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Complete Permutation Polynomials

Notation

» F, — a finite field with ¢ elements
» [ — the identity mapping /(z) = z

» F— a polynomial in F,[x]

Definition

» F is called a permutation polynomial (PP) of I, if it
induces a bijection z — F(x) on F,
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Complete Permutation Polynomials

Notation

» F, — a finite field with ¢ elements
» [ — the identity mapping /(z) = z

» F— a polynomial in F,[x]

Definition

» F is called a permutation polynomial (PP) of I, if it
induces a bijection z — F(x) on F,

» [ is called a complete permutation polynomial (CPP)
if both F' and F' + I are PPs of IF,

» also in name of complete mapping

3/ 42



Orthomorphisms

CPPs and Orthomorphisms

» F’is an orthomoriphism: F’ and F’ — I are PPs of F,
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Orthomorphisms

CPPs and Orthomorphisms

» F’is an orthomoriphism: F’ and F’ — I are PPs of F,
» Fis a CPP of I, iff. F'+ I is an orthomoriphism of F,

» when ¢ is even, CPP = orthomoriphism
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Interesting Properties of CPPs

Fis a CPP of F, iff. one of the followings is a CPP
» F(r+a)+0bfor any a,b € F,
» aF(a 'x) for any a # 0
> Fi(x)
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Interesting Properties of CPPs

Fis a CPP of F, iff. one of the followings is a CPP
» F(r+a)+0bfor any a,b € F,
» aF(a 'x) for any a # 0
> Fi(x)
When g is even, if F'is a CPP of F,, then
» [ has a single fixed point;

» it is perfectly balanced (Mittenthal 1995)

» a permutation of F, is perfectly balanced if
it maps each maximal subgroup of (F,, +)
half into itself, half into its complements;

> F(z) + F(y) # z +y when z # y
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Applications of CPPs

Johnson et al. 1960: mutually orthogonal Latin squares
In cryptography:

» block ciphers: Lay-Massey, SMS4

» stream cipher Loiss

» hash functions SAFER

» pseudo-random generators
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Boolean functions from CPPs

Good Boolean functions from CPPs

f=0Q+y-2)||(F(y) - ) with a CPP F of Fom

» f is balanced
> nl(f) > 22m —2m

» f has no nonzero linear structure
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Boolean functions from CPPs

A pair of Bent functions from CPPs

» oi(z,y) =2y + Giy)
> pa(z,y) =z F(y) + Ga(y)

Then ¢1, p2 and 1 + @9 are bent;
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Boolean functions from CPPs

Bent-negabent functions from CPPs
(Stanica et al. 2012)

For z = (z,y) € Fam X Fom, let
> h(z) ==y,
» s9(2) be the quadratic symmetric function over Fozm
and s9(2) = h(A1(2)) + Az(2),
» fr(z) = F(z) -y with F being a CPP of Fom
then

9(2) = fr(Ai(z)) + s2(2)
is bent-negabent functions and deg(g) = deg(fr).

CPPs of high alg. degree produce bent-negabent func. of
high alg. degree (Pasalic 2014)
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Constructions of CPPs?

How to construct CPPs of F,?
» combinatorial method from orthogonal Latin squares

» algebraic investigations on permutations
(Niederreiter-Robinson, 1982)

2F 4 bxis a PP of F, iff. (—b)" # 1 and
q—1

b AN .
(+w> Ll W0<i<j<k

b+ wi

where w is the fixed primitive k-th root of unity in F,

» a series of works on monomial b‘lx% with ¢ = qﬁ
and k=¢q; —1fort=2,3,4,5,6
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Outline

Fesitel and MISTY structures
1-round Feistel/ MISTY for CPP
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Feistel Structure
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Feistel Structure

balanced Feistel structure without key
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Feistel Structure

balanced Feistel structure without key

» a mapping Qp : (z1,22) — (y1,y2) = (22,21 B F(22))
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MISTY Structure (unkeyed, balanced)

x1 X2 T X2
[ ] q
N
§<‘ \><
n Yo W Y2
1-round L-MISTY structure l-round R-MISTY structure
without key without key

