Sihem Mesnager, University of Paris VIII-LAGA (joint work with Claude Carlet, Chuankun Wu and Yuwei Xu)

> BFA 2018 Loen, Norway, June 2018

> > <□> < @> < E> < E> E のQで 1/46

Table of contents

Background

On Bent functions (with Claude Carlet, Chuankun Wu and Yuwei Xu)

On Bent monomial vectorial functions Bent vectorial functions with multiple terms

Upper bounds on the nonlinearity of S-boxes (with Claude Carlet, Chuankun Wu and Yuwei Xu)

On bent components of vectorial functions (with Chunming Tang, Fengrong Zhang and Yong Zhou)

Finite fields

 $\mathbb{F}_{2^{n}} : \text{ finite field of order } 2^{n} \text{ (characteristic two), } n \text{ integer}$ $\text{Absolute trace } : Tr_{1}^{n}(x) = \sum_{i=0}^{n-1} x^{2^{i}}, x \in \mathbb{F}_{2^{n}}$ $\text{Trace } : Tr_{m}^{n}(x) = \sum_{i=0}^{\frac{n}{m}-1} x^{2^{i}}, m|n, x \in \mathbb{F}_{2^{n}}$ $\text{Transitivity property } : Tr_{k}^{m} \circ Tr_{m}^{n} = Tr_{k}^{n}, k|m, m|n$ $(\mathbb{F}_{2^{k}} \subset \mathbb{F}_{2^{m}} \subset \mathbb{F}_{2^{n}})$

Vectorial functions

 $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^m}$, n, m two integers Component function : $Tr_1^m(uF)$, $u \in \mathbb{F}_{2^m}^{\star}$ Monomial vectorial function : $Tr_m^n(ax^d)$, $m|n, a \in \mathbb{F}_{2^n}^{\star}$, d integer Monomial Boolean function : $Tr_1^n(ax^d)$, $a \in \mathbb{F}_{2^n}^{\star}$, d integer

Walsh transform

- n, m positive integers
- $F: \mathbb{F}_{2^n} \to \mathbb{F}_{2^m}$

Extended Walsh transform : $W_F : \mathbb{F}_{2^m} \times \mathbb{F}_{2^n} \to \mathbb{Z}$,

$$W_{F}(u,v) = \sum_{x \in \mathbb{F}_{2^{n}}} (-1)^{Tr_{1}^{m}(uF(x)) + Tr_{1}^{n}(vx)}, (u,v) \in \mathbb{F}_{2^{m}} \times \mathbb{F}_{2^{n}}$$

 $W_F(u, v)$: Walsh transform of the Boolean function $Tr_1^n(uF)$ at v.

On bentness, the nonlinearity and bent components of vectorial functions $\bigsqcup_{}$ Background

EA-equivalence

Definition

Two vectorial functions F and F' from \mathbb{F}_{2^n} to \mathbb{F}_{2^m} are EA-equivalent if and only if $F' = A \circ F \circ A' + A''$ for some $A \in AGL(\mathbb{F}_{2^n}), A' \in AGL(\mathbb{F}_{2^m})$ and A'' is an affine function from \mathbb{F}_{2^n} to \mathbb{F}_2

Extended Walsh spectrum : $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$,

$$\mathcal{W}_{F} = \{W_{F}(u, v), (u, v) \in \mathbb{F}_{2^{m}} \times \mathbb{F}_{2^{n}}\}$$

Proposition

Let F and F' from \mathbb{F}_{2^n} to \mathbb{F}_{2^m} being EA-equivalent. Then, $\mathcal{W}_F = \mathcal{W}_{F'}$.

CCZ-equivalence (Carlet-Charpin-Zinoviev-equivalence)

Definition

The graph of a vectorial function F from \mathbb{F}_{2^n} to \mathbb{F}_{2^m} is $\{(x, F(x)), x \in \mathbb{F}_{2^n}\}.$

Definition

Two vectorial functions F and F' from \mathbb{F}_{2^n} to \mathbb{F}_{2^m} are CCZ-equivalent if and only if $G_{F'} = \mathcal{L}(G_F)$ for some affine automorphism \mathcal{L} of $\mathbb{F}_{2^n} \times \mathbb{F}_{2^m}$.

Proposition

Let F and F' from \mathbb{F}_{2^n} to \mathbb{F}_{2^m} being CCZ-equivalent. Then, they are EA-equivalent. Furthermore, they have the same extended Walsh spectrum.

