• algebraic degree of F is

$$\deg(F) = \max_{i:c_i \neq 0} w_2(i)$$

where $w_2(i)$ is the two-weight of *i*.

• Walsh Transform of F is the function $W : \mathbb{F}_{2^n}^2 \to \mathbb{Z}$ defined as

$$W(a,b) = \sum_{x \in \mathbb{F}_{2^n}} (-1)^{\operatorname{Tr}(bF(x)+ax)}$$

where $\operatorname{Tr} : \mathbb{F}_{2^n} \to \mathbb{F}_2$ is the absolute trace function.

Preliminaries (3)

F_b : *F<sub>2ⁿ* → *F₂* defined as *F_b(x)* = Tr(*bF(x)*) for *b* ∈ *F_{2ⁿ}* are the component functions of *F*;
</sub>

イロト 不得下 イヨト イヨト

Preliminaries (3)

- *F_b* : *F<sub>2ⁿ* → *F₂* defined as *F_b(x)* = Tr(*bF(x)*) for *b* ∈ *F_{2ⁿ}* are the component functions of *F*;
 </sub>
- the Hamming distance between two functions F and G is d(F, G) = #{x : F(x) ≠ G(x)};

イロト イポト イヨト イヨト 二日

Preliminaries (3)

- $F_b: \mathbb{F}_{2^n} \to \mathbb{F}_2$ defined as $F_b(x) = \operatorname{Tr}(bF(x))$ for $b \in \mathbb{F}_{2^n}$ are the component functions of F:
- the Hamming distance between two functions F and G is $d(F, G) = \#\{x : F(x) \neq G(x)\};\$
- the nonlinearity of F is

$$\mathcal{NL}(F) = \max_{b \in \mathbb{F}_{2^n}} \min_{a \in \mathbb{F}_{2^n}} \mathrm{d}(F_b, a)$$

with the last minimum over all affine $a : \mathbb{F}_{2^n} \to \mathbb{F}_2$;

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Preliminaries (3)

- $F_b: \mathbb{F}_{2^n} \to \mathbb{F}_2$ defined as $F_b(x) = \operatorname{Tr}(bF(x))$ for $b \in \mathbb{F}_{2^n}$ are the component functions of F;
- the Hamming distance between two functions F and G is $d(F, G) = #\{x : F(x) \neq G(x)\};$
- the nonlinearity of F is

$$\mathcal{NL}(F) = \max_{b \in \mathbb{F}_{2^n}^*} \min_{a \in \mathbb{F}_{2^n}} \mathrm{d}(F_b, a)$$

with the last minimum over all affine $a : \mathbb{F}_{2^n} \to \mathbb{F}_2$;

• Useful formula:

$$\mathcal{NL}(F) = 2^{n-1} - \frac{1}{2} \max_{b \in \mathbb{F}_{2^n}^*, a \in \mathbb{F}_{2^n}} |W_F(a, b)|.$$

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

• research on constructions of i.a. APN functions is ongoing;

- research on constructions of i.a. APN functions is ongoing;
- maximum algebraic degree of APN function is an open problem:

- research on constructions of i.a. APN functions is ongoing;
- maximum algebraic degree of APN function is an open problem:
- is it possible to have deg(F) = n for F over \mathbb{F}_{2^n} APN?

- research on constructions of i.a. APN functions is ongoing;
- maximum algebraic degree of APN function is an open problem:
- is it possible to have deg(F) = n for F over \mathbb{F}_{2^n} APN?
- "On upper bounds for algebraic degrees of APN functions" (Budaghyan, Carlet, Helleseth, Li, Sun): changing one point in a given function F by

$$G(x) = F(x) + (1 + (x + u)^{2^n - 1})v = \begin{cases} F(x) & x \neq u \\ F(u) + v & x = u. \end{cases}$$

• Given natural $K \ge 1$ and $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$, construct G by changing K points:

・ 何 ト ・ ヨ ト ・ ヨ ト

- Given natural $K \ge 1$ and $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$, construct G by changing K points:
 - select $u_1, u_2, ..., u_k$ from \mathbb{F}_{2^n} with $\#\{u_1, u_2, ..., u_K\} = K$;

イロト 不得下 イヨト イヨト

- Given natural $K \ge 1$ and $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$, construct G by changing K points:
 - select $u_1, u_2, ..., u_k$ from \mathbb{F}_{2^n} with $\#\{u_1, u_2, ..., u_K\} = K$;
 - select v_1, v_2, \ldots, v_k from $\mathbb{F}_{2^n}^*$;