» two mappings P and Vp

12 / 42



Mappings from Feistel/MISTY structure

Feistel/MISTY structures give 3 mappings F;, — F>:
Feistel = Qp(z1,22) = (22, F(x) + 1),
L-MISTY = (I)F(Jj'l, xg) = (33'2, F(xl) + 1'2),
R-MISTY = \IIF($1,.T2) = (F(LEQ), F(%Q) + xl),

Interesting properties with these mappings?
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Feistel/MISTY structures give 3 mappings F;, — F>:

Feistel = Qp(z1,22) = (22, F(x) + 1),
L-MISTY = (I)F(Jj'l, 513'2) = (33'2, F(xl) + 1'2),
R-MISTY = \I/F($1,.T2) = (F(ﬂ?g), F(Q?Q) + Il),

Interesting properties with these mappings?

» cryptographic properties: nonlinearity, differential
uniformity

» mathematical properties: permutation, complete
permutation?
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PPs from Feistel/ MISTY structure

Qp(x1,22) = (x2, F(x2) 4+ 1) is a PP of Fp for any F:

both {2~ % and {727 ™
F(:L‘2)—|—J:1:ozg F($2)+Jf1:a2

have a ungiue solution in F,
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PPs from Feistel/ MISTY structure

Observations

Qp, Pr and VY are PPs of IFZ for any F

Questions

1. Are they also CPPs of F2?
2. What are the requirements on F' for them to be CPPs?
3. Can we composite these mappings to obtain CPPs?

4. How far can we go?
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CPPs from Feistel/ MISTY structure

Qp, ®p and Vi are CPPs of F 2 if F(x) is a PP of I,
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Proof. QF((El,J}Q) = (.T}Q, F(SEQ) + Il)
» Qp is a PP for any F
» For x = (x1,22), Qp is a CPP if Qp(z) + x is a PP, i.e,,

To+ 21 = O
F($2)+I1+$2 = Q9
has a unique solution (z1,z2) for any oy, ay € I,

» This holds if F'(z3) = ay + ay has a unique solution,
i.e., I'is a permutation of F,.

A similar proof for the other two mappings ®r, ¥
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CPPs from Feistel and MISTY structures

» A PP of F, produces CPPs of F;
» PPs are invariant under composition

» CPPs are (generally) not invariant under composition

Question 3

What about the compositions of Qp, r, U with F' being
a PP of F,?
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Outline

CPPs from Feistel and MISTY structures
2-round Feistel /MISTY structure
3-round Feistel/MISTY structure
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CPPs from 2-round Feistel/MISTY

» 3 CPPs Qp, ®p and ¥ from a PP F' of F,
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CPPs from 2-round Feistel/MISTY

v

3 CPPs Qp, ®F and ¥ from a PP F of F,

v

9 possible compositions

» more generally, F' can be different for each rounds

v

PPs Fy and F; PPs of I, give

Qp

2

© QF17QF2 © (I)Fu QFQ © \IIF1
(I)F2 ©) QF17(I)F2 o) (I)Flaq)FQ e} \I]Fl

\I/F2 (e} QFN\PFQ (@) ¢Fl7qu2 O \I/Fl
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it is clear that the composited mappings are PPs
what condition make them be CPPs ?
take Qp, o Qg as a representative
(21, 22) <F1($2) + 21, Fy (Fi(22) 4+ x1) + 1’2)
for have a CPP Qp, o Qp,, we need
(71, 22) > (Fl(ﬂUQ), F2(F1($2) + -’E1)>
be an injective mapping

it suffices to choose Fi, F5 to be PPs of IF,
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Theorem 2
If Fy, F5 are PPs of F,, then

QFQ ¢] QF:[)QFQ e} @FI,sz (¢] \IIFl
P, 0 Qp, Pr, 0 ¥R

\IIF2 © QFI? \IIF2 © CI)FU

are CPPs of F 2, respectively.
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» Theorems 1 and 2 are simple, but interesting:

» starting from any mapping from [F, to itself
» by Feistel/MISTY structure, one gets a PP of Fg
» then easily deduces CPPs of the extension fields

Foa, Fys, -, F

» Op o ®Pp,, U o Up, are not included in Theorem 2

» [y, F, being PPs of F, does not guarantee all
compositions of Qp,, ®p, ¥y are CPPs
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Outline

