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Abstract

We review methods for constructing quantum codes from classical
additive and linear codes that are self-orthogonal with respect to
the symplectic inner product on the ambient vector space. We
generalize these constructions to codes that are nearly
self-orthogonal. The families of codes considered include additive
cyclic codes, twisted codes, linear cyclic and constacyclic codes
and duadic codes. We review the known techniques for bounding
the minimum distance of cyclic codes and we show new
applications of these techniques to twisted codes. We illustrate the
applicability of our methods by presenting many new examples of
quantum codes that have higher minimum distance than the
previously known codes.
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Notation

F2n = GF(2n)

F4 = {0, 1,ω,ω2} where ω2 = ω+ 1

Trnm(x) =
∑ n

m
−1

i=0 x2im ... trace from F2n to F2m

Tr(x) = Trn1(x) ... absolute trace

For x , y ∈ Fn
4

〈x , y〉h =
∑n

i=1 xiyi =
∑n

i=1 xiyi
2 ... Hermitian inner product

〈x , y〉s = Tr(〈x , y〉h) ... symplectic inner product

C⊥h := {u ∈ Fn
4 : (∀x ∈ C ) 〈u, x〉h = 0} ... Hermitian dual of C

C⊥s := {u ∈ Fn
4 : (∀x ∈ C ) 〈u, x〉s = 0} ... symplectic dual of C
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Quantum codes

A quantum error-correcting code is a code that protects quantum
information from corruption by noise (decoherence) on the
quantum channel in a way that is similar to how classical
error-correcting codes protect information on the classical channel.

We denote by [[n, k , d ]] the parameters of a binary quantum code
that encodes k logical qubits into n physical qubits and has
minimum distance d . We only deal with binary quantum codes in
this talk, but the methods can be generalized to odd characteristic
as well.

For fixed n and k , the higher d is, the more error control the code
achieves.
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Stabilizer quantum codes

A binary stabilizer quantum code of length n is equivalent to a
quaternary additive code (an additive subgroup) C ⊂ Fn

4 such that
〈x , y〉s = 0 for all x , y ∈ C .

A.R. Calderbank, E.M. Rains, P.W. Shor, N.J.A. Sloane, Quantum
error correction via codes over GF(4). IEEE Trans. Inform. Theory
1998, and some earlier papers.

Theorem

Given a self-orthogonal additive (n, 2n−k) code C (i.e. C ⊆ C⊥s )
such that there are no vectors of weight less than d in C⊥s \ C, we
can construct an [[n, k , d ]] quantum code.

C is pure if there are no non-zero vectors of weight less than d in
C⊥s .
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Stabilizer quantum codes

In the special case k = 0, we define d = min{wt(u) : u ∈ C \ {0}}
and C is self-dual i.e. C = C⊥s .

If we restrict our attention to F4-linear subspaces of Fn
4, then the

following theorem expresses the parameters of the quantum code
that can be constructed from a classical linear, Hermitian dual
containing quaternary code.

Theorem

Given a linear [n, k , d ]4 code C such that C⊥h ⊆ C, we can
construct an [[n, 2k − n, d ]] quantum code.
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Stabilizer quantum codes

Theorem

Let C be an [[n, k , d ]] code.
a) If k > 0, then there exists an [[n + 1, k , d ]] code.
b) If n 6= 1 and C is pure, then there exists an
[[n − 1, k + 1, d − 1]] code.
c) If k > 1 or if k = 1 and the code is pure, then there exists an
[[n, k − 1, d ]] code.
d) If n ≥ 2 then [[n − 1, k , d − 1]] code exists.
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Quantum codes from nearly self-orthogonal linear codes

Theorem (L., Singh 2014)

For an [n, k ]4 linear code C denote e := n − k − dim(C ∩ C⊥h).
Then there exists an [[n + e, 2k − n + e, d ]] quantum code with
d ≥ min{wt(C ),wt(C + C⊥h) + 1}.

Note that for e = 0 we get the standard construction mentioned
earlier.
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Quantum codes from nearly self-orthogonal additive codes

Lemma

For any additive code C ⊆ Fn
4 let

2k := dimF2(C ) − dimF2(C ∩ C⊥s ). We can find vectors
B1,B2, . . . ,B2k ∈ C \ (C ∩ C⊥s ) such that 〈B2i−1,B2i 〉s = 1 and
〈B2i−1,Bj〉s = 〈B2i ,Bm〉s = 0 for 1 ≤ i ≤ k, j 6= 2i , and
m 6= 2i − 1.