On bentness, the nonlinearity and bent components of vectorial functions $\bigsqcup_{}$ Background

Nonlinearity of S-Boxes

- n, m positive integers
- $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^m}$

Definition

The nonlinearity of F is

$$nI(F) = \min_{u \in \mathbb{F}_{2m}} \left(2^{n-1} - \frac{1}{2} \max_{v \in \mathbb{F}_{2m}^*} |W_F(u, v)| \right)$$
$$= 2^{n-1} - \frac{1}{2} \max_{v \in \mathbb{F}_{2m}^*; u \in \mathbb{F}_{2n}} |W_F(u, v)|$$

Fact

Let F and F' from \mathbb{F}_{2^n} to \mathbb{F}_{2^m} being CCZ-equivalent. Then, nl(F') = nl(F).

On Bent functions (with Claude Carlet, Chuankun Wu and Yuwei Xu)

└─On Bent monomial vectorial functions

Bent vectorial functions

- n, m positive integers
- $F: \mathbb{F}_{2^n} \to \mathbb{F}_{2^m}$

Covering radius bound :

$$nl(F) \leq 2^{n-1} - 2^{\frac{n}{2}-1}$$

Definition

A vectorial function $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^m}$ is said to be *bent* if $nl(F) = 2^{n-1} - 2^{\frac{n}{2}-1}$.

Theorem (Nyberg, 1994)

Bent vectorial functions from \mathbb{F}_{2^n} to \mathbb{F}_{2^m} exist only if n is even and $m\leq \frac{n}{2}$

Theorem (Budaghyan and Carlet, 2011)

CCZ-equivalence and EA-equivalence coincide for bent vectorial functions.

On Bent functions (with Claude Carlet, Chuankun Wu and Yuwei Xu)

-On Bent monomial vectorial functions

Maiorana-MacFarland Class

n = 2k, *m* positive integer Maiorana MacFarland Class : $\mathbb{F}_{2^n} \simeq \mathbb{F}_{2^k} \times \mathbb{F}_{2^k}$

$$F(x,y) = L(x\pi(y)) + H(y), \quad (x,y) \in \mathbb{F}_{2^k} \times \mathbb{F}_{2^k}$$

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ 9 Q ℃ 10/46

with :

•
$$L : \mathbb{F}_{2^k} \to \mathbb{F}_{2^m}$$
, linear
• $\pi : \mathbb{F}_{2^k} \to \mathbb{F}_{2^k}$, permutation
• $H : \mathbb{F}_{2^k} \to \mathbb{F}_{2^m}$

Fact

F is bent

On Bent functions (with Claude Carlet, Chuankun Wu and Yuwei Xu)

-On Bent monomial vectorial functions

Monomial vectorial functions

n, *m* positive integers, *n* even, $m|n, m \le \frac{n}{2}$ Monomial vectorial function : $Tr_m^n(ax^d)$

Remark

Since $Tr_{m'}^n(ax^d) = Tr_{m'}^n(Tr_m^n(ax^d))$, $Tr_{m'}^n(ax^d)$ is bent for any divisor m' of m if $Tr_m^n(ax^d)$ is bent.

Conversely, if $Tr_m^n(ax^d)$ is not bent, then $Tr_{m'}^n(ax^d)$ cannot be bent for any multiple m' of m

◆□ ▶ < @ ▶ < E ▶ < E ▶ ○ 2 · ○ Q ○ 11/46</p>

On Bent functions (with Claude Carlet, Chuankun Wu and Yuwei Xu)

-On Bent monomial vectorial functions

Monomial vectorial functions

Transitivity rule of the trace: $Tr_1^m \circ Tr_m^n = Tr_1^n$

Remark

The components of a monomial vectorial function $Tr_m^n(ax^d)$ are the Boolean functions $Tr_1^n(aux^d)$ with $u \in \mathbb{F}_{2^m}^{\star}$ since, for every $u \in \mathbb{F}_{2^m}$,

$$Tr_1^m(uTr_m^n(ax^d)) = Tr_1^m(Tr_m^n(aux^d)) = Tr_1^n(aux^d)$$

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ 9 Q @ 12/46

On Bent functions (with Claude Carlet, Chuankun Wu and Yuwei Xu)

-On Bent monomial vectorial functions

Monomial vectorial functions

n = 2k, k positive integer

List of integers *d* for which there exists $a \in \mathbb{F}_{2^n}$ such that $Tr_1^n(ax^d)$ is bent :

Туре	Exponent	Condition
PS _{ap}	$a(2^k-1)$	$gcd(a, 2^k + 1) = 1$
Kasami	$2^{2s} - 2^s + 1$	$\gcd(s,n)=1$
Maiorana-McFarland	$2^{s} + 1$	$n = \gcd(s, n)t$, t even
	$(2^{s}+1)^{2}$	n = 4r
	$2^{2s} + 2^s + 1$	n = 6r