CPPs from Feistel and MISTY structures
2-round Feistel /MISTY structure
3-round Feistel/MISTY structure

23 / 42



CPPs from 3-round Feistel/ MISTY

v

three permutations F; of F,, i =1,2,3

v

3-round compositions produce 27 mappings of F 2

RsoRa0oRi, Ri€A{Qp,Pr,Vg}

v

characterizing the condition on F;’s for each of the 27
composited mappings to be CPP is similar

v

16 out of 27 mappings are manageable

» ... means it’s easy to characterize the conditions on
F;’s and one could find those F}’s
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CPPs from 3-round Feistel/MISTY

Take Qp, 0 ®p, 0 Q0p, as a representative

Theorem 3

Qp, 0o ®p, 0Qp, is a CPP of Fpe of
» 5 and Fy + F are PPs of F; and
» F3(z)+ z is a PP of I,
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Proof. The mapping Qp, o P, 0 Qp, is given by
<F2($2)+F1(9U2)+I1, F3(F2($2)+F1(9U2)+$1)+F1($2)+$1)
We need to show, for any (ay,as) € Fz, both

{Fz(l’z) + Fi(z2) + 71 = (1)

Fg(FQ(I‘z) + Fl(ZEQ) + l’l) + Fl(xg) + I1 — 2
and

Fy(x3) + Fi(z2) = (2)
Fg(FQ(Ig) + Fl(l‘z) + .731) + Fl(IQ) + X1+ X9 = Qo

have a unique solution.
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Equations (1) implies

Fy(zo) + Fi(xe) + 1 =g
Fs(on) + Fi(z2) + 21 = o

F, is a PP of F, implies Fy(x2) = oy + as + F3(;) has a
unique solution xy € [y, giving a unique solution z; € I,
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Equations (1) implies

Fy(zo) + Fi(xe) + 1 =g
Fs(ayr) + Fi(z2) + 21 = a9

F, is a PP of F, implies Fy(x2) = oy + as + F3(;) has a
unique solution xy € [y, giving a unique solution z; € I,

Equation (2) implies

Fy(z2) + Fi(x) = oy
Fs(on +21) + Fi(x) + 1 + 22 = 0

Fy + F, is a PP of F, gives a unique solution x5 € IF,

F3(z) 4+ z is a PP of IF, gives a unique solution z; € F,
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CPPs from 3-round Feistel/MISTY (2)

» Qp0®p, 0Qp is a CPP of Fp if
» [ and F1 + F» are PPs of [Fy; and
» F3(z)+zisa PP of F,

» do such F;’s exist or not?

» F3 can be easily obtained
» F} and F5 seems not trivial to find
» a natural starting point: power functions z¢ over F,
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az? is a PP of F, iff. ged(d,q—1) =1, a € F*

q

for ged(di, ¢ — 1) =1 and a; € I},
when will a;z% + asx® be a PP of F,?

in particular, let a; = 1,dy = 1, the problem becomes
when 2? + ax is a PP of F,?

the known results on monomial CPPs of [F, can be
applied
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CPPs from 3-round Feistel/MISTY (3)

How to find a PP of F, with the form az® + x%?

Proposition 1

Suppose

» ¢ = 2% with an odd integer m
k is an odd integer with ged(k(k —1),m) =1
» a satisfies a®" ! =1 and a®"+tV/3 £ 1
di=2—1
dy=(2F1-1)2™ - 1) +2F -1
Then az™ + z® is a PP of F,

v

v

v
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Sketch of Proof.
» easy to show ged(d;,q—1) =1
» show the exponential sum

S(v) =) x(y(ax®™ +2%)) =0

z€lF,

for all nonzero v € F
» write x = yu with y € F,, and v in the unit circle U
» the problem can be translated to showing

m

(w4 0u® 1) + (u+ gu> )" =0,

2k=1_1)(2m—1)

where 6 = ! /24, has one solution in U

» the fact 8 € U gives
(u® 2+ 1)(0u> +1) =0

@m+1)
3

with (Qu2*-2) £ 1. O
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CPPs from 3-round Feistel/MISTY (4)

v

27 composited mappings by 3-round Feistel/MISTY

16 out of 27 have feasible conditions

v

» some condition are trivial to satisfy, some are not

v

we went through one instance of them

» ... with an interesting condition on F} and Fj

Question

Can we find more PPs Fy, F, of F, such that
» 1+ F; is also a PP of F,?
» particularly for ¢ = 2™ with an odd integer m?
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CPPs from Feistel/ MISTY

v

the Feistel/MISTY structure is just a starting point

v

other structures are also possible

v

it is about construct CPPs of F, from its half-field

v

the idea can be generalized ...

