
Correlation Immune and Resilient Generalized
Boolean Functions

Thor Martinsen, PhD
Commander, US Navy

Assistant Professor
Naval Postgraduate School

3rd International Workshop on Boolean Functions and their
Applications

June 19, 2018
Loen, Norway

Preliminaries

• Boolean functions f : Vn → F2; Vn – vector space Fn
2.

• Generalized Boolean function f : Vn → Zq, q ≥ 2.

• For any function f ∈ GBqn and 2k−1 < q ≤ 2k , we associate a
unique sequence of Boolean functions ai ∈ Bn (i = 0, 1, . . . , k − 1)
such that

f (x) = a0(x) + 2a1(x) + · · ·+ 2k−1ak−1(x), for all x ∈ Vn.

• The derivative of f with respect to a vector a is denoted Daf and
defined as

Daf (x) = f (x⊕ a)− f (x) for all x ∈ Vn.

Preliminaries

• A vector a ∈ Vn is said to be a linear structure of a generalized
Boolean function, if the derivative of the function with respect to
a remains constant for all x ∈ Vn.

• The (generalized) Walsh–Hadamard transform of f ∈ GBqn at any
point u ∈ Vn is the complex valued function

Hf (u) = 2−
n
2

∑
x∈Vn

ζ f (x)(−1)u·x,

where ζ = e2πı/q is the complex q-primitive root of unity. If q = 2,
we obtain the (normalized) Walsh–Hadamard transform of f ∈ Bn,
which will be denoted by Wf .

Correlation Immunity

• Siegenthaler first described the correlation attack in 1984.

• Correlation attacks analyze input vectors and associated functional
outputs to determine if a single bit, or a specific subsets of bits,
exert greater influence over the output than others.

• There are many Correlation Immune constructions for Boolean
functions.

• We will use one of the most basic CI Boolean functions
constructions along with two approaches (linear structures and
orthogonal arrays) to create correlation immune generalized
Boolean functions.

Correlation Immunity Example

f (x) = 1⊕ x2x3 ⊕ x1 ⊕ x1x3 ⊕ x1x2

Input 000 001 010 011 100 101 110 111

Output 1 1 1 0 0 1 1 1

Conditional Prob. Given f (x) = 0 Conditional Prob. Given f (x) = 1

Pr(x1 = 0|f (x) = 0) = 1/2 Pr(x1 = 0|f (x) = 1) = 1/2
Pr(x1 = 1|f (x) = 0) = 1/2 Pr(x1 = 1|f (x) = 1) = 1/2

Pr(x2 = 0|f (x) = 0) = 1/2 Pr(x2 = 0|f (x) = 1) = 1/2
Pr(x2 = 1|f (x) = 0) = 1/2 Pr(x2 = 1|f (x) = 1) = 1/2

Pr(x3 = 0|f (x) = 0) = 1/2 Pr(x3 = 0|f (x) = 1) = 1/2
Pr(x3 = 1|f (x) = 0) = 1/2 Pr(x3 = 1|f (x) = 1) = 1/2

This function was created using the ”folklore” construction.

f (x⊕ 1) = f (x), ∀x ∈ Vn

Correlation Immunity for Generalized Boolean Functions

• A generalized Boolean function f ∈ GBqn is said to be correlation
immune of order t, with notation CI (t), 1 ≤ t ≤ n, if for any fixed
subset of t variables the probability that, given the value of f (x),
the t variables have any fixed set of values, is always 2−t , no
matter what the choice of the fixed set of t values is.

Theorem
If f ∈ GBqn is a CI (1) generalized Boolean function, then the number of
occurrences of each output value c ∈ Zq that f achieves is even.

Corollary

Let f ∈ GBqn be a correlation immune (order 1) generalized Boolean
function. Then the image of f has cardinality |f (Vn)| ≤ 2n−1.

CI(1) Generalized Boolean Function Construction Example

Suppose we wish to construct a CI(1) generalized Boolean function,
f ∈ GBq4 , where 1 ≤ q ≤ 4.