イロト 不得下 イヨト イヨト

- Given natural $K \ge 1$ and $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$, construct G by changing K points:
 - select u_1, u_2, \ldots, u_k from \mathbb{F}_{2^n} with $\#\{u_1, u_2, \ldots, u_K\} = K$;
 - select v_1, v_2, \ldots, v_k from $\mathbb{F}_{2^n}^*$;
 - define G as

$$G(x) = F(x) + \sum_{i=1}^{K} (1 + (x + u_1)^{2^n - 1}) v_i$$

=
$$\begin{cases} F(x) & x \notin U \\ F(u_i) + v_i & x = u_i, i \in \{1, 2, \dots, K\}. \end{cases}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Given natural $K \ge 1$ and $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$, construct G by changing K points:
 - select u_1, u_2, \ldots, u_k from \mathbb{F}_{2^n} with $\#\{u_1, u_2, \ldots, u_K\} = K$;
 - select v_1, v_2, \ldots, v_k from $\mathbb{F}_{2^n}^*$;
 - define G as

$$G(x) = F(x) + \sum_{i=1}^{K} (1 + (x + u_1)^{2^n - 1}) v_i$$

=
$$\begin{cases} F(x) & x \notin U \\ F(u_i) + v_i & x = u_i, i \in \{1, 2, \dots, K\}. \end{cases}$$

• What can be said about the properties of F and G?

< ロ > < 同 > < 回 > < 回 > < 回 > <

General Observations (Algebraic Degree)

• F(x) + G(x) has coefficient $\sum_{i=1}^{K} v_i u_i^{k-1}$ in front of x^{2^n-k} ;

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへの

General Observations

- F(x) + G(x) has coefficient $\sum_{i=1}^{K} v_i u_i^{k-1}$ in front of x^{2^n-k} ;
- assume $\sum_{i=1}^{K} v_i = 0$, otherwise reduces to deg(G) = n;

General Observations

- F(x) + G(x) has coefficient $\sum_{i=1}^{K} v_i u_i^{k-1}$ in front of x^{2^n-k} ;
- assume $\sum_{i=1}^{K} v_i = 0$, otherwise reduces to deg(G) = n;
- G has a term cx^{2^n-2} unless F has a term $c'x^{2^n-2}$ with $c' = \sum_{i=0}^{K} v_i u_i$;

General Observations

- F(x) + G(x) has coefficient $\sum_{i=1}^{K} v_i u_i^{k-1}$ in front of x^{2^n-k} ;
- assume $\sum_{i=1}^{K} v_i = 0$, otherwise reduces to deg(G) = n;
- G has a term cx^{2^n-2} unless F has a term $c'x^{2^n-2}$ with $c' = \sum_{i=0}^{K} v_i u_i$;
- hence min $\{\deg(F), \deg(G)\} \ge n-1;$

General Observations

- F(x) + G(x) has coefficient $\sum_{i=1}^{K} v_i u_i^{k-1}$ in front of x^{2^n-k} ;
- assume $\sum_{i=1}^{K} v_i = 0$, otherwise reduces to deg(G) = n;
- G has a term cx^{2^n-2} unless F has a term $c'x^{2^n-2}$ with $c' = \sum_{i=0}^{K} v_i u_i$;
- hence min $\{\deg(F), \deg(G)\} \ge n-1;$
- bounds on algebraic degree now imply non-existence results:

General Observations

- F(x) + G(x) has coefficient $\sum_{i=1}^{K} v_i u_i^{k-1}$ in front of x^{2^n-k} ;
- assume $\sum_{i=1}^{K} v_i = 0$, otherwise reduces to deg(G) = n;
- G has a term cx^{2^n-2} unless F has a term $c'x^{2^n-2}$ with $c' = \sum_{i=0}^{K} v_i u_i$;
- hence min $\{\deg(F), \deg(G)\} \ge n-1;$
- bounds on algebraic degree now imply non-existence results:
 - if F is Almost Bent (AB), then G is not AB for n > 3;

