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Preliminaries

• Boolean functions f : Vn → F2; Vn – vector space Fn
2.

• Generalized Boolean function f : Vn → Zq, q ≥ 2.

• For any function f ∈ GBqn and 2k−1 < q ≤ 2k , we associate a
unique sequence of Boolean functions ai ∈ Bn (i = 0, 1, . . . , k − 1)
such that

f (x) = a0(x) + 2a1(x) + · · ·+ 2k−1ak−1(x), for all x ∈ Vn.

• The derivative of f with respect to a vector a is denoted Daf and
defined as

Daf (x) = f (x⊕ a)− f (x) for all x ∈ Vn.



Preliminaries

• A vector a ∈ Vn is said to be a linear structure of a generalized
Boolean function, if the derivative of the function with respect to
a remains constant for all x ∈ Vn.

• The (generalized) Walsh–Hadamard transform of f ∈ GBqn at any
point u ∈ Vn is the complex valued function

Hf (u) = 2−
n
2

∑
x∈Vn

ζ f (x)(−1)u·x,

where ζ = e2πı/q is the complex q-primitive root of unity. If q = 2,
we obtain the (normalized) Walsh–Hadamard transform of f ∈ Bn,
which will be denoted by Wf .



Correlation Immunity

• Siegenthaler first described the correlation attack in 1984.

• Correlation attacks analyze input vectors and associated functional
outputs to determine if a single bit, or a specific subsets of bits,
exert greater influence over the output than others.

• There are many Correlation Immune constructions for Boolean
functions.

• We will use one of the most basic CI Boolean functions
constructions along with two approaches (linear structures and
orthogonal arrays) to create correlation immune generalized
Boolean functions.



Correlation Immunity Example

f (x) = 1⊕ x2x3 ⊕ x1 ⊕ x1x3 ⊕ x1x2

Input 000 001 010 011 100 101 110 111

Output 1 1 1 0 0 1 1 1

Conditional Prob. Given f (x) = 0 Conditional Prob. Given f (x) = 1

Pr(x1 = 0|f (x) = 0) = 1/2 Pr(x1 = 0|f (x) = 1) = 1/2
Pr(x1 = 1|f (x) = 0) = 1/2 Pr(x1 = 1|f (x) = 1) = 1/2

Pr(x2 = 0|f (x) = 0) = 1/2 Pr(x2 = 0|f (x) = 1) = 1/2
Pr(x2 = 1|f (x) = 0) = 1/2 Pr(x2 = 1|f (x) = 1) = 1/2

Pr(x3 = 0|f (x) = 0) = 1/2 Pr(x3 = 0|f (x) = 1) = 1/2
Pr(x3 = 1|f (x) = 0) = 1/2 Pr(x3 = 1|f (x) = 1) = 1/2

This function was created using the ”folklore” construction.

f (x⊕ 1) = f (x), ∀x ∈ Vn



Correlation Immunity for Generalized Boolean Functions

• A generalized Boolean function f ∈ GBqn is said to be correlation
immune of order t, with notation CI (t), 1 ≤ t ≤ n, if for any fixed
subset of t variables the probability that, given the value of f (x),
the t variables have any fixed set of values, is always 2−t , no
matter what the choice of the fixed set of t values is.

Theorem
If f ∈ GBqn is a CI (1) generalized Boolean function, then the number of
occurrences of each output value c ∈ Zq that f achieves is even.

Corollary

Let f ∈ GBqn be a correlation immune (order 1) generalized Boolean
function. Then the image of f has cardinality |f (Vn)| ≤ 2n−1.



CI(1) Generalized Boolean Function Construction Example

Suppose we wish to construct a CI(1) generalized Boolean function,
f ∈ GBq4 , where 1 ≤ q ≤ 4.

• Select for example the vector a = 1010. (κ = 2)

• For each x ∈ V4, we pair x with x′ = x⊕ a, producing the
following partition:

0000
1010

0010
1000

0100
1110

0110
1100

0001
1001

0011
1001

0101
1111

0111
1101

• The vector a has 2 zeros (located at index 1 and 3).

