Construction of Complete Permutation Polynomials

Chunlei Li

joint work with Xiaofang Xu, Xiangyong Zeng and Tor Helleseth

Selmer Center, University of Bergen

June 17 - 22, 2018 BFA 2018 Background on Complete Permutation Polynomials (CPPs) Preliminaries on CPPs CPPs and Boolean functions

Fesitel and MISTY structures 1-round Feistel/MISTY for CPP

CPPs from Feistel and MISTY structures 2-round Feistel/MISTY structure 3-round Feistel/MISTY structure

Generalized constructions of CPPs

Complete Permutation Polynomials

Notation

- \mathbb{F}_q a finite field with q elements
- I the identity mapping I(x) = x
- F a polynomial in $\mathbb{F}_q[x]$

Definition

- ► F is called a *permutation polynomial* (PP) of \mathbb{F}_q if it induces a bijection $x \mapsto F(x)$ on \mathbb{F}_q
- ▶ F is called a *complete permutation polynomial* (CPP) if both F and F + I are PPs of \mathbb{F}_q

also in name of complete mapping

Complete Permutation Polynomials

Notation

- \mathbb{F}_q a finite field with q elements
- I the identity mapping I(x) = x
- F a polynomial in $\mathbb{F}_q[x]$

Definition

- ► F is called a *permutation polynomial* (PP) of \mathbb{F}_q if it induces a bijection $x \mapsto F(x)$ on \mathbb{F}_q
- ▶ F is called a *complete permutation polynomial* (CPP) if both F and F + I are PPs of \mathbb{F}_q
 - ▶ also in name of *complete mapping*

Complete Permutation Polynomials

Notation

- \mathbb{F}_q a finite field with q elements
- I the identity mapping I(x) = x
- F a polynomial in $\mathbb{F}_q[x]$

Definition

- ► F is called a *permutation polynomial* (PP) of \mathbb{F}_q if it induces a bijection $x \mapsto F(x)$ on \mathbb{F}_q
- ▶ F is called a *complete permutation polynomial* (CPP) if both F and F + I are PPs of \mathbb{F}_q
 - ▶ also in name of *complete mapping*

CPPs and Orthomorphisms

- ▶ F' is an orthomorphism: F' and F' I are PPs of \mathbb{F}_q
- ▶ F is a CPP of \mathbb{F}_q iff. F + I is an orthomorphism of \mathbb{F}_q
- when q is even, CPP = orthomorphism

CPPs and Orthomorphisms

- ▶ F' is an orthomorphism: F' and F' I are PPs of \mathbb{F}_q
- ▶ F is a CPP of \mathbb{F}_q iff. F + I is an orthomorphism of \mathbb{F}_q
- when q is even, CPP = orthomorphism

CPPs and Orthomorphisms

- ▶ F' is an orthomorphism: F' and F' I are PPs of \mathbb{F}_q
- ▶ F is a CPP of \mathbb{F}_q iff. F + I is an orthomorphism of \mathbb{F}_q
- when q is even, CPP = orthomorphism

F is a CPP of \mathbb{F}_q iff. one of the followings is a CPP

- F(x+a) + b for any $a, b \in \mathbb{F}_q$
- $aF(a^{-1}x)$ for any $a \neq 0$
- ► $F^{-1}(x)$

When q is even, if F is a CPP of \mathbb{F}_q , then

- F has a single fixed point;
- ▶ it is *perfectly balanced* (Mittenthal 1995)

$F(x) + F(y) \neq x + y$ when $x \neq y$

F is a CPP of \mathbb{F}_q <u>iff.</u> one of the followings is a CPP

- F(x+a) + b for any $a, b \in \mathbb{F}_q$
- $aF(a^{-1}x)$ for any $a \neq 0$

►
$$F^{-1}(x)$$

When q is even, if F is a CPP of \mathbb{F}_q , then

- F has a single fixed point;
- ▶ it is *perfectly balanced* (Mittenthal 1995)

• a permutation of \mathbb{F}_q is *perfectly balanced* if it maps each maximal subgroup of $\langle \mathbb{F}_q, + \rangle$ half into itself, half into its complements;

