Bent and generalized bent functions into the cyclic group \mathbb{Z}_{2^k}

Wilfried Meidl

Radon Institute for Computational and Applied Mathematics, OEAW, Linz, Austria

June 18, 2018

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

- Bent functions
 - Definitions
 - Bent functions into the cyclic group and the spread construction

- Gbent functions
 - Definition and summary of some results
 - Gbent functions and partitions
- Classes of gbent functions and their partitions
 - Spread functions
 - Octal gbent functions
 - Maiorana-McFarland functions

Definition

Let A, B be finite abelian groups, f a function from A to B. Then f is called a bent function if

$$|\sum_{x\in A}\chi(x,f(x))|=\sqrt{|A|}$$

for every character χ of $A \times B$ which is nontrivial on B.

 $R = \{(x, f(x)) : x \in A\}$ is a (|A|, |B|, |A|, |A|/|B|) relative difference set in $A \times B$, relative to B.

Definition

Let A, B be finite abelian groups, f a function from A to B. Then f is called a bent function if

$$|\sum_{x\in A}\chi(x,f(x))|=\sqrt{|A|}$$

for every character χ of $A \times B$ which is nontrivial on B.

 $R = \{(x, f(x)) : x \in A\}$ is a (|A|, |B|, |A|, |A|/|B|) relative difference set in $A \times B$, relative to B.

Examples:

Boolean bent function, *p*-ary bent function, $f : \mathbb{F}_p^n \to \mathbb{F}_p$.

$$|\mathcal{W}_f(u)| = |\sum_{x \in \mathbb{F}_p^n} \epsilon_p^{f(x)-u \cdot x}| = p^{n/2},$$

for all $u \in \mathbb{F}_p^n$. $(\epsilon_p = e^{2\pi i/p}, \epsilon_2 = -1)$

Vectorial bent function $f : \mathbb{F}_p^n \to \mathbb{F}_p^m$.

$$|\mathcal{W}_f(a,b)| = |\sum_{x\in\mathbb{F}_p^n}\epsilon_p^{a\cdot f(x)-b\cdot x}| = p^{n/2},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for all nonzero $a \in \mathbb{F}_p^m$ and $b \in \mathbb{F}_p^n$. The component functions $\{a \cdot f(x) : a \neq 0\}$ form a linear space of *p*-ary (Boolean) bent functions of dimension *m*.

Vectorial bent function $f : \mathbb{F}_p^n \to \mathbb{F}_p^m$.

$$|\mathcal{W}_f(a,b)| = |\sum_{x \in \mathbb{F}_p^n} \epsilon_p^{a \cdot f(x) - b \cdot x}| = p^{n/2},$$

for all nonzero $a \in \mathbb{F}_p^m$ and $b \in \mathbb{F}_p^n$. The component functions $\{a \cdot f(x) : a \neq 0\}$ form a linear space of *p*-ary (Boolean) bent functions of dimension *m*.

For a vectorial bent function $f : \mathbb{F}_2^n \to \mathbb{F}_2^m$ we have $m \le n/2$ (Nyberg bound)

(Examples: Maiorana-McFarland vectorial bent functions, Spread vectorial bent functions, Dillons \mathcal{H} -class)

Vectorial bent function $f : \mathbb{F}_p^n \to \mathbb{F}_p^m$.

$$|\mathcal{W}_f(a,b)| = |\sum_{x\in\mathbb{F}_p^n}\epsilon_p^{a\cdot f(x)-b\cdot x}| = p^{n/2},$$

for all nonzero $a \in \mathbb{F}_p^m$ and $b \in \mathbb{F}_p^n$. The component functions $\{a \cdot f(x) : a \neq 0\}$ form a linear space of *p*-ary (Boolean) bent functions of dimension *m*.

For a vectorial bent function $f : \mathbb{F}_2^n \to \mathbb{F}_2^m$ we have $m \le n/2$ (Nyberg bound)

(Examples: Maiorana-McFarland vectorial bent functions, Spread vectorial bent functions, Dillons \mathcal{H} -class)

If $f : \mathbb{F}_p^n \to \mathbb{F}_p^m$, p odd, then $m \le n$ (If m = n, then f is called planar, e.g Coulter-Matthews)

$$\begin{split} f: \mathbb{F}_p^n &\to \mathbb{Z}_{p^k} \text{ is bent if} \\ \mathcal{H}_f^k(\alpha, u) &= \sum_{x \in \mathbb{F}_p^n} \zeta_{p^k}^{\alpha f(x)} \zeta_p^{u \cdot x}, \quad \zeta_M = e^{2\pi i/M}, \end{split}$$

has absolute value $p^{n/2}$ for all $u \in \mathbb{F}_p^n$ and all nonzero $\alpha \in \mathbb{Z}_{p^k}$.

(ロ)、(型)、(E)、(E)、 E) の(の)

$$\begin{split} f: \mathbb{F}_p^n &\to \mathbb{Z}_{p^k} \text{ is bent if} \\ &\mathcal{H}_f^k(\alpha, u) = \sum_{x \in \mathbb{F}_p^n} \zeta_{p^k}^{\alpha f(x)} \zeta_p^{u \cdot x}, \quad \zeta_M = e^{2\pi i/M}, \end{split}$$

has absolute value $p^{n/2}$ for all $u \in \mathbb{F}_p^n$ and all nonzero $\alpha \in \mathbb{Z}_{p^k}$. p = 2, n even:

$$f: \mathbb{F}_p^n \to \mathbb{Z}_{p^k} \text{ is bent if}$$
$$\mathcal{H}_f^k(\alpha, u) = \sum_{x \in \mathbb{F}_p^n} \zeta_{p^k}^{\alpha f(x)} \zeta_p^{u \cdot x}, \quad \zeta_M = e^{2\pi i/M},$$

has absolute value $p^{n/2}$ for all $u \in \mathbb{F}_p^n$ and all nonzero $\alpha \in \mathbb{Z}_{p^k}$. $p = 2, n \text{ even: } f : \mathbb{F}_2^n \to \mathbb{Z}_{2^k} \text{ is bent if}$

$$\mathcal{H}_f^k(\alpha, u) = \sum_{x \in \mathbb{F}_2^n} \zeta_{2^k}^{\alpha f(x)} (-1)^{u \cdot x}, \quad \zeta_{2^k} = e^{2\pi i/2^k},$$

has absolute value $2^{n/2}$ for all $u \in \mathbb{F}_2^n$ and all nonzero $\alpha \in \mathbb{Z}_{2^k}$. Again the "Nyberg bound" applies for p = 2: If $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^k}$ is bent then $k \leq n/2$.