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ 9 Q @ 13/46

On Bent functions (with Claude Carlet, Chuankun Wu and Yuwei Xu)

Con Bent monomial vectorial functions

Monomial vectorial functions

$$\mathcal{B}_d = \{a \in \mathbb{F}_{2^n} \mid Tr_1^n(ax^d) \text{ is bent}\}$$

Proposition

 $\mathit{Tr}^n_m(\mathsf{a} x^d)$ is bent if and only if $\mathcal{B}_d \supset a\mathbb{F}_{2^m}^{\star}$

Problem : Given an exponent *d* in the preceding list, find all cosets $a\mathbb{F}_{2^m}^*$ which are contained in \mathcal{B}_d

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ 9 Q @ 14/46

On Bent functions (with Claude Carlet, Chuankun Wu and Yuwei Xu)

On Bent monomial vectorial functions

Bent monomial vectorial functions

Proposition (Pasalic–Zhang, 2012) If $Tr_1^n(ax^d)$ is a bent Boolean function and x^d permutes $\mathbb{F}_{2^m}^{\star}$ then $Tr_m^n(ax^d)$ is bent.

The permutation condition on x^d is a necessary condition when $m=\frac{n}{2}$:

Proposition

Let d be a positive integer and n be an even positive integer. Let $m = \frac{n}{2}$. Suppose that $Tr_m^n(ax^d)$ is bent. Then $gcd(2^m - 1, d) = 1$, that is, x^d is a permutation of \mathbb{F}_{2^m} .

Theorem

Let $m = \frac{n}{2}$. $Tr_m^n(ax^d)$ is a bent vectorial function if and only if $Tr_1^n(ax^d)$ is a bent Boolean function and x^d permutes \mathbb{F}_{2m}^{\star} .

└─On Bent functions (with Claude Carlet, Chuankun Wu and Yuwei Xu)

On Bent monomial vectorial functions

Gold Case :
$$d = 2^s + 1$$
, $\frac{n}{\gcd(s,n)}$ even

Theorem $\mathcal{B}_d = \mathbb{F}_{2^n} \setminus \{x^{2^s+1}, x \in \mathbb{F}_{2^n}\}$

lpha primitive element of \mathbb{F}_{2^n} $<\beta>=\{\beta^i, 0\leq i\leq 2^n-1\}, \beta\in\mathbb{F}_{2^n}^{\star}$

Lemma

Let e be a positive integer. $a\mathbb{F}_{2^m}^{\star} \subset \mathbb{F}_{2^n} \setminus \{x^e, x \in \mathbb{F}_{2^n}^{\star}\}$ if and only if a $\notin < \alpha^{\gcd(e,t)} >$ where $t = \frac{2^n - 1}{2^m - 1}$.

Theorem

Let m be a divisor of n. Then, $Tr_m^n(ax^{2^s+1})$ is bent if and only if $gcd(2^s+1,t) \neq 1$ and $a \in \mathbb{F}_{2^n}^{\star} \setminus < \alpha^{gcd(2^s+1,t)} >$.

└─On Bent functions (with Claude Carlet, Chuankun Wu and Yuwei Xu)

-On Bent monomial vectorial functions

Gold Case :
$$d = 2^s + 1$$
, $\frac{n}{\gcd(s,n)}$ even

Example

 $Tr_4^{12}(ax^9)$ is a bent vectorial function from $\mathbb{F}_{2^{12}}$ to \mathbb{F}_{2^4} provided that *a* is not a cube of an element of $\mathbb{F}_{2^{12}}$ but x^9 does not permute \mathbb{F}_{2^4} since $gcd(2^4 - 1, 9) = 3$.

Example

 $Tr_3^{12}(ax^9)$ is a bent vectorial function from $\mathbb{F}_{2^{12}}$ to \mathbb{F}_{2^3} provided that *a* is not a 9th-power of an element of $\mathbb{F}_{2^{12}}$ and x^9 permutes \mathbb{F}_{2^3} since $gcd(2^3 - 1, 9) = 1$.