General Observations

- F(x) + G(x) has coefficient $\sum_{i=1}^{K} v_i u_i^{k-1}$ in front of x^{2^n-k} ;
- assume $\sum_{i=1}^{K} v_i = 0$, otherwise reduces to deg(G) = n;
- G has a term cx^{2^n-2} unless F has a term $c'x^{2^n-2}$ with $c' = \sum_{i=0}^{K} v_i u_i$;
- hence min $\{\deg(F), \deg(G)\} \ge n-1;$
- bounds on algebraic degree now imply non-existence results:
 - if F is Almost Bent (AB), then G is not AB for n > 3;
 - if F is plateaued, then G is not plateaued for n > 4;

General Observations

General Observations (Algebraic Degree)

- F(x) + G(x) has coefficient $\sum_{i=1}^{K} v_i u_i^{k-1}$ in front of x^{2^n-k} ;
- assume $\sum_{i=1}^{K} v_i = 0$, otherwise reduces to deg(G) = n;
- G has a term cx^{2^n-2} unless F has a term $c'x^{2^n-2}$ with $c' = \sum_{i=0}^{K} v_i u_i$;
- hence min $\{\deg(F), \deg(G)\} \ge n-1;$
- bounds on algebraic degree now imply non-existence results:
 - if F is Almost Bent (AB), then G is not AB for n > 3;
 - if F is plateaued, then G is not plateaued for n > 4;
 - same if $\deg(F) < n 1$.

不得 とう ほう とう とう

General Observations (Walsh Transform)

• by mechanical computations:

$$W_{G}(a,b) = W_{F}(a,b) + \sum_{i=1}^{K} (-1)^{\operatorname{Tr}(bF(u_{i})+au_{i})} \left((-1)^{\operatorname{Tr}(bv_{i})} - 1
ight);$$

< A > < E

General Observations (Walsh Transform)

• by mechanical computations:

$$W_G(a,b) = W_F(a,b) + \sum_{i=1}^{K} (-1)^{\operatorname{Tr}(bF(u_i)+au_i)} \left((-1)^{\operatorname{Tr}(bv_i)} - 1
ight);$$

• hence $-2K \leq W_G(a, b) - W_F(a, b) \leq 2K$;

General Observations (Walsh Transform)

• by mechanical computations:

$$W_{G}(a,b) = W_{F}(a,b) + \sum_{i=1}^{K} (-1)^{\operatorname{Tr}(bF(u_{i})+au_{i})} \left((-1)^{\operatorname{Tr}(bv_{i})} - 1
ight);$$

• hence
$$-2K \leq W_G(a, b) - W_F(a, b) \leq 2K$$
;

• hence $-K \leq \mathcal{NL}(G) - \mathcal{NL}(F) \leq K$.

(日) (四) (日) (日) (日)

Derivative Analysis

• let $1_{a,b}(x) = 1$ if $x \in \{a, b\}$ and $1_{a,b}(x) = 0$ otherwise;

< □ > < 同 > < 回 > < 回 > < 回 >

Derivative Analysis

- let $1_{a,b}(x) = 1$ if $x \in \{a, b\}$ and $1_{a,b}(x) = 0$ otherwise;
- D_aG and D_aF differ on the points in $U \cup (a + U)$:

$$D_aG(x) = D_aF(x) + \sum_{i=1}^{K} 1_{u_i,a+u_i}(x)v_i;$$

・ 何 ト ・ ヨ ト ・ ヨ ト

Analysis Der

Derivative Analysis

Derivative Analysis

- let $1_{a,b}(x) = 1$ if $x \in \{a, b\}$ and $1_{a,b}(x) = 0$ otherwise;
- D_aG and D_aF differ on the points in $U \cup (a + U)$:

$$D_aG(x) = D_aF(x) + \sum_{i=1}^{K} 1_{u_i,a+u_i}(x)v_i;$$

• for $a \in \mathbb{F}_{2^n}^*$, let $aU = \{u_i \in U : u_i + a \in U\}$ and denote by \overline{i} the index j for which $u_i + a = u_j$;

・ 何 ト ・ ヨ ト ・ ヨ ト

Analysis Deri

Derivative Analysis

Derivative Analysis

- let $1_{a,b}(x) = 1$ if $x \in \{a, b\}$ and $1_{a,b}(x) = 0$ otherwise;
- D_aG and D_aF differ on the points in $U \cup (a + U)$:

$$D_aG(x) = D_aF(x) + \sum_{i=1}^{K} 1_{u_i,a+u_i}(x)v_i;$$

- for $a \in \mathbb{F}_{2^n}^*$, let $aU = \{u_i \in U : u_i + a \in U\}$ and denote by \overline{i} the index j for which $u_i + a = u_j$;
- G is not APN if and only if $D_aF(x) = D_aF(y)$ for some $a, x, y \in \mathbb{F}_{2^n}$ with $a \neq 0, x \neq y, x \neq a + y$;