$$f: \mathbb{F}_p^n \to \mathbb{Z}_{p^k} \text{ is bent if}$$
$$\mathcal{H}_f^k(\alpha, u) = \sum_{x \in \mathbb{F}_p^n} \zeta_{p^k}^{\alpha f(x)} \zeta_p^{u \cdot x}, \quad \zeta_M = e^{2\pi i/M},$$

has absolute value $p^{n/2}$ for all $u \in \mathbb{F}_p^n$ and all nonzero $\alpha \in \mathbb{Z}_{p^k}$. $p = 2, n \text{ even: } f : \mathbb{F}_2^n \to \mathbb{Z}_{2^k} \text{ is bent if}$

$$\mathcal{H}_f^k(\alpha, u) = \sum_{x \in \mathbb{F}_2^n} \zeta_{2^k}^{\alpha f(x)} (-1)^{u \cdot x}, \quad \zeta_{2^k} = e^{2\pi i/2^k},$$

has absolute value $2^{n/2}$ for all $u \in \mathbb{F}_2^n$ and all nonzero $\alpha \in \mathbb{Z}_{2^k}$. Again the "Nyberg bound" applies for p = 2: If $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^k}$ is bent then $k \leq n/2$.

Bent functions from the elementary abelian into the cyclic group $\mathbb{Z}_{2^k}(\mathbb{Z}_{p^k})$ seem to be "rare".

 $f: \mathbb{V}_n \to B, \mathbb{V}_n \cong \mathbb{F}_p^n, n = 2m \text{ even}, |B| = p^k, k \le n/2.$ (e.g. $B = \mathbb{Z}_p^m, \mathbb{Z}_{p^m}$)

Let $U_0, U_1, \ldots, U_{p^m}$ be the elements of a spread of \mathbb{V}_n .

 $\begin{aligned} f: \mathbb{V}_n \to B, \ \mathbb{V}_n \cong \mathbb{F}_p^n, \ n = 2m \text{ even}, \ |B| = p^k, \ k \leq n/2. \ \text{(e.g.} \\ B = \mathbb{Z}_p^m, \mathbb{Z}_{p^m} \text{)} \end{aligned}$ Let $U_0, U_1, \ldots, U_{p^m}$ be the elements of a spread of \mathbb{V}_n .

Partition of \mathbb{V}_n

 $f: \mathbb{V}_n \to B, \mathbb{V}_n \cong \mathbb{F}_p^n, n = 2m \text{ even}, |B| = p^k, k \le n/2.$ (e.g. $B = \mathbb{Z}_p^m, \mathbb{Z}_{p^m}$)

Let $U_0, U_1, \ldots, U_{p^m}$ be the elements of a spread of \mathbb{V}_n .

Partition of \mathbb{V}_n

Define a function $f : \mathbb{V}_n \to B$ by

•
$$f(x) = 0$$
 for $x \in U_0$.

 $f: \mathbb{V}_n \to B, \mathbb{V}_n \cong \mathbb{F}_p^n, n = 2m \text{ even}, |B| = p^k, k \le n/2.$ (e.g. $B = \mathbb{Z}_p^m, \mathbb{Z}_{p^m}$)

Let $U_0, U_1, \ldots, U_{p^m}$ be the elements of a spread of \mathbb{V}_n .

Partition of \mathbb{V}_n

Define a function $f : \mathbb{V}_n \to B$ by

•
$$f(x) = 0$$
 for $x \in U_0$.

f is constant on the nonzero elements of U_i, 1 ≤ i ≤ p^m, such that: For every c ∈ B the nonzero elements of exactly p^{m-k} of the U_i'a are mapped to c.

(k = m = n/2: For every $c \in B$ the nonzero elements of exactly 1 of the U_i 'a are mapped to c.)

(日) (同) (三) (三) (三) (○) (○)

 $f: \mathbb{V}_n \to B, \mathbb{V}_n \cong \mathbb{F}_p^n, n = 2m$ even, $|B| = p^k, k \le n/2$. (e.g. $B = \mathbb{Z}_p^m, \mathbb{Z}_{p^m}$)

Let $U_0, U_1, \ldots, U_{p^m}$ be the elements of a spread of \mathbb{V}_n .

Partition of \mathbb{V}_n

Define a function $f : \mathbb{V}_n \to B$ by

•
$$f(x) = 0$$
 for $x \in U_0$.

f is constant on the nonzero elements of U_i, 1 ≤ i ≤ p^m, such that: For every c ∈ B the nonzero elements of exactly p^{m-k} of the U_i'a are mapped to c.
 (k = m = n/2: For every c ∈ B the nonzero elements of exactly 1 of the U_i'a are mapped to c.)

f is then a bent function from \mathbb{V}_n to B.

Definition K.U. Schmidt (2009) A function $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^k}$ is called a generalized bent function (gbent function) if

$$\mathcal{H}_f^k(u) = \sum_{x \in \mathbb{F}_2^n} \zeta_{2^k}^{f(x)} (-1)^{u \cdot x},$$

has absolute value $2^{n/2}$ for all $u \in \mathbb{F}_2^n$.

Definition K.U. Schmidt (2009) A function $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^k}$ is called a generalized bent function (gbent function) if

$$\mathcal{H}_f^k(u) = \sum_{x \in \mathbb{F}_2^n} \zeta_{2^k}^{f(x)} (-1)^{u \cdot x},$$

has absolute value $2^{n/2}$ for all $u \in \mathbb{F}_2^n$.

Note: $|\sum_{x \in \mathbb{F}_2^n} \chi(x, f(x))| = 2^{n/2}$ is required only for the characters of order 2^{k-1} . In general NOT a relative difference set (not bent).

Definition K.U. Schmidt (2009) A function $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^k}$ is called a generalized bent function (gbent function) if

$$\mathcal{H}_f^k(u) = \sum_{x \in \mathbb{F}_2^n} \zeta_{2^k}^{f(x)} (-1)^{u \cdot x},$$

has absolute value $2^{n/2}$ for all $u \in \mathbb{F}_2^n$.