• $F(x) + F(y) \neq x + y$ when $x \neq y$

F is a CPP of \mathbb{F}_q iff. one of the followings is a CPP

- F(x+a) + b for any $a, b \in \mathbb{F}_q$
- $aF(a^{-1}x)$ for any $a \neq 0$

►
$$F^{-1}(x)$$

When q is even, if F is a CPP of \mathbb{F}_q , then

- F has a single fixed point;
- ▶ it is *perfectly balanced* (Mittenthal 1995)
 - a permutation of \mathbb{F}_q is *perfectly balanced* if it maps each maximal subgroup of $\langle \mathbb{F}_q, + \rangle$ half into itself, half into its complements;

• $F(x) + F(y) \neq x + y$ when $x \neq y$

F is a CPP of \mathbb{F}_q <u>iff.</u> one of the followings is a CPP

- F(x+a) + b for any $a, b \in \mathbb{F}_q$
- $aF(a^{-1}x)$ for any $a \neq 0$

►
$$F^{-1}(x)$$

When q is even, if F is a CPP of \mathbb{F}_q , then

- F has a single fixed point;
- ▶ it is *perfectly balanced* (Mittenthal 1995)
 - a permutation of \mathbb{F}_q is *perfectly balanced* if it maps each maximal subgroup of $\langle \mathbb{F}_q, + \rangle$ half into itself, half into its complements;

• $F(x) + F(y) \neq x + y$ when $x \neq y$

F is a CPP of \mathbb{F}_q <u>iff.</u> one of the followings is a CPP

- F(x+a) + b for any $a, b \in \mathbb{F}_q$
- $aF(a^{-1}x)$ for any $a \neq 0$

►
$$F^{-1}(x)$$

When q is even, if F is a CPP of \mathbb{F}_q , then

- F has a single fixed point;
- ▶ it is *perfectly balanced* (Mittenthal 1995)
 - a permutation of \mathbb{F}_q is *perfectly balanced* if it maps each maximal subgroup of $\langle \mathbb{F}_q, + \rangle$ half into itself, half into its complements;
- $F(x) + F(y) \neq x + y$ when $x \neq y$

Johnson et al. 1960: mutually orthogonal Latin squares In cryptography:

- ▶ block ciphers: Lay-Massey, SMS4
- ▶ stream cipher Loiss
- ► hash functions SAFER
- pseudo-random generators

Background on Complete Permutation Polynomials (CPPs) Preliminaries on CPPs CPPs and Boolean functions

Fesitel and MISTY structures 1-round Feistel/MISTY for CPP

CPPs from Feistel and MISTY structures 2-round Feistel/MISTY structure 3-round Feistel/MISTY structure

Generalized constructions of CPPs

Good Boolean functions from CPPs

$f = (1 + y \cdot x) || (F(y) \cdot x)$ with a CPP F of \mathbb{F}_{2^m}

- \blacktriangleright f is balanced
- $\blacktriangleright \ nl(f) \ge 2^{2m} 2^m$
- f has no nonzero linear structure

A pair of Bent functions from CPPs

•
$$\varphi_1(x,y) = x \cdot y + G_1(y)$$

•
$$\varphi_2(x,y) = x \cdot F(y) + G_2(y)$$

Then φ_1, φ_2 and $\varphi_1 + \varphi_2$ are bent;

Bent-negabent functions from CPPs (Stănică et al. 2012)

For
$$z = (x, y) \in \mathbb{F}_{2^m} \times \mathbb{F}_{2^m}$$
, let

$$\blacktriangleright h(z) = x \cdot y,$$

► $s_2(z)$ be the quadratic symmetric function over $\mathbb{F}_{2^{2m}}$ and $s_2(z) = h(A_1(z)) + A_2(z)$,

• $f_F(z) = F(x) \cdot y$ with <u>F being a CPP of \mathbb{F}_{2^m} </u>

then

$$g(z) = f_F(A_1(z)) + s_2(z)$$

is bent-negabent functions and $\deg(g) = \deg(f_F)$.