• The partition therefore has 22 bit combinations located at index 1
and 3.



CI(1) Generalized Boolean Function Construction Ex. Cont.

• Combine each pair of vectors with a corresponding pair which
disagrees with respect to the bits at index 1 and 3.

• There are 2n−1−κ = 24−1−2 = 2 of each of there possible two-bit
combinations, so there are 2n−1−κ! = 24−1−2! = 2! possible
pairings.

• To all vectors within each of the 4 subsets, we assign the same
output value from Z4.

• There are therefore 44 = 256 possible CI(1) generalized functions,
where 1 ≤ q ≤ 4, which we can construct using a.

Table: A CI(1) generalized Boolean function, f ∈ GB44

Input 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Output 0 3 2 1 1 2 3 0 2 1 0 3 3 0 1 2



A Higher Order Generalized Boolean Function Construction

Revisiting the ”folklore” construction example that we began with,
observe that

0 0 0
1 1 1

is a linear orthogonal array. We shall use this perspective to construct
higher order correlation immune generalized Boolean functions.

• There is a close connection between orthogonal arrays and
correlation immune functions. Camion et al. first wrote about this
in 1992.

• An m × n array with entries from a set of s elements is called an
orthogonal array of size m with n constraints, s levels, strength t,
and index r , if any set of t columns of the array contain all st

possible row vectors exactly r times.

• We denote orthogonal arrays by OA(m, n, s, t).



An Orthogonal Array Example

Consider the following 4× 3 binary array, along with all possible
combinations of two of its columns:

x1 x2 x3
0 0 0
0 1 1
1 0 1
1 1 0

x1 x2
0 0
0 1
1 0
1 1

x1 x3
0 0
0 1
1 1
1 0

x2 x3
0 0
1 1
0 1
1 0

For every possible combination of 2 columns of the array, the row
vectors 00, 01, 10, and 11 all occur with frequency 1. Consequently,
this is a OA(4, 3, 2, 2) orthogonal array of index 1.

Lemma
Let O be an OA(m, n, 2, t) binary orthogonal array. Complementing
any column, i , 1 ≤ i ≤ n, of O produces another OA(m, n, 2, t) binary
orthogonal array.



Error Correcting Codes and Orthogonal Arrays

There is also a close connection between orthogonal arrays and error
correcting codes.

• An error correcting code C of length n, size m, minimum pairwise
Hamming distance between distinct codewords of d , and which is
defined over an alphabet s, is denoted (n,m, d)s .

• To any such code we associate the m× n array whose rows are the
codewords of C . This array is an orthogonal array OA(m, n, s, t)
for some t.

• A code C of length n is said to be linear if the codewords are
distinct and C is a vector subspace of Fn

s , thus C has size m = s`

for some non negative integer 0 ≤ ` ≤ n.

• The orthogonal array associated with a code is linear if and only if
the code is linear.



Higher Order CI Gen. Boolean Function Const. Example

Suppose we wish to construct a higher order (t > 1) correlation
immune generalized Boolean function, f ∈ GB45. We begin by finding a
suitable linear orthogonal array. For example, the following
OA(8, 5, 2, 2) linear orthogonal array.

O0 =

0 0 0 0 0
1 0 0 1 1
0 1 0 1 0
0 0 1 0 1
1 1 0 0 1
1 0 1 1 0
0 1 1 1 1
1 1 1 0 0.



Higher Order CI Gen. Boolean Function Const. Ex. Cont.

Since OA(8, 5, 2, 2) is a linear orthogonal array, O0’s row vectors form a
subgroup of V5. We can therefore cover V5 by forming the 3 cosets of
O0.