Note: $|\sum_{x \in \mathbb{F}_2^n} \chi(x, f(x))| = 2^{n/2}$ is required only for the characters of order 2^{k-1} . In general NOT a relative difference set (not bent). Observation The function $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^k}$ is bent if and only if $2^t f(x)$ is gbent (into $\mathbb{Z}_{2^{k-t}}$) for all $t, 0 \le t \le k-1$.

Definition K.U. Schmidt (2009) A function $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^k}$ is called a generalized bent function (gbent function) if

$$\mathcal{H}_f^k(u) = \sum_{x \in \mathbb{F}_2^n} \zeta_{2^k}^{f(x)} (-1)^{u \cdot x},$$

has absolute value $2^{n/2}$ for all $u \in \mathbb{F}_2^n$.

Note: $|\sum_{x \in \mathbb{F}_2^n} \chi(x, f(x))| = 2^{n/2}$ is required only for the characters of order 2^{k-1} . In general NOT a relative difference set (not bent). Observation The function $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^k}$ is bent if and only if $2^t f(x)$ is gbent (into $\mathbb{Z}_{2^{k-t}}$) for all $t, 0 \le t \le k - 1$. Question: Is "gbent" still something interesting?

n even, (p = 2). $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^k}$,

 $f(x) = a_0(x) + 2a_1(x) + \dots + 2^{k-1}a_{k-1}(x), \ a_i : \mathbb{F}_2^n \to \mathbb{F}_2.$ (1)

・ロト・日本・モート モー うへぐ

n even, (p = 2). $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^k}$,

 $f(x) = a_0(x) + 2a_1(x) + \dots + 2^{k-1}a_{k-1}(x), \ a_i : \mathbb{F}_2^n \to \mathbb{F}_2.$ (1)

(日) (同) (三) (三) (三) (○) (○)

Sole, Tokareva 2009 $f(x) = a_0(x) + 2a_1(x)$ is generalized bent if and only if a_1 and $a_1 \oplus a_0$ are Boolean bent functions.

n even, (p = 2). $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^k}$,

 $f(x) = a_0(x) + 2a_1(x) + \dots + 2^{k-1}a_{k-1}(x), \ a_i : \mathbb{F}_2^n \to \mathbb{F}_2.$ (1)

Sole, Tokareva 2009 $f(x) = a_0(x) + 2a_1(x)$ is generalized bent if and only if a_1 and $a_1 \oplus a_0$ are Boolean bent functions.

Various Authors, 2015– If f in (1) is generalized bent, then all functions in $\mathcal{A} = a_{k-1} \oplus \langle a_0, \ldots, a_{k-2} \rangle$ are Boolean bent functions.

(日) (同) (三) (三) (三) (○) (○)

n even, (p = 2). $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^k}$,

 $f(x) = a_0(x) + 2a_1(x) + \dots + 2^{k-1}a_{k-1}(x), \ a_i : \mathbb{F}_2^n \to \mathbb{F}_2.$ (1)

Sole, Tokareva 2009 $f(x) = a_0(x) + 2a_1(x)$ is generalized bent if and only if a_1 and $a_1 \oplus a_0$ are Boolean bent functions.

Various Authors, 2015– If f in (1) is generalized bent, then all functions in $\mathcal{A} = a_{k-1} \oplus \langle a_0, \ldots, a_{k-2} \rangle$ are Boolean bent functions.

Tang, Xiang, Qi, Feng 2017 f is generalized bent if and only if all functions in A are bent and the Walsh transforms of all those relate as follows: (technical conditions),

n even, (p = 2). $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^k}$,

 $f(x) = a_0(x) + 2a_1(x) + \dots + 2^{k-1}a_{k-1}(x), \ a_i : \mathbb{F}_2^n \to \mathbb{F}_2.$ (1)

Sole, Tokareva 2009 $f(x) = a_0(x) + 2a_1(x)$ is generalized bent if and only if a_1 and $a_1 \oplus a_0$ are Boolean bent functions.

Various Authors, 2015– If f in (1) is generalized bent, then all functions in $\mathcal{A} = a_{k-1} \oplus \langle a_0, \ldots, a_{k-2} \rangle$ are Boolean bent functions.

Tang, Xiang, Qi, Feng 2017 f is generalized bent if and only if all functions in A are bent and the Walsh transforms of all those relate as follows: (technical conditions), or

Hodzic, M.,Pasalic 2018 f is generalized bent if and only if all functions in \mathcal{A} are bent such that for any $h_0, h_1, h_2 \in \mathcal{A}$ and $h_3 = h_0 \oplus h_1 \oplus h_2$ we have $h_3^* = h_0^* \oplus h_1^* \oplus h_2^*$.

n even, (p = 2). $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^k}$,

 $f(x) = a_0(x) + 2a_1(x) + \dots + 2^{k-1}a_{k-1}(x), \ a_i : \mathbb{F}_2^n \to \mathbb{F}_2.$ (1)

Sole, Tokareva 2009 $f(x) = a_0(x) + 2a_1(x)$ is generalized bent if and only if a_1 and $a_1 \oplus a_0$ are Boolean bent functions.

Various Authors, 2015– If f in (1) is generalized bent, then all functions in $\mathcal{A} = a_{k-1} \oplus \langle a_0, \ldots, a_{k-2} \rangle$ are Boolean bent functions.

Tang, Xiang, Qi, Feng 2017 f is generalized bent if and only if all functions in A are bent and the Walsh transforms of all those relate as follows: (technical conditions), or

Hodzic, M.,Pasalic 2018 f is generalized bent if and only if all functions in \mathcal{A} are bent such that for any $h_0, h_1, h_2 \in \mathcal{A}$ and $h_3 = h_0 \oplus h_1 \oplus h_2$ we have $h_3^* = h_0^* \oplus h_1^* \oplus h_2^*$. (Recall, $g : \mathbb{F}_2^n \to \mathbb{F}_2$ bent $\Rightarrow \mathcal{W}_f(b) = 2^{n/2}(-1)^{g^*(b)}$. The "dual" g^* is also bent.)