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Analysis Deri

Derivative Analysis

Derivative Analysis

- let $1_{a,b}(x) = 1$ if $x \in \{a, b\}$ and $1_{a,b}(x) = 0$ otherwise;
- D_aG and D_aF differ on the points in $U \cup (a + U)$:

$$D_aG(x) = D_aF(x) + \sum_{i=1}^{K} 1_{u_i,a+u_i}(x)v_i;$$

- for $a \in \mathbb{F}_{2^n}^*$, let $aU = \{u_i \in U : u_i + a \in U\}$ and denote by \overline{i} the index j for which $u_i + a = u_j$;
- G is not APN if and only if $D_aF(x) = D_aF(y)$ for some $a, x, y \in \mathbb{F}_{2^n}$ with $a \neq 0, x \neq y, x \neq a + y$;
- several cases need to be treated depending on whether x and y are in U and aU;

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Analysis Deri

Derivative Analysis

Derivative Analysis

- let $1_{a,b}(x) = 1$ if $x \in \{a, b\}$ and $1_{a,b}(x) = 0$ otherwise;
- D_aG and D_aF differ on the points in $U \cup (a + U)$:

$$D_aG(x) = D_aF(x) + \sum_{i=1}^{K} 1_{u_i,a+u_i}(x)v_i;$$

- for $a \in \mathbb{F}_{2^n}^*$, let $aU = \{u_i \in U : u_i + a \in U\}$ and denote by \overline{i} the index j for which $u_i + a = u_j$;
- G is not APN if and only if $D_aF(x) = D_aF(y)$ for some $a, x, y \in \mathbb{F}_{2^n}$ with $a \neq 0, x \neq y, x \neq a + y$;
- several cases need to be treated depending on whether x and y are in U and aU;
- finally, we obtain the following characterization:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Derivative Analysis (2)

Theorem

G is APN if and only if every $a \in \mathbb{F}_{2^n}^*$ satisfies:

- D_aF is 2-to-1 on $\mathbb{F}_{2^n} \setminus (U \cup a + U)$;
- $D_aF(u_i) + D_aF(u_j) \neq v_i + v_j + v_{\overline{p_a}(i)} + v_{\overline{p_a}(j)}$ for $i, j \in All(p_a)$ unless $u_i = u_j$ or $u_i + u_j = a$;
- $D_aF(u_i) + D_aF(u_j) \neq v_i + v_j + v_{\overline{p_a}(i)}$ for $i \in All(p_a), j \notin All(p_a);$
- $D_aF(u_i) + D_aF(u_j) \neq v_i + v_j$ for $i, j \notin All(p_a)$ unless $u_i = u_j$;
- $D_aF(u_i) + D_aF(x) \neq v_i + v_{\overline{p_a}(i)}$ for $i \in All(p_a), x \notin (U \cup a + U);$
- $D_aF(u_i) + D_aF(x) \neq v_i$ for $i \notin All(p_a), x \notin (U \cup a + U)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• if u_1, u_2, \ldots, u_K are known, the theorem can be used to filter the domains of v_1, v_2, \ldots, v_K ;

э

< □ > < 同 > < 回 > < 回 > < 回 >

- if u_1, u_2, \ldots, u_K are known, the theorem can be used to filter the domains of v_1, v_2, \ldots, v_K ;
- for $F(x) = x^3$ over \mathbb{F}_{2^5} and $U = \{\alpha^i : i \in \{0, 1, \dots, 5\}\}$, where α is primitive in \mathbb{F}_{2^5} , no choice for v_1, \dots, v_6 produces an APN function;

A B M A B M

- if u_1, u_2, \ldots, u_K are known, the theorem can be used to filter the domains of v_1, v_2, \ldots, v_K ;
- for $F(x) = x^3$ over \mathbb{F}_{2^5} and $U = \{\alpha^i : i \in \{0, 1, \dots, 5\}\}$, where α is primitive in \mathbb{F}_{2^5} , no choice for v_1, \dots, v_6 produces an APN function;
- checking all possibilities by hand requires about 75 hours; filtering according to the theorem requires less than a second;

.