• Select for example the vector a = 1010. (κ = 2)

• For each x ∈ V4, we pair x with x′ = x⊕ a, producing the
following partition:

0000
1010

0010
1000

0100
1110

0110
1100

0001
1001

0011
1001

0101
1111

0111
1101

• The vector a has 2 zeros (located at index 1 and 3).

• The partition therefore has 22 bit combinations located at index 1
and 3.

CI(1) Generalized Boolean Function Construction Ex. Cont.

• Combine each pair of vectors with a corresponding pair which
disagrees with respect to the bits at index 1 and 3.

• There are 2n−1−κ = 24−1−2 = 2 of each of there possible two-bit
combinations, so there are 2n−1−κ! = 24−1−2! = 2! possible
pairings.

• To all vectors within each of the 4 subsets, we assign the same
output value from Z4.

• There are therefore 44 = 256 possible CI(1) generalized functions,
where 1 ≤ q ≤ 4, which we can construct using a.

Table: A CI(1) generalized Boolean function, f ∈ GB44

Input 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Output 0 3 2 1 1 2 3 0 2 1 0 3 3 0 1 2

A Higher Order Generalized Boolean Function Construction

Revisiting the ”folklore” construction example that we began with,
observe that

0 0 0
1 1 1

is a linear orthogonal array. We shall use this perspective to construct
higher order correlation immune generalized Boolean functions.

• There is a close connection between orthogonal arrays and
correlation immune functions. Camion et al. first wrote about this
in 1992.

• An m × n array with entries from a set of s elements is called an
orthogonal array of size m with n constraints, s levels, strength t,
and index r , if any set of t columns of the array contain all st

possible row vectors exactly r times.

• We denote orthogonal arrays by OA(m, n, s, t).

An Orthogonal Array Example

Consider the following 4× 3 binary array, along with all possible
combinations of two of its columns:

x1 x2 x3
0 0 0
0 1 1
1 0 1
1 1 0

x1 x2
0 0
0 1
1 0
1 1

x1 x3
0 0
0 1
1 1
1 0

x2 x3
0 0
1 1
0 1
1 0

For every possible combination of 2 columns of the array, the row
vectors 00, 01, 10, and 11 all occur with frequency 1. Consequently,
this is a OA(4, 3, 2, 2) orthogonal array of index 1.

Lemma
Let O be an OA(m, n, 2, t) binary orthogonal array. Complementing
any column, i , 1 ≤ i ≤ n, of O produces another OA(m, n, 2, t) binary
orthogonal array.

Error Correcting Codes and Orthogonal Arrays

There is also a close connection between orthogonal arrays and error
correcting codes.

• An error correcting code C of length n, size m, minimum pairwise
Hamming distance between distinct codewords of d , and which is
defined over an alphabet s, is denoted (n,m, d)s .

• To any such code we associate the m× n array whose rows are the
codewords of C . This array is an orthogonal array OA(m, n, s, t)
for some t.

• A code C of length n is said to be linear if the codewords are
distinct and C is a vector subspace of Fn

s , thus C has size m = s`

for some non negative integer 0 ≤ ` ≤ n.

• The orthogonal array associated with a code is linear if and only if
the code is linear.

Higher Order CI Gen. Boolean Function Const. Example

Suppose we wish to construct a higher order (t > 1) correlation
immune generalized Boolean function, f ∈ GB45. We begin by finding a
suitable linear orthogonal array. For example, the following
OA(8, 5, 2, 2) linear orthogonal array.

O0 =

0 0 0 0 0
1 0 0 1 1
0 1 0 1 0
0 0 1 0 1
1 1 0 0 1
1 0 1 1 0
0 1 1 1 1
1 1 1 0 0.

Higher Order CI Gen. Boolean Function Const. Ex. Cont.

Since OA(8, 5, 2, 2) is a linear orthogonal array, O0’s row vectors form a
subgroup of V5. We can therefore cover V5 by forming the 3 cosets of
O0.