O1 =

0 0 0 0 1
1 0 0 1 0
0 1 0 1 1
0 0 1 0 0
1 1 0 0 0
1 0 1 1 1
0 1 1 1 0
1 1 1 0 1,

O2 =

0 0 0 1 0
1 0 0 0 1
0 1 0 0 0
0 0 1 1 1
1 1 0 1 1
1 0 1 0 0
0 1 1 0 1
1 1 1 1 0,

O3 =

1 0 0 0 0
0 0 0 1 1
1 1 0 1 0
1 0 1 0 1
0 1 0 0 1
0 0 1 1 0
1 1 1 1 1
0 1 1 0 0.

Lemma 3 ensures that these newly formed cosets are all OA(8, 5, 2, 2)
orthogonal arrays in their own right.



Higher Order CI Gen. Boolean Function Const. Ex. Cont.

We now select a permutation, p of the set {1, 2, . . . , 5}, say for
example p = {2, 1, 3, 5, 4}. For each of the orthogonal arrays, Oi , i = 0
to 3, we rearrange the columns of Oi such that

O
(p)
i = [cp(1), cp(2), cp(3), cp(4), cp(5)] = [c2, c1, c3, c5, c4].

O
(p)
0 =

0 0 0 0 0
0 1 0 1 1
1 0 0 0 1
0 0 1 1 0
1 1 0 1 0
0 1 1 0 1
1 0 1 1 1
1 1 1 0 0,

O
(p)
1 =

0 0 0 1 0
0 1 0 0 1
1 0 0 1 1
0 0 1 0 0
1 1 0 0 0
0 1 1 1 1
1 0 1 0 1
1 1 1 1 0,

O
(p)
2 =

0 0 0 0 1
0 1 0 1 0
1 0 0 0 0
0 0 1 1 1
1 1 0 1 1
0 1 1 0 0
1 0 1 1 0
1 1 1 0 1,

O
(p)
3 =

0 1 0 0 0
0 0 0 1 1
1 1 0 0 1
0 1 1 1 0
1 0 0 1 0
0 0 1 0 1
1 1 1 1 1
1 0 1 0 0.



Higher Order CI Gen. Boolean Function Const. Ex. Cont.

By assigning the same output value from Z4 to all vectors within each
orthogonal array, say for example {O(p)

0 → 0,O
(p)
1 → 1,O

(p)
2 → 2,O

(p)
3 → 3},

we create the following CI (2) generalized Boolean function:

V5 a0 a0 a0 ⊕ a1 f
00000 0 0 0 0
00001 0 1 1 2
00010 1 0 1 1
00011 1 1 0 3
00100 1 0 1 1
00101 1 1 0 3
00110 0 0 0 0
00111 0 1 1 2
01000 1 1 0 3
01001 1 0 1 1
01010 0 1 1 2
01011 0 0 0 0
01100 0 1 1 2
01101 0 0 0 0
01110 1 1 0 3
01111 1 0 1 1
10000 0 1 1 2
10001 0 0 0 0
10010 1 1 0 3
10011 1 0 1 1
10100 1 1 0 3
10101 1 0 1 1
10110 0 1 1 2
10111 0 0 0 0
11000 1 0 1 1
11001 1 1 0 3
11010 0 0 0 0
11011 0 1 1 2
11100 0 0 0 0
11101 0 1 1 2
11110 1 0 1 1
11111 1 1 0 3



Some Orthogonal Arrays and Associated GBq
n function parameters

n q ≤ CI (t) OA

5 4 2 OA(8, 5, 2, 2)

6 4 3 OA(16, 6, 2, 3)

7 16 2 OA(8, 7, 2, 2)
7 8 3 OA(16, 7, 2, 3)

8 16 3 OA(16, 8, 2, 3)

9 4 5 OA(27, 9, 2, 5)

12 4 7 OA(210, 12, 2, 7)

15 211 2 OA(16, 15, 2, 2)
15 28 3 OA(27, 15, 2, 3)
15 27 4 OA(28, 15, 2, 4)

16 211 3 OA(32, 16, 2, 3)
16 32 7 OA(211, 16, 2, 7)