└─On Bent functions (with Claude Carlet, Chuankun Wu and Yuwei Xu)

On Bent monomial vectorial functions

Kasami Case : $d = 2^{2s} - 2^s + 1$, gcd(s, n) = 1

Theorem (Dillon - Dobbertin, 2004) $\mathcal{B}_d = \mathbb{F}_{2^n} \setminus \{x^3, x \in \mathbb{F}_{2^n}\}$

Theorem

Let m be a divisor of n. Then,

- ▶ If m is odd or, if m is even, $\frac{n}{m}$ is a multiple of 3, $Tr_m^n(ax^d)$ is bent if and only if $a \notin < \alpha^3 > .$
- If m is even and $\frac{n}{m}$ is not divisible by 3, no vectorial function $Tr_m^n(ax^d)$ is bent.

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

-On Bent functions (with Claude Carlet, Chuankun Wu and Yuwei Xu)

-On Bent monomial vectorial functions

Kasami Case : $d = 2^{2s} - 2^s + 1$, gcd(s, n) = 1

Remark

3 is a divisor of $d = 2^{2s} - 2^s + 1$ when gcd(s, n) = 1. If *m* is odd, 3 and $2^m - 1$ are coprime. Thus, if *m* is odd, x^d is a permutation of \mathbb{F}_{2^m} .

Remark

 $Tr_4^{12}(ax^{993})$ is bent provided that *a* is not a cube of $\mathbb{F}_{2^{12}}$ and x^{993} is not a permutation of \mathbb{F}_{2^4} since $gcd(2^4 - 1, 993) = 3$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 19/46

└─On Bent functions (with Claude Carlet, Chuankun Wu and Yuwei Xu)

On Bent monomial vectorial functions

Leander Case :
$$d = (2^{\frac{n}{4}} + 1)^2$$
, $n = 4 \mod 8$

$$A \cdot B = \{ab, a \in A, b \in B\}$$

Theorem (Leander, 2006, Charpin - Kyureghyan, 2008) $\mathcal{B}_d = (\mathbb{F}_4 \setminus \mathbb{F}_2) \cdot \mathbb{F}_{2^{\frac{n}{4}}}^{\star} \cdot \{x^d, x \in \mathbb{F}_{2^n}^{\star}\}$

Theorem

Let m be a divisor of n. Then, $Tr_m^n(ax^d)$ is bent if and only if m is odd and $a \in (\mathbb{F}_4 \setminus \mathbb{F}_2) \cdot < \alpha^{2^{\frac{n}{4}}+1} > .$

Remark

Since $gcd(d, 2^m - 1) = 1$ if m is odd, x^d is a permutation of \mathbb{F}_{2^m} .

On Bent functions (with Claude Carlet, Chuankun Wu and Yuwei Xu)

└─On Bent monomial vectorial functions

CCK Case :
$$d = 2^{\frac{n}{3}} + 2^{\frac{n}{6}} + 1$$
, $n = 0 \mod 6$

Theorem (Canteaut - Charpin - Kyureghyan, 2008) $\mathcal{B}_d = \{ u \in \mathbb{F}_{2^{\frac{n}{2}}}^{\star} \mid Tr_{\frac{n}{6}}^{\frac{n}{2}}(u) = 0 \} \cdot \{ x^d, x \in \mathbb{F}_{2^n}^{\star} \}$

Theorem

There is no bent functions of the form $Tr^n_{\frac{n}{2}}(ax^d)$.

Theorem

Let m be a divisor of n such that $m < \frac{n}{2}$. Then, $Tr_m^n(ax^d)$ is bent if and only if $a \in \{u \in \mathbb{F}_{2^{\frac{n}{2}}}^{\star} \mid Tr_{\frac{n}{6}}^{\frac{n}{2}}(u) = 0\} \cdot < \alpha^{\gcd(2^{\frac{n}{3}} + 2^{\frac{n}{6}} + 1, t)} > .$

Example

 $Tr_4^{12}(abx^{21})$ is bent provided that $Tr_2^6(a) = 0$ with $a \in \mathbb{F}_{64}$ and b is the 21th-power of an element of $\mathbb{F}_{2^{12}}$ and x^{21} does not permutes \mathbb{F}_{2^4} .

On Bent functions (with Claude Carlet, Chuankun Wu and Yuwei Xu)

On Bent monomial vectorial functions

Dillon Case :
$$d = r(2^{rac{n}{2}} - 1)$$
, $\gcd(r, 2^{rac{n}{2}} + 1) = 1$

Theorem (Dillon, 1974, Charpin - Gong, 2008) $\mathcal{B}_{d} = \{ a \in \mathbb{F}_{2^{n}} \mid K_{\frac{n}{2}}(a^{2^{\frac{n}{2}}+1}) = 0 \}$ where $K_{\frac{n}{2}}(u) = \sum_{x = 1}^{\infty} (-1)^{Tr_1^n(ux + \frac{1}{x})}$ $x \in \mathbb{F}_{n}$

is a Kloosterman sum.