O1 =

0 0 0 0 1
1 0 0 1 0
0 1 0 1 1
0 0 1 0 0
1 1 0 0 0
1 0 1 1 1
0 1 1 1 0
1 1 1 0 1,

O2 =

0 0 0 1 0
1 0 0 0 1
0 1 0 0 0
0 0 1 1 1
1 1 0 1 1
1 0 1 0 0
0 1 1 0 1
1 1 1 1 0,

O3 =

1 0 0 0 0
0 0 0 1 1
1 1 0 1 0
1 0 1 0 1
0 1 0 0 1
0 0 1 1 0
1 1 1 1 1
0 1 1 0 0.

Lemma 3 ensures that these newly formed cosets are all OA(8, 5, 2, 2)
orthogonal arrays in their own right.

Higher Order CI Gen. Boolean Function Const. Ex. Cont.

We now select a permutation, p of the set {1, 2, . . . , 5}, say for
example p = {2, 1, 3, 5, 4}. For each of the orthogonal arrays, Oi , i = 0
to 3, we rearrange the columns of Oi such that

O
(p)
i = [cp(1), cp(2), cp(3), cp(4), cp(5)] = [c2, c1, c3, c5, c4].

O
(p)
0 =

0 0 0 0 0
0 1 0 1 1
1 0 0 0 1
0 0 1 1 0
1 1 0 1 0
0 1 1 0 1
1 0 1 1 1
1 1 1 0 0,

O
(p)
1 =

0 0 0 1 0
0 1 0 0 1
1 0 0 1 1
0 0 1 0 0
1 1 0 0 0
0 1 1 1 1
1 0 1 0 1
1 1 1 1 0,

O
(p)
2 =

0 0 0 0 1
0 1 0 1 0
1 0 0 0 0
0 0 1 1 1
1 1 0 1 1
0 1 1 0 0
1 0 1 1 0
1 1 1 0 1,

O
(p)
3 =

0 1 0 0 0
0 0 0 1 1
1 1 0 0 1
0 1 1 1 0
1 0 0 1 0
0 0 1 0 1
1 1 1 1 1
1 0 1 0 0.

Higher Order CI Gen. Boolean Function Const. Ex. Cont.

By assigning the same output value from Z4 to all vectors within each
orthogonal array, say for example {O(p)

0 → 0,O
(p)
1 → 1,O

(p)
2 → 2,O

(p)
3 → 3},

we create the following CI (2) generalized Boolean function:

V5 a0 a0 a0 ⊕ a1 f
00000 0 0 0 0
00001 0 1 1 2
00010 1 0 1 1
00011 1 1 0 3
00100 1 0 1 1
00101 1 1 0 3
00110 0 0 0 0
00111 0 1 1 2
01000 1 1 0 3
01001 1 0 1 1
01010 0 1 1 2
01011 0 0 0 0
01100 0 1 1 2
01101 0 0 0 0
01110 1 1 0 3
01111 1 0 1 1
10000 0 1 1 2
10001 0 0 0 0
10010 1 1 0 3
10011 1 0 1 1
10100 1 1 0 3
10101 1 0 1 1
10110 0 1 1 2
10111 0 0 0 0
11000 1 0 1 1
11001 1 1 0 3
11010 0 0 0 0
11011 0 1 1 2
11100 0 0 0 0
11101 0 1 1 2
11110 1 0 1 1
11111 1 1 0 3

Some Orthogonal Arrays and Associated GBq
n function parameters

n q ≤ CI (t) OA

5 4 2 OA(8, 5, 2, 2)

6 4 3 OA(16, 6, 2, 3)

7 16 2 OA(8, 7, 2, 2)
7 8 3 OA(16, 7, 2, 3)

8 16 3 OA(16, 8, 2, 3)

9 4 5 OA(27, 9, 2, 5)

12 4 7 OA(210, 12, 2, 7)

15 211 2 OA(16, 15, 2, 2)
15 28 3 OA(27, 15, 2, 3)
15 27 4 OA(28, 15, 2, 4)