CPPs of high alg. degree produce bent-negabent func. of high alg. degree (Pasalic 2014)

How to construct CPPs of \mathbb{F}_q ?

- ▶ combinatorial method from orthogonal Latin squares
- ▶ algebraic investigations on permutations (Niederreiter-Robinson, 1982) $x^{1+\frac{q-1}{k}} + bx$ is a PP of \mathbb{F}_q iff. $(-b)^n \neq 1$ and

$$\left(\frac{b+w^i}{b+w^j}\right)^{\frac{q-1}{k}} \neq w^{j-i}, \quad \forall 0 \le i < j < k$$

where w is the fixed primitive k-th root of unity in \mathbb{F}_q

▶ a series of works on monomial $b^{-1}x^{\frac{q-1}{k}}$ with $q = q_1^t$ and $k = q_1 - 1$ for t = 2, 3, 4, 5, 6 Background on Complete Permutation Polynomials (CPPs) Preliminaries on CPPs CPPs and Boolean functions

Fesitel and MISTY structures 1-round Feistel/MISTY for CPP

CPPs from Feistel and MISTY structures 2-round Feistel/MISTY structure 3-round Feistel/MISTY structure

Generalized constructions of CPPs

Feistel Structure

Feistel Structure

balanced Feistel structure without key

Feistel Structure

balanced Feistel structure without key

• a mapping $\Omega_F : (x_1, x_2) \mapsto (y_1, y_2) = (x_2, x_1 \oplus F(x_2))$

MISTY Structure (unkeyed, balanced)

• two mappings Φ_F and Ψ_F

Feistel/MISTY structures give 3 mappings $\mathbb{F}_q^2 \to \mathbb{F}_q^2$:

 $\begin{array}{ll} \text{Feistel} \Rightarrow: & \Omega_F(x_1, x_2) = (x_2, \ F(x_2) + x_1), \\ \text{L-MISTY} \Rightarrow: & \Phi_F(x_1, x_2) = (x_2, \ F(x_1) + x_2), \\ \text{R-MISTY} \Rightarrow: & \Psi_F(x_1, x_2) = (F(x_2), \ F(x_2) + x_1), \end{array}$

Interesting properties with these mappings?

- cryptographic properties: nonlinearity, differential uniformity
- mathematical properties: permutation, complete permutation?

Feistel/MISTY structures give 3 mappings $\mathbb{F}_q^2 \to \mathbb{F}_q^2$:

$$\begin{array}{ll} \text{Feistel} \Rightarrow: & \Omega_F(x_1, x_2) = (x_2, \ F(x_2) + x_1), \\ \text{L-MISTY} \Rightarrow: & \Phi_F(x_1, x_2) = (x_2, \ F(x_1) + x_2), \\ \text{R-MISTY} \Rightarrow: & \Psi_F(x_1, x_2) = (F(x_2), \ F(x_2) + x_1), \end{array}$$

Interesting properties with these mappings?

- cryptographic properties: nonlinearity, differential uniformity
- mathematical properties: permutation, complete permutation?

Feistel/MISTY structures give 3 mappings $\mathbb{F}_q^2 \to \mathbb{F}_q^2$:

$$\begin{array}{ll} \text{Feistel} \Rightarrow: & \Omega_F(x_1, x_2) = (x_2, \ F(x_2) + x_1), \\ \text{L-MISTY} \Rightarrow: & \Phi_F(x_1, x_2) = (x_2, \ F(x_1) + x_2), \\ \text{R-MISTY} \Rightarrow: & \Psi_F(x_1, x_2) = (F(x_2), \ F(x_2) + x_1), \end{array}$$

Interesting properties with these mappings?