18 8 9 OA(215, 18, 2, 9)

20 211 5 OA(29, 20, 2, 5)

24 214 5 OA(210, 24, 2, 5)
24 212 7 OA(212, 24, 2, 7)

31 226 2 OA(32, 31, 2, 2)

32 226 3 OA(64, 32, 2, 3)
32 221 5 OA(211, 32, 2, 5)
32 26 15 OA(226, 32, 2, 15)



Rotation Symmetric CI Generalized Boolean Functions

• We can use the linear orthogonal array construction technique
(sans permutations) to also create Rotation Symmetric (RotS)
generalized Boolean functions.

• Rotation symmetric Boolean functions, were introduced by
Pieprzyk and Qu in 1999 (although they appeared in the work of
Filiol and Fontaine as idempotents, the preceding year).

• RotS functions remain invariant under cyclic rotations of their
input vectors.



Rotation Symmetric CI Generalized Boolean Functions

Suppose we wish to construct a RotS and CI (2) generalized Boolean

function, f ∈ GB47. We first select the cyclic
←−
OA(8, 7, 2, 2) linear array:

O0 =

0 0 0 0 0 0 0
1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1
1 0 0 1 0 1 1
1 1 0 0 1 0 1
1 1 1 0 0 1 0
0 1 1 1 0 0 1.

O1 =

1 1 1 1 1 1 1
0 1 0 0 0 1 1
1 0 1 0 0 0 1
1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0 .



Rotation Symmetric CI Generalized Boolean Functions

(7, {0000001, 1000000, 0100000, 0010000, 0001000, 0000100, 0000010})

Using these vectors, the algorithm in turn constructs and stores the
following seven cosets to V :

O2 =

0 0 0 0 0 0 1
1 0 1 1 1 0 1
0 1 0 1 1 1 1
0 0 1 0 1 1 0
1 0 0 1 0 1 0
1 1 0 0 1 0 0
1 1 1 0 0 1 1
0 1 1 1 0 0 0,

O3 =

1 0 0 0 0 0 0
0 0 1 1 1 0 0
1 1 0 1 1 1 0
1 0 1 0 1 1 1
0 0 0 1 0 1 1
0 1 0 0 1 0 1
0 1 1 0 0 1 0
1 1 1 1 0 0 1,

O4 =

0 1 0 0 0 0 0
1 1 1 1 1 0 0
0 0 0 1 1 1 0
0 1 1 0 1 1 1
1 1 0 1 0 1 1
1 0 0 0 1 0 1
1 0 1 0 0 1 0
0 0 1 1 0 0 1,

O5 =

0 0 1 0 0 0 0
1 0 0 1 1 0 0
0 1 1 1 1 1 0
0 0 0 0 1 1 1
1 0 1 1 0 1 1
1 1 1 0 1 0 1
1 1 0 0 0 1 0
0 1 0 1 0 0 1,



Rotation Symmetric CI Generalized Boolean Functions

O6 =

0 0 0 1 0 0 0
1 0 1 0 1 0 0
0 1 0 0 1 1 0
0 0 1 1 1 1 1
1 0 0 0 0 1 1
1 1 0 1 1 0 1
1 1 1 1 0 1 0
0 1 1 0 0 0 1,

O7 =

0 0 0 0 1 0 0
1 0 1 1 0 0 0
0 1 0 1 0 1 0
0 0 1 0 0 1 1
1 0 0 1 1 1 1
1 1 0 0 0 0 1
1 1 1 0 1 1 0
0 1 1 1 1 0 1,

O8 =

0 0 0 0 0 1 0
1 0 1 1 1 1 0
0 1 0 1 1 0 0
0 0 1 0 1 0 1
1 0 0 1 0 0 1
1 1 0 0 1 1 1
1 1 1 0 0 0 0
0 1 1 1 0 1 1.



Rotation Symmetric CI Generalized Boolean Functions

7, {0000011, 1000001, 1100000, 0110000, 0011000, 0001100, 0000110}).