Lemma

Let C be an (n, 2`) additive code over F4 and
2k := dimF2(C ) − dimF2(C ∩ C⊥s ). We can extend C to a new
code Q, which is an (n + k , 2`) self-orthogonal (Q ⊆ Q⊥s ) additive
code over F4.
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Quantum codes from nearly self-orthogonal additive codes

Proof: Suppose C is an additive code with the mentioned

properties and dimF2(C ) − dimF2(C ∩ C⊥s ) = 2k . Let G =

[
M
B

]
be a generator matrix for C , where the last 2k rows are in
C \ (C ∩ C⊥s ), in the form as in previous lemma, and other rows
form a basis for C ∩ C⊥s . Let T be a matrix such that T2j−1,j = 1
and T2j ,j = ω for 1 ≤ j ≤ k , and the other entries of T are zero.
The matrix

G ′ =

[
Ms×n 0s×k
B2k×n T2k×k

]
where s = dimF2(C ∩ C⊥s ) generates an (n + k , 2`) additive code
Q over F4 and one can easily see that Q ⊆ Q⊥s .

Petr Lisoněk Constructions of quantum codes



Quantum codes from nearly self-orthogonal additive codes

Theorem

Let C be an (n, 2k) additive code over F4 and

e =
2n − k − dimF2(C ∩ C⊥s )

2
.

There exists an [[n + e, k − n + e, d ]] quantum code with
d ≥ min{wt(C ),wt(C + C⊥s ) + 1}.
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Quantum codes from nearly self-orthogonal additive codes

Proof: We note dimF2(C
⊥s ) = 2n − k . Let e =

2n−k−dimF2
(C∩C⊥s )

2
and dimF2(C ∩ C⊥s ) = s.

Let r(Z ) denote the set of rows of matrix Z . Consider the matrix

G =

 Ms×n 0s×e
A(k−s)×n 0(k−s)×e
B2e×n T2e×e


where r(M) is a basis for C ∩ C⊥s , r(A) ∪ r(M) is a basis for C ,
r(B) = B1,B2, · · · ,B2e , where 〈B2i−1,B2i 〉s = 1 and
〈B2i−1,Bp〉s = 〈B2i ,Bq〉s = 0 for 1 ≤ i ≤ e, p 6= 2i , and
q 6= 2i − 1. Also, the set r(B) ∪ r(M) is a basis for C⊥s , and T is
the matrix which was introduced in the proof of the previous
lemma.
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Quantum codes from nearly self-orthogonal additive codes

Let E be the additive code generated by the matrix G . Consider
the code generated by

S =

[
Ms×n 0s×e
B2e×n T2e×e

]
.

By construction and the above Lemma, rows of S are orthogonal
to the rows of G . Moreover, dimF2(E ) = 2n − s and
dimF2(E

⊥s ) = s + 2e. Therefore, S is a generator matrix for the
code E⊥s and E⊥s ⊆ E . Hence E⊥s is an
(n + e, 22e+s) = (n + e, 22n−k) = (n + e, 2(n+e)−(k−n+e))
self-orthogonal code which determines an [[n + e, k − n + e]]
quantum code.
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Quantum codes from nearly self-orthogonal additive codes

It remains to find the bound for minimum distance. Let
x = (x1, x2) ∈ E , where x1 ∈ Fn

4 and x2 ∈ Fe
4. So x is linear

combination of rows of G . If no row of B appears in the linear
combination, then wt(x) ≥ wt(C ). If some of the rows of B enter
this linear combination, then wt(x) ≥ wt(C + C⊥s ) + 1.
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Twisted codes

J. Bierbrauer, Y. Edel, Quantum twisted codes. Journal of
Combinatorial Designs 2000.

Let F = Fqr and let E be a two-dimensional Fq-vector space. Let
φ : F → E be a surjective Fq-linear map with
φ(x) = (Tr(x),Tr(γx)), where γ ∈ F \ Fq and κ = [Fq(γ) : Fq].
For any divisor n|qr − 1, F ∗ contains a unique subgroup of order n
which we denote by W . For a given subset A ⊆ Z/nZ, define
P(A) := {

∑
i∈A aix

i : ai ∈ F }. Let B(A) be the matrix, where the
rows and columns are indexed by P(A) and W respectively. The
entry in the row p(x) and the column u is p(u).