- cryptographic properties: nonlinearity, differential uniformity
- mathematical properties: permutation, complete permutation?

$$\Omega_F(x_1, x_2) = (x_2, \ F(x_2) + x_1) \text{ is a PP of } \mathbb{F}_{q^2} \text{ for any } F:$$

both
$$\begin{cases} x_2 = \alpha_1 \\ F(x_2) + x_1 = \alpha_2 \end{cases} \text{ and } \begin{cases} x_2 = \alpha_1 \\ F(x_2) + x_1 = \alpha_2 \end{cases}$$

have a unque solution in \mathbb{F}_q

PPs from Feistel/MISTY structure

Observations

 $\Omega_F, \Phi_F \text{ and } \Psi_F \text{ are PPs of } \mathbb{F}_q^2 \text{ for any } F$

Questions

- 1. Are they also CPPs of \mathbb{F}_{q^2} ?
- 2. What are the requirements on F for them to be CPPs?
- 3. Can we composite these mappings to obtain CPPs?
- 4. How far can we go?

CPPs from Feistel/MISTY structure

Theorem 1

Ω_F , Φ_F and Ψ_F are CPPs of \mathbb{F}_{q^2} if F(x) is a PP of \mathbb{F}_q

Proof. $\Omega_F(x_1, x_2) = (x_2, F(x_2) + x_1)$

- Ω_F is a PP for any F
- ► For $x = (x_1, x_2)$, Ω_F is a CPP if $\Omega_F(x) + x$ is a PP, i.e.,

$$\begin{cases} x_2 + x_1 = \alpha_1 \\ F(x_2) + x_1 + x_2 = \alpha_2 \end{cases}$$

has a unique solution (x_1, x_2) for any $\alpha_1, \alpha_2 \in \mathbb{F}_q$

► This holds if F(x₂) = α₁ + α₂ has a unique solution, i.e., F is a permutation of F_q.

A similar proof for the other two mappings Φ_F, Ψ_F

- ▶ A PP of \mathbb{F}_q produces CPPs of \mathbb{F}_q^2
- ▶ PPs are invariant under composition
- ▶ CPPs are (generally) not invariant under composition

Question 3

What about the compositions of Ω_F , Φ_F , Ψ_F with F being a PP of \mathbb{F}_q ? Background on Complete Permutation Polynomials (CPPs) Preliminaries on CPPs CPPs and Boolean functions

Fesitel and MISTY structures 1-round Feistel/MISTY for CPP

CPPs from Feistel and MISTY structures 2-round Feistel/MISTY structure 3-round Feistel/MISTY structure

Generalized constructions of CPPs

► 3 CPPs Ω_F , Φ_F and Ψ_F from a PP F of \mathbb{F}_q

- ▶ 9 possible compositions
- more generally, F can be different for each rounds
- ▶ PPs F_1 and F_2 PPs of \mathbb{F}_q give

 $\Omega_{F_2} \circ \Omega_{F_1}, \Omega_{F_2} \circ \Phi_{F_1}, \Omega_{F_2} \circ \Psi_{F_1}$

 $\Phi_{F_2} \circ \Omega_{F_1}, \Phi_{F_2} \circ \Phi_{F_1}, \Phi_{F_2} \circ \Psi_{F_1}$

 $\Psi_{F_2} \circ \Omega_{F_1}, \Psi_{F_2} \circ \Phi_{F_1}, \Psi_{F_2} \circ \Psi_{F_1}$

- ► 3 CPPs Ω_F , Φ_F and Ψ_F from a PP F of \mathbb{F}_q
- ▶ 9 possible compositions
- more generally, F can be different for each round
 PPs F₁ and F₂ PPs of F_q give

 $\Omega_{F_2} \circ \Omega_{F_1}, \Omega_{F_2} \circ \Phi_{F_1}, \Omega_{F_2} \circ \Psi_{F_1}$

 $\Phi_{F_2} \circ \Omega_{F_1}, \Phi_{F_2} \circ \Phi_{F_1}, \Phi_{F_2} \circ \Psi_{F_1}$

 $\Psi_{F_2} \circ \Omega_{F_1}, \Psi_{F_2} \circ \Phi_{F_1}, \Psi_{F_2} \circ \Psi_{F_1}$