Theorem

Suppose that $n = 2 \mod 4$ and $n \ge 6$. Then, $Tr_2^n(ax^d)$ is bent if and only if $K_{\frac{n}{2}}(a^{2^{\frac{n}{2}}+1}) = 0$

Theorem

There is no bent functions of the form $Tr_{\frac{n}{2}}^{n}(ax^{d})$.

Problem

Does exist bent functions $Tr_m^n(ax^d)$ with $m \ge 3$ and $m \ne \frac{n}{2}$?

└─On Bent functions (with Claude Carlet, Chuankun Wu and Yuwei Xu)

Bent vectorial functions with multiple terms

Bent vectorial functions with multiple terms

n even integer, $m|n, m \leq \frac{n}{2}$

Vectorial functions with mutiple terms : $a_i \in \mathbb{F}_{2^n}$, d_i are integers

$$F(x) = \sum_{i=1}^{t} Tr_m^n(a_i x^{d_i})$$

Component functions :

$$Tr_1^m(uF(x)) = \sum_{i=1}^t Tr_1^n(a_i u x^{d_i})$$

Fact

Let m|n. Then, $F(x) = \sum_{i=1}^{t} Tr_m^n(a_i x^{d_i})$ is bent if and only if $f(x) = \sum_{i=1}^{t} Tr_1^n(c_i u x^{d_i})$ is bent for every $(c_1, \ldots, c_t) \in \prod_{i=1}^{t} a_i \mathbb{F}_{2^m}^{\star}$.

On Bent functions (with Claude Carlet, Chuankun Wu and Yuwei Xu)

Bent vectorial functions with multiple terms

Bent vectorial functions with multiple terms: Niho exponents

n = 2k, k positive integer

Niho exponent : an exponent d is an Niho exponent if the restriction of x^d to \mathbb{F}_{2^k} is linear

Niho exponent :
$$d = (2^k - 1)s + 2^v$$

Vectorial function :

$$F(x) = \sum_{i=1}^{t} Tr_{m}^{n} \left(a_{i} x^{(2^{k}-1)s_{i}+2^{v_{i}}} \right)$$

Component functions : $m|k, u \in \mathbb{F}_{2^m}^{\star}$. Thus, for every u and u' in $\mathbb{F}_{2^m}^{\star}$,

$$f_{u}(x) = Tr_{1}^{m}(uF(x)) = \sum_{i=1}^{l} Tr_{1}^{n}(a_{i}u'((u/u')^{2^{-v_{i}}}x)^{(2^{k}-1)s_{i}+2^{v_{i}}})$$
$$= f_{u'}((u/u')^{2^{-v_{i}}}x) \quad \text{and} \quad x \in \mathbb{R}$$

On Bent functions (with Claude Carlet, Chuankun Wu and Yuwei Xu)

Bent vectorial functions with multiple terms

Bent vectorial functions with multiple terms : Niho exponents

Theorem The vectorial function

$$\sum_{i=1}^{t} \operatorname{Tr}_{m}^{n} \left(a_{i} x^{(2^{k}-1)s_{i}+2^{v_{i}}} \right)$$

are bent for every m|k if and only if the Boolean function

$$f_1(x) = \sum_{i=1}^t Tr_1^n \left(a_i x^{(2^k - 1)s_i + 2^{v_i}} \right)$$

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ のへで 25/46

is bent.

└─On Bent functions (with Claude Carlet, Chuankun Wu and Yuwei Xu)

Bent vectorial functions with multiple terms

Bent vectorial functions with multiple terms : Dillon exponents

n = 2k even integer

Theorem (Li - Helleseth - Tang - Kolosha, 2013) The Boolean function defined for any $x \in \mathbb{F}_{2^n}$ as

$$f(x) = \sum_{i=1}^{2^{k-2}} Tr_1^n \left(ax^{(2^i-1)(2^k-1)} \right)$$

is bent if and only if $a \in \mathbb{F}_{2^k} \setminus \mathbb{F}_2$.

Fact

 $a\mathbb{F}_{2^m}^{\star} \subset \mathbb{F}_{2^k} \setminus \mathbb{F}_2$ if and only if $m \neq k$, m|k and $a \in \mathbb{F}_{2^k} \setminus \mathbb{F}_{2^m}$.