Let V = En be a 2n-dimensional Fq-vector space endowed with a
symplectic bilinear form 〈, 〉s . We call the dual of the code
generated by the rows of φ(B(A)) a twisted code with the
defining set A and denote it by C(A).
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Twisted codes

Twisted codes are Fq-linear (additive) cyclic codes over E ' Fq2 .

Throughout let Z denote a q-cyclotomic coset modulo n. Recall
that A is the defining set of the code C(A). We call Z ∩ A 6= ∅
unsaturated if κ | |Z | and for any aqi , aqj ∈ Z ∩ A we have κ|i − j .

The dimension of C(A) is
∑

Z cZ (A), where the sum runs over all
cyclotomic cosets Z and

cZ (A) =


2|Z | if Z ∩ A = ∅
|Z | if Z ∩ A is unsaturated

0 if Z ∩ A is saturated
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Twisted codes

Suppose Z ∩ A is unsaturated and a ∈ Z ∩ A. By (Z ∩ A)H we
denote the set of all elements aqi ∈ Z such that κ|i .

By extending the defining set A to

Ã =
⋃

Z∩A Sat

Z
⋃

Z∩A Usat

(Z ∩ A)H

we obtain the same code as φ(B(A)). From now on, we consider
Ã as the defining set of the code C(A) = (φ(B(A)))⊥s .

The maximum defining set for φ(B(A)) is

A⊥ =
⋃

Z∩A=∅

−Z
⋃

Z∩A Usat

−((Z ∩ A)H).
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Twisted codes

We call the cyclotomic coset Z purely unsaturated if Z ∩ A and
−Z ∩ A are unsaturated and (Z ∩ A)H = −((−Z ∩ A)H).

Proposition

Let A be the defining set of C(A). Then φ(B(A)) + C(A) is a
twisted code and its defining set is

B⊥ =
⋃

Z∩A PUsat

(Z ∩ A)H
⋃

Z ′∩A=∅
−Z ′∩A Sat

−Z ′
⋃

Z ′∩A=∅
−Z ′∩A Usat

(−Z ′ ∩ A)H

⋃
Z ′∩A Sat

−Z ′∩A Usat

(Z ′ ∩ A)H
⋃

Z ′∩A PUsat

(Z ′ ∩ A)H ,

where Z runs over all the cyclotomic cosets with Z = −Z and Z ′

runs over all the cyclotomic cosets with Z ′ 6= −Z ′.
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Twisted codes

The previous proposition is useful for determining a bound for
minimum distance of φ(B(A)) + C(A) (details to follow) which in
turn is used in bounding the minimum distance of codes arising
from our construction given above.

We slightly reformulate the known condition for self-orthogonality
of twisted code.

Corollary

Let A be the defining set for the twisted code C(A). Then
φ(B(A)) is self-orthogonal if and only if for every Z with
Z ∩ A 6= ∅ one of the following cases occurs:
1) Z ∩ A is purely unsaturated
2) −Z ∩ A = ∅
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Twisted codes

We also can find the parameter e = dim(C⊥)−dim(C∩C⊥)
2 which is

used in our construction.

Corollary

Let A be the defining set for the twisted code C(A). Then

dim(φ(B(A))) − dim(C(A) ∩ φ(B(A))) =∑
Zi∩A Sat

2si +
∑

Zi∩A Usat
(Zi∩A)H 6=−((Zi∩A)H )

si +
∑

Z ′
i ∩A Sat

−Z ′
i ∩A Sat

4s ′i

+
∑

Z ′
i ∩A Sat

−Z ′
i ∩A Usat

2s ′i +
∑

−Z ′
i ∩A Sat

Z ′
i ∩A Usat

2s ′i +
∑

Z ′
i ∩A Usat

−Z ′
i ∩A Usat

(Z ′
i ∩A)

H 6=−((−Z ′∩A)H )

2s ′i ,

where Zi = −Zi , Z
′
j 6= −Z ′j , si = |Zi |, s

′
i = |Z ′i |.
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Twisted codes

In particular, the case e = 1 occurs iff all the cyclotomic cosets Z
such that Z ∩ A 6= ∅ satisfy one of the conditions of the earlier
corollary, except one cyclotomic coset which is a singleton, or
κ = 2, Z ∩ A = {a}, and Z = {a, n − a}.
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Bounds on minimum distance

We show that several bounds on minimum distance of linear codes
can be extended to twisted codes.

Definition

A set {i1, i2, . . . , ir } ⊆ Z/nZ is called consecutive set or interval of
length r if there exists c ∈ Z/nZ with (c , n) = 1 such that
{ci1, ci2, . . . , cir } = {j , j + 1, j + 2, . . . , j + r − 1} (mod n).