- ► 3 CPPs Ω_F , Φ_F and Ψ_F from a PP F of \mathbb{F}_q
- ▶ 9 possible compositions
- \blacktriangleright more generally, F can be different for each rounds
- ▶ PPs F_1 and F_2 PPs of \mathbb{F}_q give

 $\Omega_{F_2} \circ \Omega_{F_1}, \Omega_{F_2} \circ \Phi_{F_1}, \Omega_{F_2} \circ \Psi_{F_1}$

 $\Phi_{F_2} \circ \Omega_{F_1}, \Phi_{F_2} \circ \Phi_{F_1}, \Phi_{F_2} \circ \Psi_{F_1}$

 $\Psi_{F_2} \circ \Omega_{F_1}, \Psi_{F_2} \circ \Phi_{F_1}, \Psi_{F_2} \circ \Psi_{F_1}$

- ▶ 3 CPPs Ω_F , Φ_F and Ψ_F from a PP F of \mathbb{F}_q
- ▶ 9 possible compositions
- \blacktriangleright more generally, F can be different for each rounds
- ▶ PPs F_1 and F_2 PPs of \mathbb{F}_q give

$$\Omega_{F_2} \circ \Omega_{F_1}, \Omega_{F_2} \circ \Phi_{F_1}, \Omega_{F_2} \circ \Psi_{F_1}$$
$$\Phi_{F_2} \circ \Omega_{F_1}, \Phi_{F_2} \circ \Phi_{F_1}, \Phi_{F_2} \circ \Psi_{F_1}$$
$$\Psi_{F_2} \circ \Omega_{F_1}, \Psi_{F_2} \circ \Phi_{F_1}, \Psi_{F_2} \circ \Psi_{F_1}$$

- ▶ it is clear that the composited mappings are PPs
- ▶ what condition make them be CPPs ?
- take $\Omega_{F_2} \circ \Omega_{F_1}$ as a representative

$$(x_1, x_2) \mapsto \left(F_1(x_2) + x_1, F_2(F_1(x_2) + x_1) + x_2\right)$$

• for have a CPP $\Omega_{F_2} \circ \Omega_{F_1}$, we need

$$(x_1, x_2) \mapsto (F_1(x_2), F_2(F_1(x_2) + x_1))$$

be an injective mapping

• it suffices to choose F_1 , F_2 to be PPs of \mathbb{F}_q

Theorem 2

If F_1 , F_2 are PPs of \mathbb{F}_q , then $\Omega_{F_2} \circ \Omega_{F_1}, \Omega_{F_2} \circ \Phi_{F_1}, \Omega_{F_2} \circ \Psi_{F_1}$ $\Phi_{F_2} \circ \Omega_{F_1}, \Phi_{F_2} \circ \Psi_{F_1}$ $\Psi_{F_2} \circ \Omega_{F_1}, \Psi_{F_2} \circ \Phi_{F_1},$ are CPPs of \mathbb{F}_{q^2} , respectively.

Remark

- ▶ Theorems 1 and 2 are simple, but interesting:
 - starting from any mapping from \mathbb{F}_q to itself
 - ▶ by Feistel/MISTY structure, one gets a PP of \mathbb{F}_q^2
 - ▶ then easily deduces CPPs of the extension fields

$$\mathbb{F}_{q^4}, \mathbb{F}_{q^8}, \cdots, \mathbb{F}_{q^{2k}}$$

- $\Phi_{F_1} \circ \Phi_{F_2}$, $\Psi_{F_1} \circ \Psi_{F_2}$ are not included in Theorem 2
- ► F_1 , F_2 being PPs of \mathbb{F}_q does not guarantee all compositions of Ω_{F_i} , Φ_{F_i} , Ψ_{F_i} are CPPs

Background on Complete Permutation Polynomials (CPPs) Preliminaries on CPPs CPPs and Boolean functions

Fesitel and MISTY structures 1-round Feistel/MISTY for CPP

CPPs from Feistel and MISTY structures 2-round Feistel/MISTY structure 3-round Feistel/MISTY structure

Generalized constructions of CPPs

- three permutations F_i of \mathbb{F}_q , i = 1, 2, 3
- ▶ 3-round compositions produce 27 mappings of \mathbb{F}_{q^2}