On Bent functions (with Claude Carlet, Chuankun Wu and Yuwei Xu)

Bent vectorial functions with multiple terms

Bent vectorial functions with multiple terms : Dillon exponents

n = 2k even integer

Theorem Let $m \neq k$, $m \mid k$ and $a \in \mathbb{F}_{2^k} \setminus \mathbb{F}_{2^m}$. The vectorial function

$$f(x) = \sum_{i=1}^{2^{k-2}} Tr_m^n \left(ax^{(2^i-1)(2^k-1)} \right)$$

is bent

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ ⑦ Q ♀ 27/46

└─On Bent functions (with Claude Carlet, Chuankun Wu and Yuwei Xu)

Bent vectorial functions with multiple terms

Bent vectorial functions with multiple terms : a particular case

Theorem (Muratovic-Ribic - Pasalic - Bajric, 2014)

Let $n \ge 4$ and m|k. let x^{d_1} be a permutation of \mathbb{F}_{2^m} and $\sum_{i=1}^{t} Tr_1^n(a_i x^{d_1+v_i(2^m-1)})$ be a Boolean bent function, where v_i are positive integers. Then, the vectorial function $\sum_{i=1}^{t} Tr_m^n(a_i x^{d_1+v_i(2^m-1)})$ is bent.

We show that, in some situations, we can relax the condition that x^{d_1} is a permutation and exhibit vectorial functions of the above form but with a weaker condition on x^{d_1} that is, that its range set is equal to \mathbb{F}_{2^m} .

Upper bounds on the nonlinearity of S-boxes (with Claude Carlet, Chuankun Wu and Yuwei Xu)

Upper bounds on the nonlinearity of S-boxes

 $m > \frac{n}{2}$

$$nI(F) = 2^{n-1} - \frac{1}{2} \max_{v \in \mathbb{F}_{2m}^{*}; u \in \mathbb{F}_{2n}} |W_F(u, v)|$$

Covering radius bound :

$$nl(F) \leq 2^{n-1} - 2^{\frac{n}{2}-1}$$

SCV bound, Sidelnikov-Chabaud-Vaudenay :

$$nl(F) \leq 2^{n-1} - \frac{1}{2}\sqrt{3 \times 2^n - 2 - 2 \cdot \frac{(2^n - 1)(2^{n-1} - 1)}{2^m - 1}}$$

less than the covering radius bound only if m > n-1 and achieved only if m = n odd : F almost bent function, $n!(F) = 2^{n-1} - 2^{\frac{n-1}{2}}$.

29/46

Upper bounds on the nonlinearity of S-boxes (with Claude Carlet, Chuankun Wu and Yuwei Xu)

Upper bounds on the nonlinearity of S-boxes

Carlet-Ding bound, 2007 : $m < 2^n - 2$

$$nI(F) \le 2^{n-1} - \frac{m2^{n-2}}{2^{n-1}-1}$$

- ▶ Does not improve the covering radius bound if $m \le n-1$
- Is better than the SCV bound if

$$m^{2}\left(\frac{2^{n-1}-1}{2^{n-1}}\right)^{2}+2\cdot\frac{(2^{n}-1)(2^{n-1}-1)}{2^{m}-1}>3\times2^{n}-2$$

Balancedness

$$egin{aligned} F &: \mathbb{F}_{2^n} o \mathbb{F}_{2^m} \ F^{-1}(b) &= \{a \in \mathbb{F}_{2^n} \mid F(a) = b\}, \ b \in \mathbb{F}_{2^m} \ |A| &= ext{cardinality of } A \end{aligned}$$

Definition

F is said to be balanced if and only if $|F^{-1}(b)| = 2^{n-m}$ for every $b \in \mathbb{F}_{2^m}$.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Upper bounds on the nonlinearity of S-boxes (with Claude Carlet, Chuankun Wu and Yuwei Xu)

Imbalance

$$F$$
 : $\mathbb{F}_{2^n} \to \mathbb{F}_{2^m}$

Remark

$$\frac{1}{2^m}\sum_{b\in\mathbb{F}_{2^m}}\left|F^{-1}(b)\right|=2^{n-m}$$

Imbalance of a vectorial function (Carlet-Ding, 2004):

$$Nb_F = \sum_{b \in \mathbb{F}_{2^m}} \left(\left| F^{-1}(b) \right| - 2^{n-m} \right)^2$$

Fact $Nb_F = 0$ if and only F is balanced.

Upper bounds on the nonlinearity of S-boxes (with Claude Carlet, Chuankun Wu and Yuwei Xu)

Imbalance

 $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^m}$

Remark

The imbalance of F is preserved under the composition at left or at right by an affine automorphisms likewise the nonlinearity nl:

$$Nb_{A_1 \circ F \circ A_2} = Nb_F$$
 and $nl(A_1 \circ F \circ A_2) = nl(F)$

for every vectorial function F; $\mathbb{F}_{2^n} \to \mathbb{F}_{2^m}$, $A_1 \in AGL(\mathbb{F}_{2^m})$ and $A_2 \in AGL(\mathbb{F}_{2^n})$.