Using these vectors, the algorithm in turn constructs and stores the
following seven cosets to V :

O9 =

0 0 0 0 0 1 1
1 0 1 1 1 1 1
0 1 0 1 1 0 1
0 0 1 0 1 0 0
1 0 0 1 0 0 0
1 1 0 0 1 1 0
1 1 1 0 0 0 1
0 1 1 1 0 1 0,

O10 =

1 0 0 0 0 0 1
0 0 1 1 1 0 1
1 1 0 1 1 1 1
1 0 1 0 1 1 0
0 0 0 1 0 1 0
0 1 0 0 1 0 0
0 1 1 0 0 1 1
1 1 1 1 0 0 0,

O11 =

1 1 0 0 0 0 0
0 1 1 1 1 0 0
1 0 0 1 1 1 0
1 1 1 0 1 1 1
0 1 0 1 0 1 1
0 0 0 0 1 0 1
0 0 1 0 0 1 0
1 0 1 1 0 0 1,

O12 =

0 1 1 0 0 0 0
1 1 0 1 1 0 0
0 0 1 1 1 1 0
0 1 0 0 1 1 1
1 1 1 1 0 1 1
1 0 1 0 1 0 1
1 0 0 0 0 1 0
0 0 0 1 0 0 1,



Rotation Symmetric CI Generalized Boolean Functions

O13 =

0 0 1 1 0 0 0
1 0 0 0 1 0 0
0 1 1 0 1 1 0
0 0 0 1 1 1 1
1 0 1 0 0 1 1
1 1 1 1 1 0 1
1 1 0 1 0 1 0
0 1 0 0 0 0 1,

O14 =

0 0 0 1 1 0 0
1 0 1 0 0 0 0
0 1 0 0 0 1 0
0 0 1 1 0 1 1
1 0 0 0 1 1 1
1 1 0 1 0 0 1
1 1 1 1 1 1 0
0 1 1 0 1 0 1,

O15 =

0 0 0 0 1 1 0
1 0 1 1 0 1 0
0 1 0 1 0 0 0
0 0 1 0 0 0 1
1 0 0 1 1 0 1
1 1 0 0 0 1 1
1 1 1 0 1 0 0
0 1 1 1 1 1 1.

{O0 → c0,O1 → c1, {O2, . . . ,O8} → c2, {O9, . . . ,O15} → c3}, ci ∈ Z4.



A few Comments on RotS Generalized Boolean Functions

In general we can partition Vn into:

gn =
1

n

∑
τ |n

φ(τ)2n/τ ,

cyclic classes, and there are therefore g(n)g(n) possible RotS
generalized Boolean functions.
If n is prime it possible to obtain a simpler expression for g(n), namely

gp =
1

n

∑
τ |n

φ(τ)2n/τ = 2 +
2p − 2

p
.

If we use linear orthogonal arrays of the form OA(2,p,2,1), where p is
an odd prime, and construct Rots CI(1) generalized Boolean functions,
then there are at most (

1 +
2p−1 − 1

p

)1+ 2p−1−1
p

such functions.



A few Comments on RotS Generalized Boolean Functions

• Although there are no symmetric and balanced generalized
Boolean function, with 2k output values, k > 1, (Meidl, Pott,
Stanica, M), there are RotS and balanced generalized Boolean
functions with more than two output vales. For example:
{{〈0000〉, 〈1111〉, 〈0101〉} → 0, 〈0001〉 → 1, 〈0011〉 → 2, 〈0111〉 → 3}

• There are however no balanced and RotS generalized Boolean
functions in p variables where p is an odd prime and q > 2.