 $\mathcal{R}_3 \circ \mathcal{R}_2 \circ \mathcal{R}_1, \quad \mathcal{R}_i \in \{\Omega_{F_i}, \Phi_{F_i}, \Psi_{F_i}\}$

- characterizing the condition on F_i 's for each of the 27 composited mappings to be CPP is similar
- ▶ 16 out of 27 mappings are manageable
- ... means it's easy to characterize the conditions on F_i 's and one could find those F_i 's

Take $\Omega_{F_3} \circ \Phi_{F_2} \circ \Omega_{F_1}$ as a representative

Theorem 3

 $\Omega_{F_3} \circ \Phi_{F_2} \circ \Omega_{F_1}$ is a CPP of \mathbb{F}_{q^2} if

- F_2 and $F_1 + F_2$ are PPs of \mathbb{F}_q ; and
- $F_3(z) + z$ is a PP of \mathbb{F}_q

Proof. The mapping $\Omega_{F_3} \circ \Phi_{F_2} \circ \Omega_{F_1}$ is given by

$$(F_2(x_2) + F_1(x_2) + x_1, F_3(F_2(x_2) + F_1(x_2) + x_1) + F_1(x_2) + x_1))$$

We need to show, for any $(\alpha_1, \alpha_2) \in \mathbb{F}_q^2$, both

$$\begin{cases} F_2(x_2) + F_1(x_2) + x_1 = \alpha_1 \\ F_3(F_2(x_2) + F_1(x_2) + x_1) + F_1(x_2) + x_1 = \alpha_2 \end{cases}$$
(1)

and

$$\begin{cases} F_2(x_2) + F_1(x_2) = \alpha_1 \\ F_3(F_2(x_2) + F_1(x_2) + x_1) + F_1(x_2) + x_1 + x_2 = \alpha_2 \end{cases}$$
(2)

have a unique solution.

Equations (1) implies

$$\begin{cases} F_2(x_2) + F_1(x_2) + x_1 = \alpha_1 \\ F_3(\alpha_1) + F_1(x_2) + x_1 = \alpha_2 \end{cases}$$

<u> F_2 is a PP of \mathbb{F}_q implies $F_2(x_2) = \alpha_1 + \alpha_2 + F_3(\alpha_1)$ has a unique solution $x_2 \in \mathbb{F}_q$, giving a unique solution $x_1 \in \mathbb{F}_q$ </u>

Equation (2) implies

$$\begin{cases} F_2(x_2) + F_1(x_2) = \alpha_1 \\ F_3(\alpha_1 + x_1) + F_1(x_2) + x_1 + x_2 = \alpha_2 \end{cases}$$

 $F_1 + F_2$ is a PP of \mathbb{F}_q gives a unique solution $x_2 \in \mathbb{F}_q$ $F_3(z) + z$ is a PP of \mathbb{F}_q gives a unique solution $x_1 \in \mathbb{F}_q$ Equations (1) implies

$$\begin{cases} F_2(x_2) + F_1(x_2) + x_1 = \alpha_1 \\ F_3(\alpha_1) + F_1(x_2) + x_1 = \alpha_2 \end{cases}$$

<u> F_2 is a PP of \mathbb{F}_q implies $F_2(x_2) = \alpha_1 + \alpha_2 + F_3(\alpha_1)$ has a unique solution $x_2 \in \mathbb{F}_q$, giving a unique solution $x_1 \in \mathbb{F}_q$ </u>

Equation (2) implies

$$\begin{cases} F_2(x_2) + F_1(x_2) = \alpha_1 \\ F_3(\alpha_1 + x_1) + F_1(x_2) + x_1 + x_2 = \alpha_2 \end{cases}$$

 $\frac{F_1 + F_2 \text{ is a PP of } \mathbb{F}_q}{F_3(z) + z \text{ is a PP of } \mathbb{F}_q} \text{ gives a unique solution } x_1 \in \mathbb{F}_q$

