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Complete Permutation Polynomials

Notation

I Fq — a finite field with q elements

I I — the identity mapping I(x) = x

I F — a polynomial in Fq[x]

Definition

I F is called a permutation polynomial (PP) of Fq if it
induces a bijection x 7→ F (x) on Fq

I F is called a complete permutation polynomial (CPP)
if both F and F + I are PPs of Fq

I also in name of complete mapping
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Orthomorphisms

CPPs and Orthomorphisms

I F ′ is an orthomoriphism: F ′ and F ′ − I are PPs of Fq
I F is a CPP of Fq iff. F + I is an orthomoriphism of Fq
I when q is even, CPP = orthomoriphism
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Interesting Properties of CPPs

F is a CPP of Fq iff. one of the followings is a CPP

I F (x+ a) + b for any a, b ∈ Fq
I aF (a−1x) for any a 6= 0

I F−1(x)

When q is even, if F is a CPP of Fq, then

I F has a single fixed point;

I it is perfectly balanced (Mittenthal 1995)
I a permutation of Fq is perfectly balanced if

it maps each maximal subgroup of 〈Fq,+〉
half into itself, half into its complements;

I F (x) + F (y) 6= x+ y when x 6= y
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Applications of CPPs

Johnson et al. 1960: mutually orthogonal Latin squares

In cryptography:

I block ciphers: Lay-Massey, SMS4

I stream cipher Loiss

I hash functions SAFER

I pseudo-random generators
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Boolean functions from CPPs

Good Boolean functions from CPPs

f = (1 + y · x)||(F (y) · x) with a CPP F of F2m

I f is balanced

I nl(f) ≥ 22m − 2m

I f has no nonzero linear structure
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Boolean functions from CPPs

A pair of Bent functions from CPPs

I ϕ1(x, y) = x · y +G1(y)

I ϕ2(x, y) = x · F (y) +G2(y)

Then ϕ1, ϕ2 and ϕ1 + ϕ2 are bent;
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Boolean functions from CPPs

Bent-negabent functions from CPPs
(Stǎnicǎ et al. 2012)

For z = (x, y) ∈ F2m × F2m , let

I h(z) = x · y,

I s2(z) be the quadratic symmetric function over F22m

and s2(z) = h(A1(z)) + A2(z),

I fF (z) = F (x) · y with F being a CPP of F2m

then
g(z) = fF (A1(z)) + s2(z)

is bent-negabent functions and deg(g) = deg(fF ).

CPPs of high alg. degree produce bent-negabent func. of
high alg. degree (Pasalic 2014)
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Constructions of CPPs?

How to construct CPPs of Fq?

I combinatorial method from orthogonal Latin squares

I algebraic investigations on permutations
(Niederreiter-Robinson, 1982)

x1+
q−1
k + bx is a PP of Fq iff. (−b)n 6= 1 and(

b+ wi

b+ wj

) q−1
k

6= wj−i, ∀0 ≤ i < j < k

where w is the fixed primitive k-th root of unity in Fq
I a series of works on monomial b−1x

q−1
k with q = qt1

and k = q1 − 1 for t = 2, 3, 4, 5, 6
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Feistel Structure
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Feistel Structure

x1 x2

F

y2y1

balanced Feistel structure without key
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Feistel Structure

x1 x2

F

y2y1

balanced Feistel structure without key

I a mapping ΩF : (x1, x2) 7→ (y1, y2) = (x2, x1 ⊕ F (x2))
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MISTY Structure (unkeyed, balanced)

x1

F

x2

y2y1

1-round L-MISTY structure

without key

x1

F

x2

y2y1

1-round R-MISTY structure

without key

I two mappings ΦF and ΨF
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Mappings from Feistel/MISTY structure

Feistel/MISTY structures give 3 mappings F2
q → F2

q:

Feistel⇒: ΩF (x1, x2) = (x2, F (x2) + x1),
L-MISTY⇒: ΦF (x1, x2) = (x2, F (x1) + x2),
R-MISTY⇒: ΨF (x1, x2) = (F (x2), F (x2) + x1),

Interesting properties with these mappings?