New from Old

We generalize the Siegenthaler CI(t) function concatenation
construction as follows:

Theorem
Let x = (x1, . . . , xn) and suppose that we have correlation immune
(order t) generalized Boolean functions, f1, f2 ∈ GBqn, such that
∀c ∈ f1(Vn) = f2(Vn), Pr(f1(x) = c) = Pr(f2(x) = c) = p. Then the
function f of n + 1 variables defined by

f (x, xn+1) = xn+1f1(x) + (xn+1 ⊕ 1)f2(x) (1)

is also correlation immune of order t and satisfies Pr(f (x) = c) = p.



A Generalized Siegenthaler Construction Example

Table: Siegenthaler constructed CI(1) function, f ∈ GB44
V4 a0 a1 f

0000 0 0 0
0001 1 1 3
0010 0 1 2
0011 1 0 1
0100 1 0 1
0101 0 1 2
0110 1 1 3
0111 0 0 0
1000 0 1 2
1001 1 0 1
1010 1 1 3
1011 0 0 0
1100 0 0 0
1101 1 1 3
1110 1 0 1
1111 0 1 2



A Cautionary Tale

Note: When performing Siegenthaler construction for generalized
Boolean functions, care must be taken to ensure that:

∀c ∈ f1(Vn) = f2(Vn), Pr(f1(x) = c) = Pr(f2(x) = c) = p.

Table: Correlation immune generalized Boolean function construction failure

V3 a0 a1 f
000 1 0 1
001 0 1 2
010 0 1 2
011 1 0 1
100 0 0 0
101 1 1 3
110 1 1 3
111 0 0 0



Necessary and Sufficient Conditions

Recall:

f (x) = a0(x) + 2a1(x) + · · ·+ 2k−1ak−1(x), for all x ∈ Vn.

Theorem
If f is a correlation immune (order t) generalized Boolean function,
then all of its constituent Boolean functions,aj ∈ Bn, are also
correlation immune (order t).

Theorem
Let f ∈ GBqn be the generalized Boolean function f (x) =

∑k−1
j=0 2jaj(x),

where 0 ≤ j ≤ k − 1, aj ∈ Bn and x ∈ Vn. Then f is correlation
immune (order t) if and only if all Boolean functions aj are CI (t) and
use the same partition P of Vn consisting of q orthogonal arrays, Oj ,
each of strength t.



Conclusion

Thank you for your attention!



Correlation Immunity and the Walsh-Hadamard Transform

• A [Boolean] function f (x) in n variables is correlation immune of
order t, 1 ≤ t ≤ n if and only if all of the Walsh transforms
Wf (w) = 0, where 1 ≤ wt(w) ≤ t.

• A generalized Boolean function is generalized correlation immune
of order t, denoted gCI (t), if and only if all of the (generalized)
Walsh transforms Hf (w) = 0, where 1 ≤ wt(w) ≤ t.

• Let f ∈ GBqn be a generalized Boolean function. If f is CI (1), then
f is gCI (1).

• The converse is in general not true.



Correlation Immunity and the Walsh-Hadamard Transform

Table: Non-CI (1) function f ∈ GB44, where Hf (w) = 0

Input 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Output 0 0 0 2 0 2 2 0 2 0 1 3 3 1 0 0

The 4th root of unity is ζ4 = i . Letting w ∈ {0001, 0010, 0100, 1000},
we compute Hf (w), which yields the following:

Hf (0001) = i0 + i0 + i0 + i2 + i2 + i1 + i3 + i0 − i0 − i2 − i2 − i0 − i0 − i3 − i1 − i0 = 0,

Hf (0010) = i0 + i0 + i0 + i2 + i2 + i0 + i3 + i1 − i0 − i2 − i2 − i0 − i1 − i3 − i0 − i0 = 0,

Hf (0100) = i0 + i0 + i0 + i2 + i2 + i0 + i1 + i3 − i0 − i2 − i2 − i0 − i3 − i1 − i0 − i0 = 0,

Hf (1000) = i0 + i0 + i0 + i2 + i0 + i2 + i2 + i0 − i2 − i0 − i1 − i3 − i3 − i1 − i0 − i0 = 0.


	Preliminaries
	Correlation Immune Generalized Boolean Functions