- $\Omega_{F_3} \circ \Phi_{F_2} \circ \Omega_{F_1}$ is a CPP of \mathbb{F}_{q^2} if
 - F_2 and $F_1 + F_2$ are PPs of \mathbb{F}_q ; and
 - $F_3(z) + z$ is a PP of \mathbb{F}_q
- do such F_i 's exist or not?
 - F_3 can be easily obtained
 - F_1 and F_2 seems not trivial to find
 - a natural starting point: power functions x^d over \mathbb{F}_q

- ► ax^d is a PP of \mathbb{F}_q iff. $gcd(d, q-1) = 1, a \in \mathbb{F}_q^*$
- ▶ for $gcd(d_i, q-1) = 1$ and $a_i \in \mathbb{F}_q^*$, when will $a_1 x^{d_1} + a_2 x^{d_2}$ be a PP of \mathbb{F}_q ?
- ▶ in particular, let $a_1 = 1, d_2 = 1$, the problem becomes when $x^d + ax$ is a PP of \mathbb{F}_q ?
- \blacktriangleright the known results on monomial CPPs of \mathbb{F}_q can be applied

How to find a PP of \mathbb{F}_q with the form $ax^{d_1} + x^{d_2}$?

Proposition 1

Suppose

- ▶ $q = 2^{2m}$ with an odd integer m
- ▶ k is an odd integer with gcd(k(k-1), m) = 1
- a satisfies $a^{2^m+1} = 1$ and $a^{(2^m+1)/3} \neq 1$

▶
$$d_1 = 2^k - 1$$

•
$$d_2 = (2^{k-1} - 1)(2^m - 1) + 2^k - 1$$

Then $ax^{d_1} + x^{d_2}$ is a PP of \mathbb{F}_q

Sketch of Proof.

- easy to show $gcd(d_i, q-1) = 1$
- ▶ show the exponential sum

$$S(\gamma) = \sum_{x \in \mathbb{F}_q} \chi(\gamma(ax^{d_1} + x^{d_2})) = 0$$

for all nonzero $\gamma \in \mathbb{F}_q^*$

- write x = yu with $y \in \mathbb{F}_{2^m}^*$ and u in the unit circle U
- the problem can be translated to showing

$$(u + \theta u^{2^{k}-1}) + (u + \theta u^{2^{k}-1})^{2^{m}} = 0,$$

where $\theta = \gamma^{(2^{k-1}-1)(2^m-1)/d_2}a$, has one solution in U • the fact $\theta \in U$ gives

$$(\theta u^{2^k - 2} + 1)(\theta u^{2^k} + 1) = 0$$

- ▶ 27 composited mappings by 3-round Feistel/MISTY
- ▶ 16 out of 27 have feasible conditions
- ▶ some condition are trivial to satisfy, some are not
- ▶ we went through one instance of them
- ... with an interesting condition on F_1 and F_2

Question

Can we find more PPs F_1 , F_2 of \mathbb{F}_q such that

- $F_1 + F_2$ is also a PP of \mathbb{F}_q ?
- particularly for $q = 2^m$ with an odd integer m?

- ▶ the Feistel/MISTY structure is just a starting point
- other *structures* are also possible
- ▶ it is about construct CPPs of \mathbb{F}_q from its half-field
- ▶ the idea can be generalized ...
 - construct CPPs of \mathbb{F}_q from other subfields of \mathbb{F}_q
 - construct CPPs of \mathbb{F}_{p^m} for any prime p

Generalized constructions of CPPs (1)

Let $q = p^m$ and F_i 's be mapping from \mathbb{F}_q to itself.

Denote $x = (x_1, x_2) \in \mathbb{F}_q^2$. Define $G(x) = (G_1(x), G_2(x)$ with

$$\begin{cases} G_1(x) = F_1(-x_2) - x_1 - F_3(F_2(F_1(-x_2) - x_1) - x_2) \\ G_2(x) = F_2(F_1(-x_2) - x_1) - x_2 \end{cases}$$

Proposition 3

G is a CPP of \mathbb{F}_q^2 if

- $F_1(z) F_3(z + \gamma)$ is a PP of \mathbb{F}_q for any $\gamma \in \mathbb{F}_q$;
- F_2 is a PP of \mathbb{F}_q .