Theorem (Bierbrauer & Edel 1997, BCH bound for twisted codes)

Let A be the defining set of a twisted code C(A) such that A
contains an interval of length t − 1. Then dC(A) ≥ t.
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Bounds on minimum distance

For X ,Y ⊂ Z/nZ let X + Y := {x + y : x ∈ X , y ∈ Y }.

Theorem (Hartmann-Tzeng Bound for twisted codes)

Let A be the defining set of a twisted code C(A) such that A
contains I1 + I2 where I1, I2 are intervals. Then dC(A) ≥ |I1|+ |I2|.

This theorem generalizes to the sum of more than two intervals,
and the gcd condition can be relaxed.
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Bounds on minimum distance

Theorem (Roos Bound for twisted codes)

Let M,N be non-empty subsets of Z/nZ and suppose that N is an
interval. If there exists an interval M̄ ⊆ Z/nZ where M ⊆ M̄ and
|M̄ | ≤ |M |+ |N |− 1, then dC(M+N) ≥ |M |+ |N |.
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Bounds on minimum distance

Theorem

Let A be the defining set of the twisted code C(A). If the linear
cyclic code over F with the the defining set A has minimum
distance d, then C(A) has minimum distance ≥ d.

Hence also other bounds known for linear codes, in particular van
Lint-Wilson bounds, apply to twisted codes.
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Constacyclic codes

Definition

Let λ ∈ F∗4 and C ⊆ Fn
4. We say that C is a constacyclic code if

for every (x0, . . . , xn−1) ∈ C we have (λxn−1, x0, . . . , xn−2) ∈ C .
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Duadic codes

Duadic codes are generalizations of quadratic residue codes.
Binary duadic codes were initially defined by Leon, Masley and
Pless in 1984 and later generalized to arbitrary fields.

Definition

Let C1 and C2 be linear cyclic codes of length n over Fq with
defining sets T1 = {0} ∪ S1 and T2 = {0} ∪ S2 where 0 6∈ S1 ∪ S2.
We say that C1 and C2 are a pair of duadic codes if
S1 ∪ S2 = {1, . . . , n − 1} and S1 ∩ S2 = ∅ and there exists a
multiplier µ such that S1µ = S2.
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New quantum codes

Quantum codes listed in the next slides have a higher minimum
distance than the best known codes listed at
http://codetables.de/ (M. Grassl, Tables of linear codes and
quantum codes).

Secondary constructions applied to these new codes produce many
more record breaking codes.
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New quantum codes

Linear cyclic codes

e=1

[52, 10, 11]]
[[86, 36, 12]]
[[86, 40, 11]]
[[94, 52, 9]]
[[94, 62, 7]]
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New quantum codes

Twisted cyclic codes

e=0

[[57, 3, 14]] (generalized duadic)
[[63, 42, 6]]
[[69, 3, 16]]
[[73, 46, 7]]
[[73, 55, 5]] (Melas type)
[[79, 40, 9]]
[[89, 45, 10]]
[[91, 61, 7]]
[[93, 63, 7]]
[[97, 49, 10]]
[[105, 61, 9]]
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New quantum codes

Twisted cyclic codes

e=1

[[46, 18, 8]]
[[58, 20, 10]]
[[64, 53, 4]]
[[74, 45, 7]]
[[80, 39, 9]]
[[92, 60, 7]]
[[94, 62, 7]]
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New quantum codes

Linear constacyclic codes

e=0
[[39, 3, 11]]
[[105, 21, 17]]
[[105, 33, 14]]
[[105, 45, 12]]
[[105, 51, 11]]

e=1
[[86, 12, 18]]
[[86, 28, 14]]
[[86, 36, 12]]
[[86, 40, 11]]
[[92, 24, 16]]

e=3
[[108, 30, 15]]
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New quantum codes

Duadic codes

e = 1, Hermitian self-dual codes. These are widely studied objects
whose importance extends beyond quantum codes.

[[110, 0, 22]]
(best known [[110, 0, 19]])

[[114, 0,≥ 22]] ... [[114, 0, 26]] (?)
(best known [[114, 0, 18]])

[[120, 0, 20]]
(best known [[120, 0, 18]])
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Fq14

The 14th International Conference on Finite
Fields and Their Applications (Fq14)

3–7 June 2019, Vancouver, Canada
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Fq14 website

https://www.sfu.ca/math/Fq14
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