I cryptographic properties: nonlinearity, differential
uniformity

I mathematical properties: permutation, complete
permutation?
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PPs from Feistel/MISTY structure

ΩF (x1, x2) = (x2, F (x2) + x1) is a PP of Fq2 for any F :

both

{
x2 = α1

F (x2) + x1 = α2

and

{
x2 = α1

F (x2) + x1 = α2

have a unqiue solution in Fq
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PPs from Feistel/MISTY structure

Observations

ΩF , ΦF and ΨF are PPs of F2
q for any F

Questions

1. Are they also CPPs of Fq2?
2. What are the requirements on F for them to be CPPs?

3. Can we composite these mappings to obtain CPPs?

4. How far can we go?

14 / 42



CPPs from Feistel/MISTY structure

Theorem 1

ΩF , ΦF and ΨF are CPPs of Fq2 if F (x) is a PP of Fq
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Proof. ΩF (x1, x2) = (x2, F (x2) + x1)

I ΩF is a PP for any F

I For x = (x1, x2), ΩF is a CPP if ΩF (x) + x is a PP, i.e.,{
x2 + x1 = α1

F (x2) + x1 + x2 = α2

has a unique solution (x1, x2) for any α1, α2 ∈ Fq
I This holds if F (x2) = α1 + α2 has a unique solution,

i.e., F is a permutation of Fq.

A similar proof for the other two mappings ΦF ,ΨF
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CPPs from Feistel and MISTY structures

I A PP of Fq produces CPPs of F2
q

I PPs are invariant under composition

I CPPs are (generally) not invariant under composition

Question 3

What about the compositions of ΩF ,ΦF , ΨF with F being
a PP of Fq?
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CPPs from 2-round Feistel/MISTY

I 3 CPPs ΩF , ΦF and ΨF from a PP F of Fq
I 9 possible compositions

I more generally, F can be different for each rounds

I PPs F1 and F2 PPs of Fq give

ΩF2 ◦ ΩF1 ,ΩF2 ◦ ΦF1 ,ΩF2 ◦ΨF1

ΦF2 ◦ ΩF1 ,ΦF2 ◦ ΦF1 ,ΦF2 ◦ΨF1

ΨF2 ◦ ΩF1 ,ΨF2 ◦ ΦF1 ,ΨF2 ◦ΨF1
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I it is clear that the composited mappings are PPs

I what condition make them be CPPs ?

I take ΩF2 ◦ ΩF1 as a representative

(x1, x2) 7→
(
F1(x2) + x1, F2

(
F1(x2) + x1

)
+ x2

)
I for have a CPP ΩF2 ◦ ΩF1 , we need

(x1, x2) 7→
(
F1(x2), F2

(
F1(x2) + x1

))
be an injective mapping

I it suffices to choose F1, F2 to be PPs of Fq
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Theorem 2

If F1, F2 are PPs of Fq, then

ΩF2 ◦ ΩF1 ,ΩF2 ◦ ΦF1 ,ΩF2 ◦ΨF1

ΦF2 ◦ ΩF1 ,ΦF2 ◦ΨF1

ΨF2 ◦ ΩF1 ,ΨF2 ◦ ΦF1 ,

are CPPs of Fq2, respectively.
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Remark

I Theorems 1 and 2 are simple, but interesting:
I starting from any mapping from Fq to itself
I by Feistel/MISTY structure, one gets a PP of F2

q
I then easily deduces CPPs of the extension fields

Fq4 , Fq8 , · · · ,Fq2k

I ΦF1 ◦ ΦF2 , ΨF1 ◦ΨF2 are not included in Theorem 2

I F1, F2 being PPs of Fq does not guarantee all
compositions of ΩFi

,ΦFi
,ΨFi

are CPPs
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CPPs from 3-round Feistel/MISTY

I three permutations Fi of Fq, i = 1, 2, 3

I 3-round compositions produce 27 mappings of Fq2

R3 ◦ R2 ◦ R1, Ri ∈ {ΩFi
,ΦFi

,ΨFi
}

I characterizing the condition on Fi’s for each of the 27
composited mappings to be CPP is similar