- if u_1, u_2, \ldots, u_K are known, the theorem can be used to filter the domains of v_1, v_2, \ldots, v_K ;
- for $F(x) = x^3$ over \mathbb{F}_{2^5} and $U = \{\alpha^i : i \in \{0, 1, \dots, 5\}\}$, where α is primitive in \mathbb{F}_{2^5} , no choice for v_1, \dots, v_6 produces an APN function;
- checking all possibilities by hand requires about 75 hours; filtering according to the theorem requires less than a second;
- various iterative filtering procedures can be applied if some u_i and v_i are known;

くぼう くほう くほう しほ

- if u_1, u_2, \ldots, u_K are known, the theorem can be used to filter the domains of v_1, v_2, \ldots, v_K ;
- for $F(x) = x^3$ over \mathbb{F}_{2^5} and $U = \{\alpha^i : i \in \{0, 1, \dots, 5\}\}$, where α is primitive in \mathbb{F}_{2^5} , no choice for v_1, \dots, v_6 produces an APN function;
- checking all possibilities by hand requires about 75 hours; filtering according to the theorem requires less than a second;
- various iterative filtering procedures can be applied if some u_i and v_i are known;
- even if nothing is known, a lower bound on the distance to the "closest" APN function can be computed from point (vi) of the theorem.

イロト 不得 トイヨト イヨト 二日

Lower Bound on Distance to Closest APN Function

• by condition (vi), any derivative D_aF having $D_aF(u_i) + v_i$ in its image must satisfy either $a + u_i \in U$ or $D_a F(u_i) = D_a F(u_i) + v_i$ for $i \neq i$;

- by condition (vi), any derivative D_aF having D_aF(u_i) + v_i in its image must satisfy either a + u_i ∈ U or D_aF(u_j) = D_aF(u_i) + v_i for j ≠ i;
- let $m_F^{\beta}(b) = \#\{a \in \mathbb{F}_{2^n} : (\exists x \in \mathbb{F}_{2^n})(D_aF(x) = b + F(a + \beta))\};$

- by condition (vi), any derivative D_aF having D_aF(u_i) + v_i in its image must satisfy either a + u_i ∈ U or D_aF(u_j) = D_aF(u_i) + v_i for j ≠ i;
- let $m_F^{\beta}(b) = \#\{a \in \mathbb{F}_{2^n} : (\exists x \in \mathbb{F}_{2^n})(D_aF(x) = b + F(a + \beta))\};$
- to count the number of $a \in \mathbb{F}_{2^n}^*$ for which $D_a F$ maps to $D_a F(u_i) + v_i$ for arbitrary values of u_i and v_i we need to find the maximum value of $m_F^{\beta}(b)$ through all $b, \beta \in \mathbb{F}_{2^n}$;

- by condition (vi), any derivative D_aF having D_aF(u_i) + v_i in its image must satisfy either a + u_i ∈ U or D_aF(u_j) = D_aF(u_i) + v_i for j ≠ i;
- let $m_F^{\beta}(b) = \#\{a \in \mathbb{F}_{2^n} : (\exists x \in \mathbb{F}_{2^n})(D_aF(x) = b + F(a + \beta))\};$
- to count the number of $a \in \mathbb{F}_{2^n}^*$ for which $D_a F$ maps to $D_a F(u_i) + v_i$ for arbitrary values of u_i and v_i we need to find the maximum value of $m_F^{\beta}(b)$ through all $b, \beta \in \mathbb{F}_{2^n}$;
- as an "intermediate step" we let $m_F^\beta = \max\{m_F^\beta(b) : b \in \mathbb{F}_{2^n}\};$

- by condition (vi), any derivative D_aF having D_aF(u_i) + v_i in its image must satisfy either a + u_i ∈ U or D_aF(u_j) = D_aF(u_i) + v_i for j ≠ i;
- let $m_F^{\beta}(b) = \#\{a \in \mathbb{F}_{2^n} : (\exists x \in \mathbb{F}_{2^n})(D_aF(x) = b + F(a + \beta))\};$
- to count the number of $a \in \mathbb{F}_{2^n}^*$ for which $D_a F$ maps to $D_a F(u_i) + v_i$ for arbitrary values of u_i and v_i we need to find the maximum value of $m_F^{\beta}(b)$ through all $b, \beta \in \mathbb{F}_{2^n}$;
- as an "intermediate step" we let $m_F^\beta = \max\{m_F^\beta(b): b \in \mathbb{F}_{2^n}\};$
- finally, denote $m_F = \max\{m_F^\beta(b) : b, \beta \in \mathbb{F}_{2^n}\} = \max\{m_F^\beta : \beta \in \mathbb{F}_{2^n}\};$