Gbent functions and partitions

Mesnager et al. 2018 A gbent function is

► a Boolean (p-ary) bent function a(x) from Fⁿ₂ (Fⁿ_p) to F₂ (F_p) together with

▶ a partition $\mathcal{P} = \{A(0), A(1), \dots, A(r-1)\}$ of \mathbb{F}_2^n (\mathbb{F}_p^n)

with the property that $a(x) \oplus C(x)$ is bent for every $C : \mathbb{F}_2^n \to \mathbb{F}_2$ $(C : \mathbb{F}_p^n \to \mathbb{F}_p)$ which is constant on the elements of \mathcal{P} .

Gbent functions and partitions

Mesnager et al. 2018 A gbent function is

- ► a Boolean (p-ary) bent function a(x) from Fⁿ₂ (Fⁿ_p) to F₂ (F_p) together with
- a partition $\mathcal{P} = \{A(0), A(1), \dots, A(r-1)\}$ of \mathbb{F}_2^n (\mathbb{F}_p^n)

with the property that $a(x) \oplus C(x)$ is bent for every $C : \mathbb{F}_2^n \to \mathbb{F}_2$ $(C : \mathbb{F}_p^n \to \mathbb{F}_p)$ which is constant on the elements of \mathcal{P} .

The partition \mathcal{P} ?

Gbent functions and partitions

Mesnager et al. 2018 A gbent function is

► a Boolean (p-ary) bent function a(x) from Fⁿ₂ (Fⁿ_p) to F₂ (F_p) together with

▶ a partition $\mathcal{P} = \{A(0), A(1), \dots, A(r-1)\}$ of \mathbb{F}_2^n (\mathbb{F}_p^n)

with the property that $a(x) \oplus C(x)$ is bent for every $C : \mathbb{F}_2^n \to \mathbb{F}_2$ $(C : \mathbb{F}_p^n \to \mathbb{F}_p)$ which is constant on the elements of \mathcal{P} .

The partition \mathcal{P} ? Let

 $f(x) = a_0(x) + 2a_1(x) + \dots + 2^{k-2}a_{k-2}(x) + 2^{k-1}a_{k-1}(x)$

be "a representation" of the gbent function, then

 $\mathcal{P} = \{A(j), 0 \le j \le 2^{k-1} - 1\},\$ $A(j) = \{x \in \mathbb{F}_2^n : f(x) - 2^{k-1}a_{k-1}(x) = j\}.$

(日) (同) (三) (三) (三) (○) (○)

Note: $|\mathcal{P}| \leq 2^{k-1}$.

Blowing up and playing with the partition

Mesnager et al. 2018 If $\mathbb{F}_{2}^{n} \to \mathbb{Z}_{2^{k}}$ is gbent, with $f(x) = a_{0}(x) + 2a_{1}(x) + \dots + 2^{k-2}a_{k-2}(x) + 2^{k-1}a_{k-1}(x),$ so is $\overline{f} : \mathbb{F}_{2}^{n} \to \mathbb{Z}_{2^{l}}$ $\overline{f}(x) = F_{0}(a_{0}(x), \dots, a_{k-2}(x)) + 2F_{1}(a_{0}(x), \dots, a_{k-2}(x)) + \dots$ $+ 2^{l-2}F_{l-2}(a_{0}(x), \dots, a_{k-2}(x)) + 2^{l-1}a_{k-1}(x)$

for every integer I and every $F_j : \mathbb{F}_2^{k-1} \to \mathbb{F}_2$, $0 \le j \le I-2$.

Blowing up and playing with the partition

Mesnager et al. 2018 If $\mathbb{F}_2^n \to \mathbb{Z}_{2^k}$ is gbent, with

$$f(x) = a_0(x) + 2a_1(x) + \dots + 2^{k-2}a_{k-2}(x) + 2^{k-1}a_{k-1}(x),$$

so is $\overline{f} : \mathbb{F}_2^n \to \mathbb{Z}_{2^l}$

$$\overline{f}(x) = F_0(a_0(x), \dots, a_{k-2}(x)) + 2F_1(a_0(x), \dots, a_{k-2}(x)) + \dots + 2^{l-2}F_{l-2}(a_0(x), \dots, a_{k-2}(x)) + 2^{l-1}a_{k-1}(x)$$

for every integer I and every $F_j : \mathbb{F}_2^{k-1} \to \mathbb{F}_2$, $0 \le j \le I-2$.

Simplest example: If $f : \mathbb{F}_2^n \to \mathbb{F}_2$ is bent, then $\overline{f} : \mathbb{F}_2^n \to \mathbb{Z}_{2^l}$, with $\overline{f} = 2^{l-1}f(x)$ is gbent taking on only the values 0 and 2^{l-1} .

Questions: What is

- the finest partition for a given bent function $a : \mathbb{F}_2^n \to \mathbb{F}_2$?
- ▶ the finest partition a bent function $a : \mathbb{F}_2^n \to \mathbb{F}_2$ can have?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Questions: What is

- ▶ the finest partition for a given bent function $a : \mathbb{F}_2^n \to \mathbb{F}_2$?
- the finest partition a bent function $a : \mathbb{F}_2^n \to \mathbb{F}_2$ can have?

Let $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^l}$ be gbent, represented as $f(x) = a_0(x) + 2a_1(x) + \dots + 2^{l-2}a_{l-2}(x) + 2^{l-1}a_{l-1}(x)$ with its partition $\mathcal{P} = \{A(j), 0 \le j \le 2^{l-1} - 1 : f(x) - 2^{l-1}a_{l-1}(x) = j\}.$

Questions: What is

- ▶ the finest partition for a given bent function $a : \mathbb{F}_2^n \to \mathbb{F}_2$?
- the finest partition a bent function $a : \mathbb{F}_2^n \to \mathbb{F}_2$ can have?

Let $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^l}$ be gbent, represented as $f(x) = a_0(x) + 2a_1(x) + \dots + 2^{l-2}a_{l-2}(x) + 2^{l-1}a_{l-1}(x)$ with its partition $\mathcal{P} = \{A(j), 0 \le j \le 2^{l-1} - 1 : f(x) - 2^{l-1}a_{l-1}(x) = j\}.$

► The dimension of f is k if the partition \mathcal{P} contains $2^{k-2} + 1 \leq \Omega \leq 2^{k-1}$ (nonempty) sets.

Questions: What is

- ▶ the finest partition for a given bent function $a : \mathbb{F}_2^n \to \mathbb{F}_2$?
- the finest partition a bent function $a : \mathbb{F}_2^n \to \mathbb{F}_2$ can have?