I 16 out of 27 mappings are manageable

I ... means it’s easy to characterize the conditions on
Fi’s and one could find those Fi’s
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CPPs from 3-round Feistel/MISTY

Take ΩF3 ◦ ΦF2 ◦ ΩF1 as a representative

Theorem 3

ΩF3 ◦ ΦF2 ◦ ΩF1 is a CPP of Fq2 if

I F2 and F1 + F2 are PPs of Fq; and
I F3(z) + z is a PP of Fq

25 / 42



Proof. The mapping ΩF3 ◦ ΦF2 ◦ ΩF1 is given by(
F2(x2)+F1(x2)+x1, F3(F2(x2)+F1(x2)+x1)+F1(x2)+x1

)
We need to show, for any (α1, α2) ∈ F2

q, both{
F2(x2) + F1(x2) + x1 = α1

F3(F2(x2) + F1(x2) + x1) + F1(x2) + x1 = α2

(1)

and{
F2(x2) + F1(x2) = α1

F3(F2(x2) + F1(x2) + x1) + F1(x2) + x1 + x2 = α2

(2)

have a unique solution.
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Equations (1) implies{
F2(x2) + F1(x2) + x1 = α1

F3(α1) + F1(x2) + x1 = α2

F2 is a PP of Fq implies F2(x2) = α1 + α2 + F3(α1) has a
unique solution x2 ∈ Fq, giving a unique solution x1 ∈ Fq

Equation (2) implies{
F2(x2) + F1(x2) = α1

F3(α1 + x1) + F1(x2) + x1 + x2 = α2

F1 + F2 is a PP of Fq gives a unique solution x2 ∈ Fq
F3(z) + z is a PP of Fq gives a unique solution x1 ∈ Fq
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CPPs from 3-round Feistel/MISTY(2)

I ΩF3 ◦ ΦF2 ◦ ΩF1 is a CPP of Fq2 if
I F2 and F1 + F2 are PPs of Fq; and
I F3(z) + z is a PP of Fq

I do such Fi’s exist or not?
I F3 can be easily obtained
I F1 and F2 seems not trivial to find
I a natural starting point: power functions xd over Fq

28 / 42



I axd is a PP of Fq iff. gcd(d, q − 1) = 1, a ∈ F∗q

I for gcd(di, q − 1) = 1 and ai ∈ F∗q,
when will a1x

d1 + a2x
d2 be a PP of Fq?

I in particular, let a1 = 1, d2 = 1, the problem becomes
when xd + ax is a PP of Fq?

I the known results on monomial CPPs of Fq can be
applied

29 / 42



CPPs from 3-round Feistel/MISTY(3)

How to find a PP of Fq with the form axd1 + xd2?

Proposition 1

Suppose

I q = 22m with an odd integer m

I k is an odd integer with gcd(k(k − 1),m) = 1

I a satisfies a2
m+1 = 1 and a(2

m+1)/3 6= 1

I d1 = 2k − 1

I d2 = (2k−1 − 1)(2m − 1) + 2k − 1

Then axd1 + xd2 is a PP of Fq
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Sketch of Proof.

I easy to show gcd(di, q − 1) = 1
I show the exponential sum

S(γ) =
∑
x∈Fq

χ(γ(axd1 + xd2)) = 0

for all nonzero γ ∈ F∗q
I write x = yu with y ∈ F∗2m and u in the unit circle U
I the problem can be translated to showing

(u+ θu2
k−1) + (u+ θu2

k−1)2
m

= 0,

where θ = γ(2
k−1−1)(2m−1)/d2a, has one solution in U

I the fact θ ∈ U gives

(θu2
k−2 + 1)(θu2

k

+ 1) = 0

with (θu2
k−2)

(2m+1)
3 6= 1. �
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CPPs from 3-round Feistel/MISTY(4)