Condition 1: $\underline{F_1(z) - F_3(z + \gamma)}$ is a PP for any $\gamma \in \mathbb{F}_q$

- it seems to be related to planar functions over \mathbb{F}_q
- but it is different ...
 - for a planar function F, we only have

$$F(z) - F(z + \gamma)$$

is a PP of \mathbb{F}_q for any **nonzero** γ

• F_1 cannot be identical to F_3

How to find F_1 and F_3 satisfying the condition?

A trivial method

- choose a PP F of \mathbb{F}_q
- choose F_3 as a linearized polynomial

• take
$$F_1 = F + F_3$$

•
$$F_1(x) - F_3(x + \gamma) = F(x) + F_3(\gamma)$$

How to find F_1 and F_3 satisfying the condition? Another approach

- start with monomials x^d over \mathbb{F}_q
- take $F_1(x) = x^d$ and $F_3(x) = \beta x^d$ with $\beta \neq 1$
- ▶ we have

$$F_1(x) - F_3(x+\gamma) = \begin{cases} (1-\beta)x^d, \text{ if } \gamma = 0\\ \gamma^d [(\frac{x}{\gamma})^d - \beta(\frac{x}{\gamma}+1)^d], \text{ if } \gamma \neq 0 \end{cases}$$

▶ it suffices to find an integer d s.t. gcd(d, q - 1) = 1 and

$$x^d - \beta (x+1)^d$$

is a PP of \mathbb{F}_q

• we consider two cases here: $q = 2^m$ and $q = 3^m$

Case 1: $q = 2^m$

• take
$$d = 2^k + 1, \ \beta \in \mathbb{F}_{2^k} \setminus \{0, 1\}$$

Case 2: $q = 3^m$

- ► take $\beta = -1$
- ► translate $x^d + (x+1)^d$ to $(x+1)^d + (x-1)^d$

• if
$$d \equiv -1 \pmod{3}$$
, then

$$(x+1)^d + (x-1)^d = 2D_d(z,1)$$

where

$$D_d(z,1) = \sum_{i=0}^{\lfloor d/2 \rfloor} \frac{d}{d-i} \binom{d-i}{i} (-1)^i z^{d-2i}$$

is a Dickson polynomial

- ► $D_d(z, 1)$ is a PP of \mathbb{F}_q iff. $gcd(d, q^2 1) = 1$
- ▶ thus, $d \equiv -1 \pmod{3}$ and $gcd(d, 3^{2m} 1) = 1$

Generalized constructions of CPPs (2)

$$G(x) = (G_1(x), G_2(x), \cdots, G_m(x))$$

with $G_1(x) = p_1(x_m) - x_1$ and
 $G_2(x) = p_2(G_1(x)) - x_1$
 \vdots
 $G_m(x) = p_m(G_{m-1}) - x_{m-1}$

Theorem 4

G(x) is a CPP of \mathbb{F}_q^m if $p_i(x)$ is a PP of \mathbb{F}_q .

Generalized constructions of CPPs (2)

$$G(x) = (G_1(x), G_2(x), \cdots, G_m(x))$$

with $G_1(x) = p_1(x_m) - x_1$ and
 $G_2(x) = p_2(G_1(x)) - x_1$
 \vdots
 $G_m(x) = p_m(G_{m-1}) - x_{m-1}$

Theorem 4

G(x) is a CPP of \mathbb{F}_q^m if $p_i(x)$ is a PP of \mathbb{F}_q .

Summary

- ▶ PPs of small fields can give CPPs of extension fields
 - ▶ 1 and 2-round Feistel/MISTY structure
 - ▶ 3-round Feistel/MISTY with extra requirements
 - the idea can be extended to general fields and/or more general structure
- ▶ other (cryptographic) properties of such CPPs ?
 - ▶ differential property, nonlinearity, ...
- deeper connection of properties between such CPPs and their building blocks?

Thanks for your attention! Questions?