Upper bounds on the nonlinearity of S-boxes (with Claude Carlet, Chuankun Wu and Yuwei Xu)

Imbalance

 $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^m}$

Remark

nl(F + A) = nl(F) for every affine function : $A : \mathbb{F}_{2^n} \to \mathbb{F}_{2^m}$

On the other hand :

- ► The imbalance is preserved under the addition of a constant function : Nb_F = Nb_{F+c} for every c ∈ 𝔽_{2^m}
- ► the imbalance is not invariant under the addition of a linear function : Nb_{F+L} and Nb_F can differ for some linear functions from F_{2ⁿ} to F_{2^m}.

Upper bounds on the nonlinearity of S-boxes (with Claude Carlet, Chuankun Wu and Yuwei Xu)

A first upper bound involving the imbalance of the derivatives of F

$$D_a F(x) = F(x) + F(x+a)$$

 $NB_F = \sum_{a\neq 0} Nb_{D_aF}$

Theorem (Carlet - Ding, 2007)

$$nl(F) \leq 2^{n-1} - \frac{1}{2}\sqrt{2^n + \frac{2^{m-n}}{2^m - 1}NB_F}$$

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の < で 35/46

A second upper bound on the nonlinearity involving Nb_F

 $F: \mathbb{F}_{2^n} \to \mathbb{F}_{2^m}$ Theorem (Carlet, 2011)

$$nl(F) \leq 2^{n-1} - \frac{1}{2}\sqrt{\frac{2^m}{2^m - 1}Nb_F}$$

Remark

If F is bent then $Nb_F = 2^n - 2^{n-m}$ and Carlet's bound coincides with the covering radius bound.

Upper bounds on the nonlinearity of S-boxes (with Claude Carlet, Chuankun Wu and Yuwei Xu)

An upper bound on the nonlinearity involving Nb_F $\mathcal{L}_{n,m} = \{L : \mathbb{F}_{2^n} \to \mathbb{F}_{2^m}, L \text{ linear}\}$ Corollary (Carlet, 2011)

$$nI(F) \leq 2^{n-1} - \frac{1}{2}\sqrt{\frac{2^m}{2^m - 1}} \max_{L \in \mathcal{L}_{n,m}} Nb_{F+L}$$

Remark

$$\frac{1}{|\mathcal{L}_{m,n}|}\sum_{L\in\mathcal{L}_{n,m}}Nb_{F+L}=2^n-2^{n-m}$$

Thus :

$$\frac{2^m}{2^m-1}\max_{L\in\mathcal{L}_{n,m}}Nb_{F+L}\geq 2^n$$

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ♀ 37/46

A new upper bound

 $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^m}$

Theorem

$$nl(F) \leq 2^{n-1} - \frac{1}{2}\sqrt{2^n + \frac{2^{2m-n}(Nb_F - (2^n - 2^{n-m}))^2}{(2^n - 1)(2^m - 1)^2}}$$

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ♀ 38/46

Fact If F is bent then $Nb_F = 2^n - 2^{n-m}$

A new upper bound

Fact

Lower than Carlet's bound if

$$Nb_F \leq 2^n - 2^{n-m}$$

or, if $m \leq n$,

$$Nb_F \ge 2^n - 2^{n-m} + 2^{2m-2n}(2^n - 1)(2^m - 1)$$

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の < で 39/46

A new upper bound

 $\mathcal{L}_{n,m} = \{L : \mathbb{F}_{2^n} \to \mathbb{F}_{2^m}, L \text{ linear}\}$ Remark For every $L \in \mathcal{L}_{n,m}$,

$$nI(F) \leq 2^{n-1} - \frac{1}{2}\sqrt{2^n + \frac{2^{2m-n}(Nb_{F+L} - (2^n - 2^{n-m}))^2}{(2^n - 1)(2^m - 1)^2}}$$

Fact

The variance of Nb_{F+L} as L ranges $\mathcal{L}_{n,m}$ is equal to $2^{-m} \sum_{a \in \mathbb{F}_{2^n}^*} Nb_{D_a F}$.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Upper bounds on the nonlinearity of S-boxes (with Claude Carlet, Chuankun Wu and Yuwei Xu)

A second upper bound

$$F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^m}$$

Theorem

If there exists $u \neq 0$ in \mathbb{F}_{2^n} such that $Tr_1^n(ux)$ is constant on each set $F^{-1}(b)$, then we have:

$$nl(F) \leq 2^{n-1} - \frac{1}{2}\sqrt{\frac{2^{2n} + 2^m N b_F}{2^m - 1}} < 2^{n-1} - 2^{n - \frac{m}{2} - 1}.$$

Remark

- ▶ if n > m, smaller than the covering radius bound and Carlet-Ding bound
- Does not apply to every vectorial functions. Relaxing the condition on *F*, that is, supposing that the Hamming weight of *u* · *x* lies outside a weight range, leads to a weaker upper bound.