Let $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^l}$ be gbent, represented as $f(x) = a_0(x) + 2a_1(x) + \dots + 2^{l-2}a_{l-2}(x) + 2^{l-1}a_{l-1}(x)$ with its partition $\mathcal{P} = \{A(j), 0 \le j \le 2^{l-1} - 1 : f(x) - 2^{l-1}a_{l-1}(x) = j\}.$

- ► The dimension of f is k if the partition \mathcal{P} contains $2^{k-2} + 1 \leq \Omega \leq 2^{k-1}$ (nonempty) sets.
- ▶ The dimension of f is the smallest number k for which there exists a gbent function $\tilde{f} : \mathbb{F}_2^n \to \mathbb{Z}_{2^k}$, $\tilde{f}(x) = \tilde{a}_0(x) + 2\tilde{a}_1(x) + \cdots + 2^{k-2}\tilde{a}_{k-2}(x) + 2^{k-1}a_{l-1}(x)$ which induces the same partition of \mathbb{F}_2^n .

Questions: What is

- ▶ the finest partition for a given bent function $a : \mathbb{F}_2^n \to \mathbb{F}_2$?
- the finest partition a bent function $a : \mathbb{F}_2^n \to \mathbb{F}_2$ can have?

Let $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^l}$ be gbent, represented as $f(x) = a_0(x) + 2a_1(x) + \dots + 2^{l-2}a_{l-2}(x) + 2^{l-1}a_{l-1}(x)$ with its partition $\mathcal{P} = \{A(j), 0 \le j \le 2^{l-1} - 1 : f(x) - 2^{l-1}a_{l-1}(x) = j\}.$

- ► The dimension of f is k if the partition \mathcal{P} contains $2^{k-2} + 1 \leq \Omega \leq 2^{k-1}$ (nonempty) sets.
- ▶ The dimension of f is the smallest number k for which there exists a gbent function $\tilde{f} : \mathbb{F}_2^n \to \mathbb{Z}_{2^k}$, $\tilde{f}(x) = \tilde{a}_0(x) + 2\tilde{a}_1(x) + \cdots + 2^{k-2}\tilde{a}_{k-2}(x) + 2^{k-1}a_{l-1}(x)$ which induces the same partition of \mathbb{F}_2^n .
- The dimension of f is the smallest number k for which there exists a gbent function *t̃* : ℝⁿ₂ → ℤ_{2^k} from which f can be obtained by "blowing up and playing with the partition".

Let $U_0, U_1, \ldots, U_{2^m}$ be the elements of a spread of \mathbb{F}_2^n , n = 2m. Then $f : \mathbb{V}_n \to \mathbb{Z}_{2^m}$ defined by

- f(x) = 0 for $x \in U_0$ (w.l.o.g.),
- *f* is constant on the nonzero elements of U_i, 1 ≤ i ≤ p^m, such that for every c ∈ Z_{2^m} the nonzero elements of exactly 1 of the U_i'a are mapped to c, is bent.

Let $U_0, U_1, \ldots, U_{2^m}$ be the elements of a spread of \mathbb{F}_2^n , n = 2m. Then $f : \mathbb{V}_n \to \mathbb{Z}_{2^m}$ defined by

- f(x) = 0 for $x \in U_0$ (w.l.o.g.),
- *f* is constant on the nonzero elements of U_i, 1 ≤ i ≤ p^m, such that for every c ∈ Z_{2^m} the nonzero elements of exactly 1 of the U_i'a are mapped to c, is bent.

Relaxing the condition for gbent (M., Martinsen, Stanica, 2017)

 $f: \mathbb{V}_n \to \mathbb{Z}_{2^k}$:

- f(x) = 0 for $x \in U_0$.

Let $U_0, U_1, \ldots, U_{2^m}$ be the elements of a spread of \mathbb{F}_2^n , n = 2m. Then $f : \mathbb{V}_n \to \mathbb{Z}_{2^m}$ defined by

- f(x) = 0 for $x \in U_0$ (w.l.o.g.),
- *f* is constant on the nonzero elements of U_i, 1 ≤ i ≤ p^m, such that for every c ∈ Z_{2^m} the nonzero elements of exactly 1 of the U_i'a are mapped to c, is bent.

Relaxing the condition for gbent (M., Martinsen, Stanica, 2017)

 $f: \mathbb{V}_n \to \mathbb{Z}_{2^k}$:

- f(x) = 0 for $x \in U_0$.
- F is constant on the nonzero elements of U_i, 1 ≤ i ≤ 2^m, such that: The number of U_i mapped to c and to c + 2^{k-1} is the same for every 0 ≤ c ≤ 2^{k-2} − 1.

Let f be such a gbent (bent) function from a spread of \mathbb{F}_2^n , and \mathcal{P} its partition.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

▶
$$|\mathcal{P}| \le 2^{m-1}$$
, (hence $f = a_0 + 2a_1 + \dots + 2^{m-1}a_{m-1}$,
 $\mathcal{P} = \{A(d) : 0 \le d \le 2^{m-1} - 1\}$)

• $|\mathcal{P}| = 2^{m-1}$ if and only if $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^m}$ is bent.

Let f be such a gbent (bent) function from a spread of \mathbb{F}_2^n , and \mathcal{P} its partition.

▶
$$|\mathcal{P}| \le 2^{m-1}$$
, (hence $f = a_0 + 2a_1 + \dots + 2^{m-1}a_{m-1}$,
 $\mathcal{P} = \{A(d) : 0 \le d \le 2^{m-1} - 1\}$)

• $|\mathcal{P}| = 2^{m-1}$ if and only if $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^m}$ is bent.

For f bent, A(d) is the union of 2 spread elements, 1 ≤ d ≤ 2^{m-1} − 1, A(0) (w.l.o.g) contains 3.

Let f be such a gbent (bent) function from a spread of \mathbb{F}_2^n , and \mathcal{P} its partition.

▶
$$|\mathcal{P}| \le 2^{m-1}$$
, (hence $f = a_0 + 2a_1 + \dots + 2^{m-1}a_{m-1}$,
 $\mathcal{P} = \{A(d) : 0 \le d \le 2^{m-1} - 1\}$)

• $|\mathcal{P}| = 2^{m-1}$ if and only if $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^m}$ is bent.

 For f bent, A(d) is the union of 2 spread elements, 1 ≤ d ≤ 2^{m-1} − 1, A(0) (w.l.o.g) contains 3.
 For only gbent, all A(d) but one (A(0)) contain an even number of spread elements.