16 211 3 OA(32, 16, 2, 3)
16 32 7 OA(211, 16, 2, 7)

18 8 9 OA(215, 18, 2, 9)

20 211 5 OA(29, 20, 2, 5)

24 214 5 OA(210, 24, 2, 5)
24 212 7 OA(212, 24, 2, 7)

31 226 2 OA(32, 31, 2, 2)

32 226 3 OA(64, 32, 2, 3)
32 221 5 OA(211, 32, 2, 5)
32 26 15 OA(226, 32, 2, 15)

Rotation Symmetric CI Generalized Boolean Functions

• We can use the linear orthogonal array construction technique
(sans permutations) to also create Rotation Symmetric (RotS)
generalized Boolean functions.

• Rotation symmetric Boolean functions, were introduced by
Pieprzyk and Qu in 1999 (although they appeared in the work of
Filiol and Fontaine as idempotents, the preceding year).

• RotS functions remain invariant under cyclic rotations of their
input vectors.

Rotation Symmetric CI Generalized Boolean Functions

Suppose we wish to construct a RotS and CI (2) generalized Boolean

function, f ∈ GB47. We first select the cyclic
←−
OA(8, 7, 2, 2) linear array:

O0 =

0 0 0 0 0 0 0
1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1
1 0 0 1 0 1 1
1 1 0 0 1 0 1
1 1 1 0 0 1 0
0 1 1 1 0 0 1.

O1 =

1 1 1 1 1 1 1
0 1 0 0 0 1 1
1 0 1 0 0 0 1
1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0 .

Rotation Symmetric CI Generalized Boolean Functions

(7, {0000001, 1000000, 0100000, 0010000, 0001000, 0000100, 0000010})

Using these vectors, the algorithm in turn constructs and stores the
following seven cosets to V :

O2 =

0 0 0 0 0 0 1
1 0 1 1 1 0 1
0 1 0 1 1 1 1
0 0 1 0 1 1 0
1 0 0 1 0 1 0
1 1 0 0 1 0 0
1 1 1 0 0 1 1
0 1 1 1 0 0 0,

O3 =

1 0 0 0 0 0 0
0 0 1 1 1 0 0
1 1 0 1 1 1 0
1 0 1 0 1 1 1
0 0 0 1 0 1 1
0 1 0 0 1 0 1
0 1 1 0 0 1 0
1 1 1 1 0 0 1,

O4 =

0 1 0 0 0 0 0
1 1 1 1 1 0 0
0 0 0 1 1 1 0
0 1 1 0 1 1 1
1 1 0 1 0 1 1
1 0 0 0 1 0 1
1 0 1 0 0 1 0
0 0 1 1 0 0 1,

O5 =

0 0 1 0 0 0 0
1 0 0 1 1 0 0
0 1 1 1 1 1 0
0 0 0 0 1 1 1
1 0 1 1 0 1 1
1 1 1 0 1 0 1
1 1 0 0 0 1 0
0 1 0 1 0 0 1,

Rotation Symmetric CI Generalized Boolean Functions

O6 =

0 0 0 1 0 0 0
1 0 1 0 1 0 0
0 1 0 0 1 1 0
0 0 1 1 1 1 1
1 0 0 0 0 1 1
1 1 0 1 1 0 1
1 1 1 1 0 1 0
0 1 1 0 0 0 1,

O7 =

0 0 0 0 1 0 0
1 0 1 1 0 0 0
0 1 0 1 0 1 0
0 0 1 0 0 1 1
1 0 0 1 1 1 1
1 1 0 0 0 0 1
1 1 1 0 1 1 0
0 1 1 1 1 0 1,

O8 =

0 0 0 0 0 1 0
1 0 1 1 1 1 0
0 1 0 1 1 0 0
0 0 1 0 1 0 1
1 0 0 1 0 0 1
1 1 0 0 1 1 1
1 1 1 0 0 0 0
0 1 1 1 0 1 1.