I 27 composited mappings by 3-round Feistel/MISTY

I 16 out of 27 have feasible conditions

I some condition are trivial to satisfy, some are not

I we went through one instance of them

I ... with an interesting condition on F1 and F2

Question

Can we find more PPs F1, F2 of Fq such that

I F1 + F2 is also a PP of Fq?
I particularly for q = 2m with an odd integer m?
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CPPs from Feistel/MISTY

I the Feistel/MISTY structure is just a starting point

I other structures are also possible

I it is about construct CPPs of Fq from its half-field

I the idea can be generalized ...
I construct CPPs of Fq from other subfields of Fq
I construct CPPs of Fpm for any prime p
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Generalized constructions of CPPs (1)

Let q = pm and Fi’s be mapping from Fq to itself.

Denote x = (x1, x2) ∈ F2
q. Define G(x) = (G1(x), G2(x) with{

G1(x) = F1(−x2)− x1 − F3(F2(F1(−x2)− x1)− x2)
G2(x) = F2(F1(−x2)− x1)− x2

Proposition 3

G is a CPP of F2
q if

I F1(z)− F3(z + γ) is a PP of Fq for any γ ∈ Fq;
I F2 is a PP of Fq.
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Condition 1: F1(z)− F3(z + γ) is a PP for any γ ∈ Fq
I it seems to be related to planar functions over Fq

I but it is different ...
I for a planar function F , we only have

F (z)− F (z + γ)

is a PP of Fq for any nonzero γ

I F1 cannot be identical to F3
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How to find F1 and F3 satisfying the condition?

A trivial method

I choose a PP F of Fq
I choose F3 as a linearized polynomial

I take F1 = F + F3

I F1(x)− F3(x+ γ) = F (x) + F3(γ)
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How to find F1 and F3 satisfying the condition?

Another approach

I start with monomials xd over Fq
I take F1(x) = xd and F3(x) = βxd with β 6= 1

I we have

F1(x)− F3(x+ γ) =

{
(1− β)xd, if γ = 0

γd[(x
γ
)d − β(x

γ
+ 1)d], if γ 6= 0

I it suffices to find an integer d s.t. gcd(d, q − 1) = 1 and

xd − β(x+ 1)d

is a PP of Fq
I we consider two cases here: q = 2m and q = 3m
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Case 1: q = 2m

I take d = 2k + 1, β ∈ F2k \ {0, 1}

I xd − β(x+ 1)d becomes

x2
k+1 + β(x+ 1)2

k+1 = (1 + β)(x+ β
1+β

)2
k+1 + β

I this is a PP of Fq when gcd(2k + 1, 2m − 1) = 1
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Case 2: q = 3m

I take β = −1

I translate xd + (x+ 1)d to (x+ 1)d + (x− 1)d

I if d ≡ −1 (mod 3), then

(x+ 1)d + (x− 1)d = 2Dd(z, 1)

where

Dd(z, 1) =

bd/2c∑
i=0

d

d− i

(
d− i
i

)
(−1)izd−2i

is a Dickson polynomial

I Dd(z, 1) is a PP of Fq iff. gcd(d, q2 − 1) = 1

I thus, d ≡ −1 (mod 3) and gcd(d, 32m − 1) = 1
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Generalized constructions of CPPs (2)

I pi(z) in Fq[z]/(zq − z), i = 1, · · · ,m
I G(x) be a function from Fmq to itself defined by

G(x) = (G1(x), G2(x), · · · , Gm(x))

with G1(x) = p1(xm)− x1 and

G2(x) = p2(G1(x))− x1
...

Gm(x) = pm(Gm−1)− xm−1

Theorem 4

G(x) is a CPP of Fmq if pi(x) is a PP of Fq.
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Summary

I PPs of small fields can give CPPs of extension fields
I 1 and 2-round Feistel/MISTY structure

I 3-round Feistel/MISTY with extra requirements

I the idea can be extended to general fields and/or
more general structure

I other (cryptographic) properties of such CPPs ?
I differential property, nonlinearity, ...

I deeper connection of properties between such CPPs
and their building blocks?
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Thanks for your attention!

Questions?
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