» construct CPPs of F, from other subfields of IF,
» construct CPPs of Fy» for any prime p
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Generalized constructions of CPPs (1)

Let ¢ = p™ and F;’s be mapping from [F, to itself.

Denote z = (z1,2;) € F. Define G(z) = (G1(x), G2(x) with

{Gl(m) = Fl(—l’z) — T — F3(F2(F1(—£)32) — 1’1) — iL'g)
GQ(.T) = FQ( Fl(—CEQ) — 1,'1) — T2

Proposition 3

G is a CPP of F? if
» Fi(z) — F3(z +7) is a PP of F, for any v € F;
» [ is a PP of IF,.
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Condition 1: Fy(z) — F5(z 4+ ) is a PP for any v € F,

» it seems to be related to planar functions over [,

» but it is different ...

» for a planar function F, we only have
F(z) = F(z+7)
is a PP of [F, for any nonzero vy

» F7 cannot be identical to Fj3
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How to find F; and Fj satisfying the condition?

A trivial method

» choose a PP F of F,

choose Fj as a linearized polynomial
» take [} = F + F3

Fi(z) — Fs(z +7) = F(z) + F5(7)

v

v
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How to find F; and Fj satisfying the condition?
Another approach

» start with monomials z¢ over F,
» take Fi(z) = 2% and F3(z) = Ba? with 8 # 1
» we have

YE) = BE+ DT, iy #0
» it suffices to find an integer d s.t. ged(d,q — 1) =1 and
v — Bl + 1)

is a PP of I,

» we consider two cases here: ¢ = 2™ and ¢ = 3™
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Case 1: ¢ =2"
» take d =28 + 1, B € Far \ {0,1}
» 2% — B(z + 1)¢ becomes
24 Bl + )P = 1+ B) (e + )P+ 8

» this is a PP of F, when ged(2" +1,2m — 1) =1
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Case 2: ¢=3"
» take = —1
» translate 27 + (z + 1)? to (z + 1)% + (z — 1)@
» if d=—1 (mod 3), then

(z+ 1) 4 (x — 1) = 2Dy(z,1)

where

Ld/2)

Duz1)= 3 dd_i(d i ) (-1’24

1=0

is a Dickson polynomial
» Dy(z,1) is a PP of F, iff. ged(d,¢* —1) =1
» thus, d = —1 (mod 3) and ged(d,3*™ — 1) =1
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Generalized constructions of CPPs (2)

» pi(2) in Fylz]/ (29— 2),i=1,---,m
» G(z) be a function from F}* to itself defined by

G(z) = (Gi(x), Ga(x), -+, Gm())
with G1(z) = p1(z,,) — 1 and

Go(r) = pa(Gi(z)) — 11

Gon(2) = Pu(Gonr) — T
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Generalized constructions of CPPs (2)

> pi(z) m Fyl2]/(27 = 2), i =1,---,m
» G(z) be a function from F}* to itself defined by

G(:E) = (Gl(x)7 GQ(ZE)’ co 7Gm(x))
with G1(x) = p1(2y,) — 21 and

Go(r) = pa(Gi(x)) — 13

Gm(l') - pm(Gm—l) — Tm-1

Theorem 4
G(x) is a CPP of F? if pi(x) is a PP of F,.
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Summary

» PPs of small fields can give CPPs of extension fields
» 1 and 2-round Feistel/ MISTY structure

» 3-round Feistel/ MISTY with extra requirements
» the idea can be extended to general fields and/or

more general structure

» other (cryptographic) properties of such CPPs 7
» differential property, nonlinearity, ...

» deeper connection of properties between such CPPs
and their building blocks?
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Thanks for your attention!

Questions?
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