Rotation Symmetric CI Generalized Boolean Functions

7, {0000011, 1000001, 1100000, 0110000, 0011000, 0001100, 0000110}).

Using these vectors, the algorithm in turn constructs and stores the
following seven cosets to V :

O9 =

0 0 0 0 0 1 1
1 0 1 1 1 1 1
0 1 0 1 1 0 1
0 0 1 0 1 0 0
1 0 0 1 0 0 0
1 1 0 0 1 1 0
1 1 1 0 0 0 1
0 1 1 1 0 1 0,

O10 =

1 0 0 0 0 0 1
0 0 1 1 1 0 1
1 1 0 1 1 1 1
1 0 1 0 1 1 0
0 0 0 1 0 1 0
0 1 0 0 1 0 0
0 1 1 0 0 1 1
1 1 1 1 0 0 0,

O11 =

1 1 0 0 0 0 0
0 1 1 1 1 0 0
1 0 0 1 1 1 0
1 1 1 0 1 1 1
0 1 0 1 0 1 1
0 0 0 0 1 0 1
0 0 1 0 0 1 0
1 0 1 1 0 0 1,

O12 =

0 1 1 0 0 0 0
1 1 0 1 1 0 0
0 0 1 1 1 1 0
0 1 0 0 1 1 1
1 1 1 1 0 1 1
1 0 1 0 1 0 1
1 0 0 0 0 1 0
0 0 0 1 0 0 1,

Rotation Symmetric CI Generalized Boolean Functions

O13 =

0 0 1 1 0 0 0
1 0 0 0 1 0 0
0 1 1 0 1 1 0
0 0 0 1 1 1 1
1 0 1 0 0 1 1
1 1 1 1 1 0 1
1 1 0 1 0 1 0
0 1 0 0 0 0 1,

O14 =

0 0 0 1 1 0 0
1 0 1 0 0 0 0
0 1 0 0 0 1 0
0 0 1 1 0 1 1
1 0 0 0 1 1 1
1 1 0 1 0 0 1
1 1 1 1 1 1 0
0 1 1 0 1 0 1,

O15 =

0 0 0 0 1 1 0
1 0 1 1 0 1 0
0 1 0 1 0 0 0
0 0 1 0 0 0 1
1 0 0 1 1 0 1
1 1 0 0 0 1 1
1 1 1 0 1 0 0
0 1 1 1 1 1 1.

{O0 → c0,O1 → c1, {O2, . . . ,O8} → c2, {O9, . . . ,O15} → c3}, ci ∈ Z4.

A few Comments on RotS Generalized Boolean Functions

In general we can partition Vn into:

gn =
1

n

∑
τ |n

φ(τ)2n/τ ,

cyclic classes, and there are therefore g(n)g(n) possible RotS
generalized Boolean functions.
If n is prime it possible to obtain a simpler expression for g(n), namely

gp =
1

n

∑
τ |n

φ(τ)2n/τ = 2 +
2p − 2

p
.

If we use linear orthogonal arrays of the form OA(2,p,2,1), where p is
an odd prime, and construct Rots CI(1) generalized Boolean functions,
then there are at most (

1 +
2p−1 − 1

p

)1+ 2p−1−1
p

such functions.

A few Comments on RotS Generalized Boolean Functions

• Although there are no symmetric and balanced generalized
Boolean function, with 2k output values, k > 1, (Meidl, Pott,
Stanica, M), there are RotS and balanced generalized Boolean
functions with more than two output vales. For example:
{{〈0000〉, 〈1111〉, 〈0101〉} → 0, 〈0001〉 → 1, 〈0011〉 → 2, 〈0111〉 → 3}

• There are however no balanced and RotS generalized Boolean
functions in p variables where p is an odd prime and q > 2.