└─On bent components of vectorial functions (with Chunming Tang, Fengrong Zhang and Yong Zhou)

On bent components of vectorial function

n = 2k, k positive integer $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$

$$\mathcal{B}_F = \{a \in \mathbb{F}_{2^n}^{\star} \mid Tr_1^n(aF) \text{ is bent}\}$$

Example (Niho power function) $F(x) = x^{2^{k+1}}, \ \mathcal{B}_F = \mathbb{F}_{2^n} \setminus \mathbb{F}_{2^k}, \ |\mathcal{B}_F| = 2^n - 2^k.$

Theorem (Pott - Pasalic - Muratovic-Ribic - Bajric, 2017) For any $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}, |B_F| \le 2^n - 2^k$. On bent components of vectorial functions (with Chunming Tang, Fengrong Zhang and Yong Zhou)

On bent components of vectorial function

Theorem (Pott - Pasalic - Muratovic-Ribic - Bajric, 2017)

Let F and F' be two vectorial functions from \mathbb{F}_{2^n} to \mathbb{F}_{2^n} . Suppose that F and F' are EA-equivalent. Then $|\mathcal{B}_F| = 2^n - 2^k$ if and only if $|\mathcal{B}_{F'}| = 2^n - 2^k$.

Theorem

Let F and F' be two vectorial functions from \mathbb{F}_{2^n} to \mathbb{F}_{2^n} . Suppose that F and F' are CCZ-equivalent. Then $|\mathcal{B}_F| = 2^n - 2^k$ if and only if $|\mathcal{B}_{F'}| = 2^n - 2^k$.

◆□ ▶ < @ ▶ < E ▶ < E ▶ ○ 2 · ○ Q ○ 43/46</p>

└─On bent components of vectorial functions (with Chunming Tang, Fengrong Zhang and Yong Zhou)

On bent components of vectorial function

$$F(x) = x^{2^{i}}(x + x^{2^{k}}), i$$
 nonnegative integer

Theorem (Pott - Pasalic - Muratovic-Ribic - Bajric, 2017) $Tr_1^n(aF(x))$ is bent if and only if $a \in \mathbb{F}_{2^n} \setminus \mathbb{F}_{2^k}$.

Fact

 All bent functions Trⁿ₁(aF) are in the Maiorana-McFarland class.

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

• F is CCZ-inequivalent to x^{2^k+1} .

└─On bent components of vectorial functions (with Chunming Tang, Fengrong Zhang and Yong Zhou)

On bent components of vectorial function

$$F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$$
, $F(x) = xL(x)$, $L : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$, linear

Problem

Determine the linear maps L for which the so-defined vectorial function F has the maximum number of bent components.

Lemma

Let L be a linear map from \mathbb{F}_{2^n} to itself. L^{*} denotes the adjoint map of L : $Tr_1^n(xL(y)) = Tr_1^n(L^*(x)y)$. Then $f(x) = Tr_1^n(xL(x))$ is bent if and only if $x \mapsto L(x) + L^*(x)$ is invertible.

└─On bent components of vectorial functions (with Chunming Tang, Fengrong Zhang and Yong Zhou)

On bent components of vectorial function

$$F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}, \ F(x) = x^{2^i} L(x), \ L$$
 linear

Problem

Determine L such that $x \mapsto aL^{2^{-i}}(x) + L^*(a^{2^i}x^{2^i})$ is invertible for exactly $2^n - 2^k$ values of a.

Theorem

Let t_1 and t-2 be two integers. Suppose that $z^{2^{k-t^2}-1} + z^{2^{k-t^2}-1} + 1$ and $z^{2^{t_1}-1} + z^{2^{t_2}-1} + 1$ have no roots in \mathbb{F}_{2^k} . Then

$$L(x) = x + x^{2^{k}} + x^{2^{t_1}} + x^{2^{t_2}} + x^{2^{t_1+k}} + x^{2^{t_2+k}}$$

is a solution of the problem