Let f be such a gbent (bent) function from a spread of \mathbb{F}_2^n , and \mathcal{P} its partition.

▶
$$|\mathcal{P}| \le 2^{m-1}$$
, (hence $f = a_0 + 2a_1 + \dots + 2^{m-1}a_{m-1}$,
 $\mathcal{P} = \{A(d) : 0 \le d \le 2^{m-1} - 1\}$)

▶ $|\mathcal{P}| = 2^{m-1}$ if and only if $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^m}$ is bent.

- For f bent, A(d) is the union of 2 spread elements, 1 ≤ d ≤ 2^{m-1} − 1, A(0) (w.l.o.g) contains 3.
 For only gbent, all A(d) but one (A(0)) contain an even number of spread elements.
- ► All functions a_{m-1}(x) + C(x) are partial spread bent functions.

Let f be such a gbent (bent) function from a spread of \mathbb{F}_2^n , and \mathcal{P} its partition.

▶
$$|\mathcal{P}| \le 2^{m-1}$$
, (hence $f = a_0 + 2a_1 + \dots + 2^{m-1}a_{m-1}$,
 $\mathcal{P} = \{A(d) : 0 \le d \le 2^{m-1} - 1\}$)

▶ $|\mathcal{P}| = 2^{m-1}$ if and only if $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^m}$ is bent.

- For f bent, A(d) is the union of 2 spread elements, 1 ≤ d ≤ 2^{m-1} − 1, A(0) (w.l.o.g) contains 3.
 For only gbent, all A(d) but one (A(0)) contain an even number of spread elements.
- ► All functions a_{m-1}(x) + C(x) are partial spread bent functions.
- A spread bent function has many such partitions corresponding to *different* gbent functions. (Spread is more!)

Let f be such a gbent (bent) function from a spread of \mathbb{F}_2^n , and \mathcal{P} its partition.

▶
$$|\mathcal{P}| \le 2^{m-1}$$
, (hence $f = a_0 + 2a_1 + \dots + 2^{m-1}a_{m-1}$,
 $\mathcal{P} = \{A(d) : 0 \le d \le 2^{m-1} - 1\}$)

▶ $|\mathcal{P}| = 2^{m-1}$ if and only if $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^m}$ is bent.

- For f bent, A(d) is the union of 2 spread elements, 1 ≤ d ≤ 2^{m-1} − 1, A(0) (w.l.o.g) contains 3.
 For only gbent, all A(d) but one (A(0)) contain an even number of spread elements.
- ► All functions a_{m-1}(x) + C(x) are partial spread bent functions.
- A spread bent function has many such partitions corresponding to *different* gbent functions. (Spread is more!)
- ► Construct $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^m}$ for which $|\mathcal{H}_f^m(\alpha, u)| = 2^{n/2}$ exactly for any fixed set of $\alpha' s \in \mathbb{Z}_{2^m}$. (BFA Talk 2017, Note that $|\mathcal{H}_f^k(2^t r, u)| = |\mathcal{H}_f^k(2^t, u)|$ for all odd r)

Small k

k = 1 Bent function $f : \mathbb{F}_2^n \to \mathbb{F}_2$, $\mathcal{P} = \mathbb{F}_2^n$.

Small k

k = 1 Bent function $f : \mathbb{F}_2^n \to \mathbb{F}_2$, $\mathcal{P} = \mathbb{F}_2^n$.

k = 2 With Sole, Tokareva, $g_0, g_1 : \mathbb{F}_2^n \to \mathbb{F}_2$ bent, if and only if $f : \mathbb{F}_2^n \to \mathbb{Z}_4$, $f = (g_0 \oplus g_1) + 2g_0$ is gbent.

Partition:

 $A(0) = \{x : g_0(x) = g_1(x)\}, A(1) = \{x : g_0(x) \neq g_1(x)\}.$

Obtained Boolean bent functions: $g_0, g_0 \oplus 1, g_1, g_1 \oplus 1$

Small k

k = 1 Bent function $f : \mathbb{F}_2^n \to \mathbb{F}_2$, $\mathcal{P} = \mathbb{F}_2^n$.

k = 2 With Sole, Tokareva, $g_0, g_1 : \mathbb{F}_2^n \to \mathbb{F}_2$ bent, if and only if $f : \mathbb{F}_2^n \to \mathbb{Z}_4$, $f = (g_0 \oplus g_1) + 2g_0$ is gbent.

Partition:

$$A(0) = \{x : g_0(x) = g_1(x)\}, A(1) = \{x : g_0(x) \neq g_1(x)\}.$$

Obtained Boolean bent functions: $g_0, g_0 \oplus 1, g_1, g_1 \oplus 1$

Bent function $f : \mathbb{F}_2^n \to \mathbb{Z}_4$, $f(x) = h_0(x) + 2h_1(x)$ is bent if and only if $h_1, h_0, h_1 \oplus h_0$ are Boolean bent functions.

Relative difference set in $\mathbb{F}_2^n \times \mathbb{F}_2^2 \longleftrightarrow$ Relative difference set in $\mathbb{F}_2^n \times \mathbb{Z}_4$.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = 三 - のへで

Let h_0, h_1, h_2 be Boolean bent functions such that $h_3 = h_0 \oplus h_1 \oplus h_2$ is bent. Then $h_0h_1 \oplus h_0h_2 \oplus h_1h_2$ is bent if and only if $h_3^* = h_0^* \oplus h_1^* \oplus h_2^*$ (Mesnager 2014)

Let h_0, h_1, h_2 be Boolean bent functions such that $h_3 = h_0 \oplus h_1 \oplus h_2$ is bent. Then $h_0h_1 \oplus h_0h_2 \oplus h_1h_2$ is bent if and only if $h_3^* = h_0^* \oplus h_1^* \oplus h_2^*$ (Mesnager 2014)

M. 2018 For Boolean functions h_0, h_1, h_2 the function $f : \mathbb{F}_2^n \to \mathbb{Z}_8$

 $f = (h_0 \oplus h_1) + 2(h_0 \oplus h_2) + 4h_0$

is gbent if and only if h_0 , h_1 , h_2 and $h_3 = h_0 \oplus h_1 \oplus h_2$ are bent such that $h_3^* = h_0^* \oplus h_1^* \oplus h_2^*$.