- by condition (vi), any derivative D_aF having D_aF(u_i) + v_i in its image must satisfy either a + u_i ∈ U or D_aF(u_j) = D_aF(u_i) + v_i for j ≠ i;
- let $m_F^{\beta}(b) = \#\{a \in \mathbb{F}_{2^n} : (\exists x \in \mathbb{F}_{2^n})(D_aF(x) = b + F(a + \beta))\};$
- to count the number of $a \in \mathbb{F}_{2^n}^*$ for which $D_a F$ maps to $D_a F(u_i) + v_i$ for arbitrary values of u_i and v_i we need to find the maximum value of $m_F^{\beta}(b)$ through all $b, \beta \in \mathbb{F}_{2^n}$;
- as an "intermediate step" we let $m_F^\beta = \max\{m_F^\beta(b): b \in \mathbb{F}_{2^n}\};$
- finally, denote $m_F = \max\{m_F^\beta(b) : b, \beta \in \mathbb{F}_{2^n}\} = \max\{m_F^\beta : \beta \in \mathbb{F}_{2^n}\};$
- then for any APN function G we have

$$d(F,G)\geq \left\lceil \frac{m_F}{3} \right\rceil + 1.$$

Invariance Properties

Proposition

Let F and F' be CCZ-equivalent functions via $\mathcal{L} = (L_1, L_2)$. Then

$$m_F^{\beta}(b) = m_F^{L_1(\beta,b)}(L_2(\beta,b)).$$

Hence, m_F is invariant under CCZ-equivalence.

Proposition

Let F be a quadratic function over \mathbb{F}_{2^n} . Then $m_F^\beta = m_F^{\beta'}$ holds for any $\beta, \beta' \in \mathbb{F}_{2^n}$.

Hence only e.g. m_F^0 has to be computed for quadratic functions.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Values of m_F for all Switching Class Representatives

Dimension	F	m _F	Distance		Dimension	F	m _F	Distance
4	x^3	3	2	1	8	1.3	111	38
5	x ³	15	6	1	8	1.4	111	38
5	x ⁵	15	6		8	1.5	111	38
5	x ¹⁵	9	4		8	1.6	111	38
6	1.1	27	10	1	8	1.7	111	38
6	1.2	27	10		8	1.8	111	38
6	2.1	15	6		8	1.9	111	38
6	2.2	27	10		8	1.10	111	38
6	2.3	27	10		8	1.11	111	38
6	2.4	15	6		8	1.12	111	38
6	2.5	15	6		8	1.13	111	38
6	2.6	15	6		8	1.14	99	34
6	2.7	15	6		8	1.15	111	38
6	2.8	15	6		8	1.16	111	38
6	2.9	21	8		8	1.17	111	38
6	2.10	21	8		8	2.1	111	38
6	2.11	15	6		8	3.1	111	38
6	2.12	15	6		8	4.1	99	34
7	all	63	22	1	8	5.1	105	36
8	1.1	111	38		8	6.1	105	36
8	1.2	111	38		8	7.1	111	38

Nikolay S. Kaleyski (University of Bergen)

 if v₁ = v₂ = · · · = v_K = v ≠ 0, the APN-ness of G can be characterized by solving a system of linear equations;

 if v₁ = v₂ = ··· = v_K = v ≠ 0, the APN-ness of G can be characterized by solving a system of linear equations;

Analysis

• for $(a, x, y) \in \mathbb{F}_{2^n}^3$, count the number $N_{a,x,y}$ of elements from the set $\{x, y, a + x, a + y\}$ that are in U;

Constant Shift

 if v₁ = v₂ = ··· = v_K = v ≠ 0, the APN-ness of G can be characterized by solving a system of linear equations;

Analysis

• for $(a, x, y) \in \mathbb{F}_{2^n}^3$, count the number $N_{a,x,y}$ of elements from the set $\{x, y, a + x, a + y\}$ that are in U;

Constant Shift

• $D_aG(x) = b$ can have more than two solutions if and only if

$$D_aF(x)+D_aF(y)=vN_{a,x,y}$$

for some $x, y \in \mathbb{F}_{2^n}$ with $x + y \neq a$;