New from Old

We generalize the Siegenthaler CI(t) function concatenation
construction as follows:

Theorem
Let x = (x1, . . . , xn) and suppose that we have correlation immune
(order t) generalized Boolean functions, f1, f2 ∈ GBqn, such that
∀c ∈ f1(Vn) = f2(Vn), Pr(f1(x) = c) = Pr(f2(x) = c) = p. Then the
function f of n + 1 variables defined by

f (x, xn+1) = xn+1f1(x) + (xn+1 ⊕ 1)f2(x) (1)

is also correlation immune of order t and satisfies Pr(f (x) = c) = p.

A Generalized Siegenthaler Construction Example

Table: Siegenthaler constructed CI(1) function, f ∈ GB44
V4 a0 a1 f

0000 0 0 0
0001 1 1 3
0010 0 1 2
0011 1 0 1
0100 1 0 1
0101 0 1 2
0110 1 1 3
0111 0 0 0
1000 0 1 2
1001 1 0 1
1010 1 1 3
1011 0 0 0
1100 0 0 0
1101 1 1 3
1110 1 0 1
1111 0 1 2

A Cautionary Tale

Note: When performing Siegenthaler construction for generalized
Boolean functions, care must be taken to ensure that:

∀c ∈ f1(Vn) = f2(Vn), Pr(f1(x) = c) = Pr(f2(x) = c) = p.

Table: Correlation immune generalized Boolean function construction failure

V3 a0 a1 f
000 1 0 1
001 0 1 2
010 0 1 2
011 1 0 1
100 0 0 0
101 1 1 3
110 1 1 3
111 0 0 0

Necessary and Sufficient Conditions

Recall:

f (x) = a0(x) + 2a1(x) + · · ·+ 2k−1ak−1(x), for all x ∈ Vn.

Theorem
If f is a correlation immune (order t) generalized Boolean function,
then all of its constituent Boolean functions,aj ∈ Bn, are also
correlation immune (order t).

Theorem
Let f ∈ GBqn be the generalized Boolean function f (x) =

∑k−1
j=0 2jaj(x),

where 0 ≤ j ≤ k − 1, aj ∈ Bn and x ∈ Vn. Then f is correlation
immune (order t) if and only if all Boolean functions aj are CI (t) and
use the same partition P of Vn consisting of q orthogonal arrays, Oj ,
each of strength t.

Conclusion

Thank you for your attention!

Correlation Immunity and the Walsh-Hadamard Transform

• A [Boolean] function f (x) in n variables is correlation immune of
order t, 1 ≤ t ≤ n if and only if all of the Walsh transforms
Wf (w) = 0, where 1 ≤ wt(w) ≤ t.

• A generalized Boolean function is generalized correlation immune
of order t, denoted gCI (t), if and only if all of the (generalized)
Walsh transforms Hf (w) = 0, where 1 ≤ wt(w) ≤ t.

• Let f ∈ GBqn be a generalized Boolean function. If f is CI (1), then
f is gCI (1).

• The converse is in general not true.

Correlation Immunity and the Walsh-Hadamard Transform

Table: Non-CI (1) function f ∈ GB44, where Hf (w) = 0

Input 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Output 0 0 0 2 0 2 2 0 2 0 1 3 3 1 0 0

The 4th root of unity is ζ4 = i . Letting w ∈ {0001, 0010, 0100, 1000},
we compute Hf (w), which yields the following:

Hf (0001) = i0 + i0 + i0 + i2 + i2 + i1 + i3 + i0 − i0 − i2 − i2 − i0 − i0 − i3 − i1 − i0 = 0,

Hf (0010) = i0 + i0 + i0 + i2 + i2 + i0 + i3 + i1 − i0 − i2 − i2 − i0 − i1 − i3 − i0 − i0 = 0,

Hf (0100) = i0 + i0 + i0 + i2 + i2 + i0 + i1 + i3 − i0 − i2 − i2 − i0 − i3 − i1 − i0 − i0 = 0,

Hf (1000) = i0 + i0 + i0 + i2 + i0 + i2 + i2 + i0 − i2 − i0 − i1 − i3 − i3 − i1 − i0 − i0 = 0.

	Preliminaries
	Correlation Immune Generalized Boolean Functions