Let h_0, h_1, h_2 be Boolean bent functions such that $h_3 = h_0 \oplus h_1 \oplus h_2$ is bent. Then $h_0h_1 \oplus h_0h_2 \oplus h_1h_2$ is bent if and only if $h_3^* = h_0^* \oplus h_1^* \oplus h_2^*$ (Mesnager 2014)

M. 2018 For Boolean functions h_0, h_1, h_2 the function $f : \mathbb{F}_2^n \to \mathbb{Z}_8$

 $f = (h_0 \oplus h_1) + 2(h_0 \oplus h_2) + 4h_0$

is gbent if and only if h_0 , h_1 , h_2 and $h_3 = h_0 \oplus h_1 \oplus h_2$ are bent such that $h_3^* = h_0^* \oplus h_1^* \oplus h_2^*$.

What are the bent functions $h_0(x) \oplus C(x)$?

Let h_0, h_1, h_2 be Boolean bent functions such that $h_3 = h_0 \oplus h_1 \oplus h_2$ is bent. Then $h_0h_1 \oplus h_0h_2 \oplus h_1h_2$ is bent if and only if $h_3^* = h_0^* \oplus h_1^* \oplus h_2^*$ (Mesnager 2014)

M. 2018 For Boolean functions h_0, h_1, h_2 the function $f : \mathbb{F}_2^n \to \mathbb{Z}_8$

 $f = (h_0 \oplus h_1) + 2(h_0 \oplus h_2) + 4h_0$

is gbent if and only if h_0 , h_1 , h_2 and $h_3 = h_0 \oplus h_1 \oplus h_2$ are bent such that $h_3^* = h_0^* \oplus h_1^* \oplus h_2^*$.

What are the bent functions $h_0(x) \oplus C(x)$?

 $\{ h_0, h_1, h_2, h_3, h_0 h_1 \oplus h_0 h_2 \oplus h_1 h_2, h_0 h_1 \oplus h_0 h_3 \oplus h_1 h_3, h_0 h_2 \oplus h_0 h_3 \oplus h_2 h_3, h_1 h_2 \oplus h_1 h_3 \oplus h_2 h_3 \} \oplus \{ 0, 1 \}$

Let h_0, h_1, h_2 be Boolean bent functions such that $h_3 = h_0 \oplus h_1 \oplus h_2$ is bent. Then $h_0h_1 \oplus h_0h_2 \oplus h_1h_2$ is bent if and only if $h_3^* = h_0^* \oplus h_1^* \oplus h_2^*$ (Mesnager 2014)

M. 2018 For Boolean functions h_0, h_1, h_2 the function $f : \mathbb{F}_2^n \to \mathbb{Z}_8$

 $f = (h_0 \oplus h_1) + 2(h_0 \oplus h_2) + 4h_0$

is gbent if and only if h_0 , h_1 , h_2 and $h_3 = h_0 \oplus h_1 \oplus h_2$ are bent such that $h_3^* = h_0^* \oplus h_1^* \oplus h_2^*$.

What are the bent functions $h_0(x) \oplus C(x)$?

 $\{ h_0, h_1, h_2, h_3, h_0 h_1 \oplus h_0 h_2 \oplus h_1 h_2, h_0 h_1 \oplus h_0 h_3 \oplus h_1 h_3, h_0 h_2 \oplus h_0 h_3 \oplus h_2 h_3, h_1 h_2 \oplus h_1 h_3 \oplus h_2 h_3 \} \oplus \{ 0, 1 \}$

Recall Hodzic, M.,Pasalic 2018: f is gbent if and only if all functions in $\mathcal{A} = a_{k-1} + \langle a_0, \ldots, a_{k-2} \rangle$ are bent such that for $h_0, h_1, h_2 \in \mathcal{A}$ and $h_0 \oplus h_1 \oplus h_2 = h_3$ we have $h_0^* \oplus h_1^* \oplus h_2^* = h_3^*$.

Constructions for k = 3

Mesnager 2014

I For g bent, put

 $h_0(x) = g(x), h_1(x) = g(x) \oplus u \cdot x, h_2(x) = g(x) \oplus v \cdot x$

such that $D_u D_v g^*(x) = 0$;

II For g_0, g_1 bent, put

 $h_0(x) = g_0(x), h_1(x) = g_0(x) \oplus u \cdot x, h_2(x) = g_1(x)$

such that $D_u g_0^*(x) \oplus D_u g_1^*(x) = 0$.

Constructions for k = 3

Mesnager 2014

I For g bent, put

 $h_0(x) = g(x), h_1(x) = g(x) \oplus u \cdot x, h_2(x) = g(x) \oplus v \cdot x$

such that $D_u D_v g^*(x) = 0$;

II For g_0, g_1 bent, put

$$h_0(x) = g_0(x), h_1(x) = g_0(x) \oplus u \cdot x, h_2(x) = g_1(x)$$

such that $D_u g_0^*(x) \oplus D_u g_1^*(x) = 0$.

Remark

Among Mesnager's concrete examples, one (from II) provides bent functions from \mathbb{F}_{2^n} to \mathbb{Z}_8 . One from \mathbb{F}_2^{12} to \mathbb{Z}_8 does not come from a spread of \mathbb{F}_2^{12} , hence gives a relative difference set in $\mathbb{F}_2^{12} \times \mathbb{Z}_8$ which does not come from a spread of \mathbb{F}_2^{12} .

(The only one I know for $k \geq 3$)

Carlet's secondary construction, 1994 If g is a bent function which is affine on an n/2-dimensional affine subspace, then we can change the values of g on this subspace and again get a bent function.

Carlet's secondary construction, 1994 If g is a bent function which is affine on an n/2-dimensional affine subspace, then we can change the values of g on this subspace and again get a bent function.

Kolomeec 2012; DCC, 2017 Two bent functions in dimension n differ at least at $2^{n/2}$ positions. Two bent functions with minimal distance $2^{n/2}$ always differ on an affine subspace (of dimension n/2), restricted to which they are affine functions.

Potapov, 2016 The analog result holds for bent functions $g: \mathbb{F}_p^n \to \mathbb{F}_p$, p odd, n even.

Carlet's secondary construction, 1994 If g is a bent function which is affine on an n/2-dimensional affine subspace, then we can change the values of g on this subspace and again get a bent function.