• • = • • = • =

 if v₁ = v₂ = · · · = v_K = v ≠ 0, the APN-ness of G can be characterized by solving a system of linear equations;

<u>Analysis</u>

• for $(a, x, y) \in \mathbb{F}_{2^n}^3$, count the number $N_{a,x,y}$ of elements from the set $\{x, y, a + x, a + y\}$ that are in U;

Constant Shift

• $D_aG(x) = b$ can have more than two solutions if and only if

$$D_aF(x)+D_aF(y)=vN_{a,x,y}$$

for some $x, y \in \mathbb{F}_{2^n}$ with $x + y \neq a$;

 a system of linear equations with the unknowns u_a can be constructed that prevents this from happening;

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

 if v₁ = v₂ = · · · = v_K = v ≠ 0, the APN-ness of G can be characterized by solving a system of linear equations;

Analysis

• for $(a, x, y) \in \mathbb{F}_{2^n}^3$, count the number $N_{a,x,y}$ of elements from the set $\{x, y, a + x, a + y\}$ that are in U;

Constant Shift

• $D_aG(x) = b$ can have more than two solutions if and only if

$$D_aF(x)+D_aF(y)=vN_{a,x,y}$$

for some $x, y \in \mathbb{F}_{2^n}$ with $x + y \neq a$;

- a system of linear equations with the unknowns u_a can be constructed that prevents this from happening;
- here any $a \in \mathbb{F}_{2^n}$, let u_a be an indicator variable such that $u_a = 1 \iff a \in U$.

• find all (x, y, a) such that $D_aF(x) + D_aF(y) = v$;

э

< □ > < 同 > < 回 > < 回 > < 回 >

- find all (x, y, a) such that $D_aF(x) + D_aF(y) = v$;
- consider the equation $u_x + u_y + u_{a+x} + u_{a+y} = 0$;

э

- find all (x, y, a) such that $D_aF(x) + D_aF(y) = v$;
- consider the equation $u_x + u_y + u_{a+x} + u_{a+y} = 0$;
- find also all (x, y, a) such that $D_aF(x) + D_aF(y) = 0$;

- find all (x, y, a) such that $D_aF(x) + D_aF(y) = v$;
- consider the equation $u_x + u_y + u_{a+x} + u_{a+y} = 0$;
- find also all (x, y, a) such that $D_aF(x) + D_aF(y) = 0$;
- consider the equation $u_x + u_y + u_{a+x} + u_{a+y} = 1$;

- find all (x, y, a) such that $D_aF(x) + D_aF(y) = v$;
- consider the equation $u_x + u_y + u_{a+x} + u_{a+y} = 0$;
- find also all (x, y, a) such that $D_aF(x) + D_aF(y) = 0$;
- consider the equation $u_x + u_y + u_{a+x} + u_{a+y} = 1$;
- solve this system of equations, e.g. by constructing an e × (2ⁿ) matrix over 𝔽₂, where e is the number of tuples that we consider;

- find all (x, y, a) such that $D_aF(x) + D_aF(y) = v$;
- consider the equation $u_x + u_y + u_{a+x} + u_{a+y} = 0$;
- find also all (x, y, a) such that $D_aF(x) + D_aF(y) = 0$;
- consider the equation $u_x + u_y + u_{a+x} + u_{a+y} = 1$;
- solve this system of equations, e.g. by constructing an e × (2ⁿ) matrix over 𝔽₂, where e is the number of tuples that we consider;
- the solutions give precisely those sets $U \subseteq \mathbb{F}_{2^n}$ for which G is APN.

• improve the lower bound on the distance between APN functions or show that it is tight;

- improve the lower bound on the distance between APN functions or show that it is tight;
- investigate the structure of sets u_1, u_2, \ldots, u_K for which G can be APN;

- improve the lower bound on the distance between APN functions or show that it is tight;
- investigate the structure of sets u₁, u₂,..., u_K for which G can be APN;
- investigate similar relations between functions other than APN, e.g. AB, plateaued, differentially 4-uniform;

- improve the lower bound on the distance between APN functions or show that it is tight;
- investigate the structure of sets u₁, u₂,..., u_K for which G can be APN;
- investigate similar relations between functions other than APN, e.g. AB, plateaued, differentially 4-uniform;
- derive efficient search procedures for constructing one APN function from another.