Kolomeec 2012; DCC, 2017 Two bent functions in dimension n differ at least at $2^{n/2}$ positions. Two bent functions with minimal distance $2^{n/2}$ always differ on an affine subspace (of dimension n/2), restricted to which they are affine functions.

Potapov, 2016 The analog result holds for bent functions $g: \mathbb{F}_p^n \to \mathbb{F}_p$, p odd, n even.

Observation If $a_0 + 2a_1 + \ldots + 2^{k-1}a_{k-1}$ is gbent with partition \mathcal{P} and $A(d) \in \mathcal{P}$. Then a_{k-1} and $a_{k-1} \oplus \mathcal{I}(A(d))$ are bent (\mathcal{I} Indicator function).

Corollary

Let $f(x) = a_0(x) + 2a_1(x) + \dots + 2^{k-1}a_{k-1}(x)$ a gbent function with partition $\mathcal{P} = \{A(d) : 0 \le d \le 2^{k-1} - 1\}.$

- $|A(d)| \ge 2^{n/2}$, $0 \le d \le 2^{k-1} 1$.
- If |A(d)| = 2^{n/2}, then A(d) is an affine subspace on which a_{k-1} is affine.

• \mathcal{P} can contain at most $2^{n/2}$ (nonempty) sets.

Corollary

Let $f(x) = a_0(x) + 2a_1(x) + \dots + 2^{k-1}a_{k-1}(x)$ a gbent function with partition $\mathcal{P} = \{A(d) : 0 \le d \le 2^{k-1} - 1\}.$

- $|A(d)| \ge 2^{n/2}$, $0 \le d \le 2^{k-1} 1$.
- If |A(d)| = 2^{n/2}, then A(d) is an affine subspace on which a_{k-1} is affine.
- ▶ *P* can contain at most 2^{n/2} (nonempty) sets.

Remark

Without blowing up, we have $k \le n/2 + 1$. The dimension of f is at most n/2 + 1.

(日) (同) (三) (三) (三) (○) (○)

Corollary

If the partition \mathcal{P} of a gbent function $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^{n/2+1}}$ has this maximal possible number $2^{n/2}$ elements, then a_{k-1} is in the completed Maiorana-McFarland class.

Conversely, every function in the completed Maiorana-McFarland class has such a (finest possible) partition, with an according gbent function from \mathbb{F}_2^n to $\mathbb{Z}_{2^{n/2+1}}$.

Corollary

If the partition \mathcal{P} of a gbent function $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^{n/2+1}}$ has this maximal possible number $2^{n/2}$ elements, then a_{k-1} is in the completed Maiorana-McFarland class.

Conversely, every function in the completed Maiorana-McFarland class has such a (finest possible) partition, with an according gbent function from \mathbb{F}_2^n to $\mathbb{Z}_{2^{n/2+1}}$.

Remark

The set of bent functions $a_{n/2}(x) + C(x)$ is exactly the set of all bent functions one obtains from $a_{n/2}$ applying Carlet's construction (changing the values on the subspaces) repeatedly with the affine subspaces A(d), $0 \le d \le 2^{n/2} - 1$.

Corollary

If the partition \mathcal{P} of a gbent function $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^{n/2+1}}$ has this maximal possible number $2^{n/2}$ elements, then a_{k-1} is in the completed Maiorana-McFarland class.

Conversely, every function in the completed Maiorana-McFarland class has such a (finest possible) partition, with an according gbent function from \mathbb{F}_2^n to $\mathbb{Z}_{2^{n/2+1}}$.

Remark

The set of bent functions $a_{n/2}(x) + C(x)$ is exactly the set of all bent functions one obtains from $a_{n/2}$ applying Carlet's construction (changing the values on the subspaces) repeatedly with the affine subspaces A(d), $0 \le d \le 2^{n/2} - 1$.

Remark

The analolg result holds for gbent functions from \mathbb{F}_p^n to \mathbb{Z}_{p^k} , *n* even. In particular, there is no bent function from \mathbb{F}_p^n to \mathbb{Z}_{p^n} .

Kolomeec DCC, 2017 The only bent function $f : \mathbb{F}_2^n \to \mathbb{F}_2$ with the properties

- I f is affine on some n/2-dimensional affine subspace of \mathbb{F}_2^n ,
- If if f is affine on an n/2-dimensional affine subspace L of \mathbb{F}_2^n , then f is affine on every coset of L,

is the quadratic bent function (invariant under EA-equivalence).

Kolomeec DCC, 2017 The only bent function $f : \mathbb{F}_2^n \to \mathbb{F}_2$ with the properties

- I f is affine on some n/2-dimensional affine subspace of \mathbb{F}_2^n ,
- If if f is affine on an n/2-dimensional affine subspace L of \mathbb{F}_2^n , then f is affine on every coset of L,
- is the quadratic bent function (invariant under EA-equivalence).

Corollary

For a quadratic bent function $q: \mathbb{F}_2^n \to \mathbb{F}_2$ there are $K = (2^1 + 1)(2^2 + 1) \cdots (2^{\frac{n}{2}} + 1)$ distinct partitions of \mathbb{F}_2^n for gbent functions from \mathbb{F}_2^n to $\mathbb{Z}_{2^{n/2+1}}$, i.e. K different gbent functions from \mathbb{F}_2^n to $\mathbb{Z}_{2^{n/2+1}}$. This is the maximal number of such partitions a bent function can have.

Questions

- ▶ Show that there is only the spread relative difference set in $\mathbb{F}_2^n \times \mathbb{Z}_{2^{n/2}}$ ($\mathbb{F}_p^n \times \mathbb{Z}_{p^{n/2}}$)
- Show that there is only the spread relative difference set in *F*ⁿ₂ × ℤ_{2^m} for ? ≤ *m* ≤ *n*/2, or: What is the largest *m* for which there exists a NOT-spread relative difference set in *F*ⁿ₂ × ℤ_{2^m}?
- Find a class (from Maiorana-McFarland?) of NOT-spread relative difference sets in 𝔽ⁿ₂ × ℤ_{2^m} for some n and m ≥ 3
- ▶ Find "best partitions" (gbent functions into Z_{2^m}, "large" m) for classes of bent functions different from spread, Maiorana-McFarland.
- What about relative difference sets in $\mathbb{F}_p^n \times B$, other B with $|B| = p^k$?